Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,189)

Search Parameters:
Keywords = formation recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1755 KB  
Article
A Highly Sensitive Fluorescent Sensor Based on Carbon Dots and Gold Nanoparticles for Carbaryl Through the Inner Filter Effect
by Yan Lu, Chengqi Bao and Minghui Yang
Biosensors 2025, 15(10), 691; https://doi.org/10.3390/bios15100691 (registering DOI) - 13 Oct 2025
Abstract
A highly sensitive fluorescent sensing platform was successfully constructed through carbon dots (CDs) and gold nanoparticles (AuNPs) for the specific detection of carbaryl pesticide. Because of the overlap between the fluorescence emission spectrum of CDs and the ultraviolet (UV) absorption spectrum of AuNPs, [...] Read more.
A highly sensitive fluorescent sensing platform was successfully constructed through carbon dots (CDs) and gold nanoparticles (AuNPs) for the specific detection of carbaryl pesticide. Because of the overlap between the fluorescence emission spectrum of CDs and the ultraviolet (UV) absorption spectrum of AuNPs, the fluorescence intensity of CDs exhibited a remarkable decrease in the presence of AuNPs, which was primarily attributed to the inner filter effect (IFE). Acetylcholinesterase (AChE), as a crucial hydrolase in the cholinergic system, can efficiently catalyze the substrate acetylthiocholine iodide (ATChI), leading to the formation of thiocholine. Due to the fact that thiocholine exhibited a positive charge and contained a thiol (-SH), the introduction of thiocholine resulted in the aggregation of AuNPs via gold–thiol bonding and electrostatic interactions. Subsequently, the fluorescence of CDs was restored as the inner filter effect between CDs and AuNPs was alleviated. In addition, carbaryl exerted a significant inhibitory effect on the activity of AChE, impeding the generation of thiocholine and the aggregation of AuNPs, thereby maintaining the fluorescence of CDs quenched. Under the optimal analytical conditions, the detection range of carbaryl is from 0.1 to 200 ng/mL with a detection limit (LOD) of 0.05 ng/mL (S/N = 3). The proposed fluorescent sensor was successfully employed for the detection of carbaryl in strawberry samples with recoveries in the range of 97.5%–101.1%, with the relative standard deviation (RSD) less than 5%. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2025)
Show Figures

Figure 1

18 pages, 1521 KB  
Article
Effects of a 4-Week Off-Season High-Intensity Training Program on Aerobic Performance and Sprint Endurance Ability in Adolescent Female Football Players: A Pilot Study
by Marco Panascì, Carlo Castagna, Vincenzo Rago, Vittoria Ferrando, Piero Ruggeri and Emanuela Faelli
J. Funct. Morphol. Kinesiol. 2025, 10(4), 396; https://doi.org/10.3390/jfmk10040396 (registering DOI) - 13 Oct 2025
Abstract
Background: The off-season is often characterized by a significant decrease or even a complete cessation of training. If this reduction is not planned properly, it can result in detraining. Despite numerous studies examining the effects of HIIT in football players, its specific [...] Read more.
Background: The off-season is often characterized by a significant decrease or even a complete cessation of training. If this reduction is not planned properly, it can result in detraining. Despite numerous studies examining the effects of HIIT in football players, its specific role in mitigating detraining and maintaining aerobic and anaerobic performance during the off-season in adolescent female football players remains underexplored. Therefore, this study evaluated the effects of a 4-week off-season high-intensity training (HIIT) program on aerobic performance level and sprint endurance ability in Under-15 (U-15) female football players. Methods: Fifteen U-15 female football players from a professional club completed an experimental protocol consisting of two HIIT formats: Small-Sided Games (SSGs) and Repeated Sprint Training (RST), each performed twice weekly. Before and after the intervention period, participants performed the Yo-Yo Intermittent Recovery Level 1 (YYIR1) test to gauge aerobic performance and the 30-seconds sprint test to assess sprint endurance. The internal training load was monitored via heart rate (HR) and blood lactate concentration ([La]+), while external training load metrics included the total distance (TD), moderate-speed distance (MSD), high-speed distance (HSD), acceleration distance (≥3 m·s−2; ACC), and deceleration distance (≤−3 m·s−2; DEC). Results: YYIR1 improved by 57% (p = 0.0001; d = 1.12; 95% CI: 121.94–224.71) and the 30-s test performance increased by 13% (p = 0.004; d = 0.91; and 95% CI: 14.46–25.53) following the intervention period. A very large correlation between time spent at 90–95% HRmax and the 30-s test (r = 0.90, p = 0.0001) and YYIR1 (r = 0.81, p = 0.0001) performance was observed. Very large and nearly perfect correlations between DHS and YYIR1 (r = 0.82, p = 0.0001) and the 30-s test performance (r = 0.94, p = 0.0001), respectively, were found. Conclusions: In U-15 female football players, a four-week off-season HIIT program improved both aerobic performance and sprint endurance ability, indicating that a HIIT regime attenuates the off-season detraining, thus supporting a better-conditioned return to play. Coaches may implement 4-week high-intensity off-season programs to enhance aerobic performance and start the pre-season with a satisfactory level of aerobic fitness and sprint endurance. Full article
Show Figures

Figure 1

30 pages, 28571 KB  
Article
Research on the Mechanism and Characteristics of Gel–Microbial Composite Oil Displacement in Hypertonic Heavy Oil Reservoirs
by Baolei Liu, Xiang Li, Hongbo Wang and Xiang Liu
Gels 2025, 11(10), 818; https://doi.org/10.3390/gels11100818 (registering DOI) - 12 Oct 2025
Abstract
To address the limitations of traditional chemical flooding—such as high cost, environmental impact, and formation damage—and the challenges of standalone microbial flooding—including preferential channeling, microbial loss, and limited sweep efficiency—this study develops a novel composite system for a high-permeability heavy oil reservoir. The [...] Read more.
To address the limitations of traditional chemical flooding—such as high cost, environmental impact, and formation damage—and the challenges of standalone microbial flooding—including preferential channeling, microbial loss, and limited sweep efficiency—this study develops a novel composite system for a high-permeability heavy oil reservoir. The system integrates a 3% scleroglucan + 1% phenolic resin gel (ICRG) with Bacillus licheniformis (ZY-1) and a surfactant. Core flooding and two-dimensional physical simulation experiments reveal a synergistic mechanism: The robust and biocompatible ICRG gel effectively plugs dominant flow paths, increasing displacement pressure fourfold to divert subsequent fluids. The injected strain ZY-1 then metabolizes hydrocarbons, producing biosurfactants that reduce oil–water interfacial tension by 61.9% and crude oil viscosity by 65%, thereby enhancing oil mobility. This combined approach of conformance control and enhanced oil displacement resulted in a significant increase in ultimate oil recovery, achieving 15% and 20% in one-dimensional and two-dimensional models, respectively, demonstrating its substantial potential for improving heavy oil production. Full article
(This article belongs to the Special Issue Polymer Gels for Oil Recovery and Industry Applications)
Show Figures

Figure 1

19 pages, 2143 KB  
Article
Design, Characterization, and Hematopoietic Efficacy of a Fluorinated Pyrazolopiperidine Inclusion Complex
by Zhanargul Koshetova, Guldana Daulet, Assel Ten, Raushan Koizhaiganova, Lyailya Baktybayeva, Tolganay Zharkynbek, Alexey Zazybin, Tulegen Seilkhanov, Nurgul Zhumanova, Valery Dembitsky and Valentina Yu
Molecules 2025, 30(20), 4047; https://doi.org/10.3390/molecules30204047 (registering DOI) - 11 Oct 2025
Viewed by 122
Abstract
A novel inclusion complex of a fluorinated pyrazolopiperidine derivative (5-benzyl-7-(2-fluorobenzylidene)-2,3-bis(2-fluorophenyl)-3,3a,4,5,6,7-hexahydro-2H-pyrazolo [4,3-c]pyridine hydrochloride, PP·HCl) with β-cyclodextrin (PPβCD) was designed, synthesized, and characterized as a potential therapeutic agent for chemotherapy-induced myelosuppression and lymphopenia. Encapsulation of PP within β-cyclodextrin increased aqueous solubility by approximately [...] Read more.
A novel inclusion complex of a fluorinated pyrazolopiperidine derivative (5-benzyl-7-(2-fluorobenzylidene)-2,3-bis(2-fluorophenyl)-3,3a,4,5,6,7-hexahydro-2H-pyrazolo [4,3-c]pyridine hydrochloride, PP·HCl) with β-cyclodextrin (PPβCD) was designed, synthesized, and characterized as a potential therapeutic agent for chemotherapy-induced myelosuppression and lymphopenia. Encapsulation of PP within β-cyclodextrin increased aqueous solubility by approximately 3.4-fold and improved dissolution rate by 2.8-fold compared with the free compound. Structural analysis using IR, ^1H/^13C NMR, and TLC confirmed the formation of a stable 1:1 host–guest complex, and the disappearance of free PP signals further supported complete encapsulation. In vivo evaluation in a cyclophosphamide-induced myelosuppression model demonstrated that PPβCD accelerated hematopoietic recovery, restoring leukocyte and erythrocyte counts 35–40% faster than methyluracil, without any signs of systemic toxicity. These findings indicate that β-cyclodextrin complexation significantly enhances solubility, dissolution, and biological efficacy of the pyrazolopiperidine scaffold, supporting further preclinical development of PPβCD as a supportive therapy for chemotherapy-related hematological complications. Full article
Show Figures

Graphical abstract

11 pages, 1037 KB  
Review
Research Progress in the Application of Nanotechnology in Fracturing: A Review
by Lei Liang, Huiru Lei, Qinwen Zhang, Wei Zhao, Dong Liao, Dong Wang, Yujia Xiong, Lang Liu, Hualin Liu and Zilai Mei
Nanomaterials 2025, 15(20), 1539; https://doi.org/10.3390/nano15201539 - 10 Oct 2025
Viewed by 167
Abstract
Hydraulic fracturing is a core stimulation technology for enhancing hydrocarbon production. However, it faces significant technical bottlenecks in unconventional reservoirs. These bottlenecks include poor adaptability to high-temperature and high-salinity environments, water-sensitive formation damage, and insufficient long-term fracture conductivity. Nanotechnology leverages unique properties of [...] Read more.
Hydraulic fracturing is a core stimulation technology for enhancing hydrocarbon production. However, it faces significant technical bottlenecks in unconventional reservoirs. These bottlenecks include poor adaptability to high-temperature and high-salinity environments, water-sensitive formation damage, and insufficient long-term fracture conductivity. Nanotechnology leverages unique properties of nanomaterials, such as surface effects, quantum size effects, and designability. Nanotechnology offers systematic solutions for optimizing fracturing fluids, enhancing proppant performance, and innovating waterless fracturing techniques. This review outlines the current status of fracturing technology, exploring the role of nanoparticles in improving fluid rheology, proppant strength, and interface regulation, and discusses future challenges. Studies show that nanomodified fracturing fluids can increase high-temperature viscosity retention by over 300%. Meanwhile, waterless fracturing reduces water consumption by 80%. Despite challenges in particle agglomeration and cost, nanotechnology demonstrates significant potential in boosting recovery and reducing environmental impact. Nanotechnology is positioned as a transformative technology for future unconventional resource development. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

16 pages, 1083 KB  
Article
Simultaneous Development and Validation of an HPLC Method for the Determination of Furosemide and Its Degraded Compound in Pediatric Extemporaneous Furosemide Oral Solution
by Katsanee Srejomthong, Thanawat Pattananandecha, Sutasinee Apichai, Suporn Charumanee, Busaban Sirithunyalug, Fumihiko Ogata, Naohito Kawasaki and Chalermpong Saenjum
Molecules 2025, 30(19), 4031; https://doi.org/10.3390/molecules30194031 - 9 Oct 2025
Viewed by 168
Abstract
Furosemide (FUR) is a loop diuretic widely used in pediatric care. However, no standardized oral liquid formulation exists due to degradation concerns, particularly the formation of furosemide-related compound B (FUR-B). This study aimed to develop and validate the HPLC method for the simultaneous [...] Read more.
Furosemide (FUR) is a loop diuretic widely used in pediatric care. However, no standardized oral liquid formulation exists due to degradation concerns, particularly the formation of furosemide-related compound B (FUR-B). This study aimed to develop and validate the HPLC method for the simultaneous quantification of FUR, FUR-B, methylparaben (MP), and propylparaben (PP) in pediatric extemporaneous oral solutions. Chromatographic separation was achieved using a Symmetry® C18 column (4.6 × 250 mm, 5 µm) with a mobile phase of 0.1% acetic acid in water and acetonitrile (60:40, v/v) at 1.0 mL/min of flow with injection volume at 10 µL. Detection at 272 nm provided optimal sensitivity, especially for low concentrations of FUR-B. Forced degradation confirmed baseline separation of FUR from its degradation products. The condition showed high linearity (R2 > 0.995), accuracy (recoveries 98.2–101.0%), and precision (RSD ≤ 2%). Robustness and ruggedness tests under varied conditions, analysts, and intra-day yielded consistent performance. Application to extemporaneous formulations showed that refrigeration (2–8 °C) retained initial composition, while elevated temperatures (30 °C and 40 °C) promoted FUR degradation, with FUR-B increasing to 6.84% after 90 days and greater MP and PP degradation. This validated method offers a reliable analytical tool for monitoring chemical changes and supporting quality control of pediatric FUR extemporaneous formulations. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Figure 1

24 pages, 1661 KB  
Article
Process Analysis of PMMA Dental Waste Depolymerization in Semi-Batch Reactors
by Armando Costa Ferreira, Haroldo Jorge da Silva Ribeiro, Douglas Alberto Rocha de Castro, Marcelo Costa Santos, Caio Campos Ferreira, Fernanda Paula da Costa Assunção, Sérgio Duvoisin Jr., Luiz Eduardo Pizarro Borges, Nélio Teixeira Machado and Lucas Pinto Bernar
Polymers 2025, 17(19), 2711; https://doi.org/10.3390/polym17192711 - 9 Oct 2025
Viewed by 206
Abstract
This study examines the chemical recycling of polymethylmethacrylate (PMMA) dental waste in semi-batch fixed-bed reactors via pyrolysis, aiming to convert this waste into the valuable monomer methyl methacrylate (MMA). First, the effect of temperature is analyzed in a laboratory-scale (30 g) semi-batch reactor [...] Read more.
This study examines the chemical recycling of polymethylmethacrylate (PMMA) dental waste in semi-batch fixed-bed reactors via pyrolysis, aiming to convert this waste into the valuable monomer methyl methacrylate (MMA). First, the effect of temperature is analyzed in a laboratory-scale (30 g) semi-batch reactor at 350, 400 and 450 °C. In order to visualize the combined effect of temperature and increase in bed volume, experiments conducted at 350 °C in the laboratory (30 g) and on a pilot scale (20 kg) are compared. Experiments conducted at 475°C on technical and pilot scales are also compared to elucidate this behavior. A detailed process analysis is presented, considering different experiments conducted in a semi-batch technical-scale reactor. Experiments were conducted in a 2 L reactor at temperatures of 425 °C, 450 °C and 475 °C to understand the effects of heating rate and temperature on product yield and composition. The results show that at 425 °C, MMA was the primary liquid component, with minimal by-products, suggesting that lower temperatures enhance monomer recovery. Higher temperatures, however, increased gas yields and reduced MMA yield due to intensified thermal cracking. This study also highlights that char formation and non-condensable gases increase with the reactor scale, indicating that heat transfer limitations can influence MMA purity and yield. These findings emphasize that for effective MMA recovery, lower temperatures and controlled heating rates are optimal, especially in larger reactors where heat transfer issues are more prominent. This research study contributes to scaling up PMMA recycling processes, supporting industrial applications to achieve efficient monomer recovery from waste. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

29 pages, 2125 KB  
Review
Hungry Bone Syndrome After Parathyroidectomy for Secondary Hyperparathyroidism: Pathogenesis and Contemporary Clinical Considerations
by Adina Coman, Cristi Tarta, Marco Marian, Daian Ionel Popa, Sorin Olariu, Mihai Rosu, Diana Utu, Florina Buleu, Anca-Monica Macovei-Oprescu, Dorin Novacescu, Flavia Zara and Marius Murariu
J. Clin. Med. 2025, 14(19), 7104; https://doi.org/10.3390/jcm14197104 - 9 Oct 2025
Viewed by 281
Abstract
Secondary hyperparathyroidism (SHPT) in chronic kidney disease often necessitates parathyroidectomy (PTX), but this definitive treatment can precipitate hungry bone syndrome (HBS)—a profound, prolonged hypocalcemia caused by the rapid skeletal uptake of minerals after surgery. HBS results from the abrupt cessation of parathyroid hormone [...] Read more.
Secondary hyperparathyroidism (SHPT) in chronic kidney disease often necessitates parathyroidectomy (PTX), but this definitive treatment can precipitate hungry bone syndrome (HBS)—a profound, prolonged hypocalcemia caused by the rapid skeletal uptake of minerals after surgery. HBS results from the abrupt cessation of parathyroid hormone (PTH)-driven bone resorption while bone formation continues, leading to intensive mineral deposition (mainly calcium) into chronically demineralized bone. Clinically, HBS ranges from asymptomatic biochemical disturbances to life-threatening hypocalcemia with tetany, seizures, and/or cardiac arrhythmias. This illustrative review synthesizes current knowledge of HBS pathogenesis and management in the context of SHPT. We detail how the high-turnover bone remodeling state of SHPT (osteitis fibrosa cystica) creates an expansive unmineralized osteoid pool that avidly mineralizes post-PTX. We also explore molecular mechanisms (e.g., RANKL/OPG dysregulation, Wnt/β-catenin activation, osteocyte-driven signals, and calcium-sensing receptor effects) that underpin this process. Key preoperative risk factors for HBS include very elevated PTH and alkaline phosphatase levels, large skeletal calcium deficits, younger patient age, and total PTX. We outline the typical postoperative course of HBS, phased from immediate acute hypocalcemia to a nadir and gradual recovery. Prevention and management strategies are emphasized, centered on vigilant monitoring and aggressive calcium and calcitriol supplementation, with preoperative optimization (e.g., vitamin D loading, calcimimetics) to mitigate severity. By enhancing risk stratification and perioperative care, clinicians can improve outcomes and safely navigate patients through this challenging complication of endocrine surgery. Full article
(This article belongs to the Special Issue Endocrine Surgery: Current Developments and Trends)
Show Figures

Figure 1

25 pages, 690 KB  
Article
Trust Formation, Error Impact, and Repair in Human–AI Financial Advisory: A Dynamic Behavioral Analysis
by Jihyung Han and Daekyun Ko
Behav. Sci. 2025, 15(10), 1370; https://doi.org/10.3390/bs15101370 - 7 Oct 2025
Viewed by 228
Abstract
Understanding how trust in artificial intelligence evolves is crucial for predicting human behavior in AI-enabled environments. While existing research focuses on initial acceptance factors, the temporal dynamics of AI trust remain poorly understood. This study develops a temporal trust dynamics framework proposing three [...] Read more.
Understanding how trust in artificial intelligence evolves is crucial for predicting human behavior in AI-enabled environments. While existing research focuses on initial acceptance factors, the temporal dynamics of AI trust remain poorly understood. This study develops a temporal trust dynamics framework proposing three phases: formation through accuracy cues, single-error shock, and post-error repair through explanations. Two experiments in financial advisory contexts tested this framework. Study 1 (N = 189) compared human versus algorithmic advisors, while Study 2 (N = 294) traced trust trajectories across three rounds, manipulating accuracy and post-error explanations. Results demonstrate three temporal patterns. First, participants initially favored algorithmic advisors, supporting “algorithmic appreciation.” Second, single advisory errors resulted in substantial trust decline (η2 = 0.141), demonstrating acute sensitivity to performance failures. Third, post-error explanations significantly facilitated trust recovery, with evidence of enhancement beyond baseline. Financial literacy moderated these patterns, with higher-expertise users showing sharper decline after errors and stronger recovery following explanations. These findings reveal that AI trust follows predictable temporal patterns distinct from interpersonal trust, exhibiting heightened error sensitivity yet remaining amenable to repair through well-designed explanatory interventions. They offer theoretical integration of appreciation and aversion phenomena and practical guidance for designing inclusive AI systems. Full article
Show Figures

Figure 1

16 pages, 2104 KB  
Review
Enteroenteric Fistula Following Multiple Magnet Ingestion in an Adult: Case Report, Literature Review and Management Algorithm
by Laurențiu Augustus Barbu, Liliana Cercelaru, Ionică-Daniel Vîlcea, Valeriu Șurlin, Stelian-Stefaniță Mogoantă, Tiberiu Stefăniță Țenea Cojan, Nicolae-Dragoș Mărgăritescu, Ana-Maria Țenea Cojan, Valentina Căluianu, Mihai Popescu, Gabriel Florin Răzvan Mogoș and Liviu Vasile
Healthcare 2025, 13(19), 2523; https://doi.org/10.3390/healthcare13192523 - 5 Oct 2025
Viewed by 269
Abstract
Background: Multiple high-powered magnet ingestion is a surgical emergency due to inter-loop attraction leading to ischemia, necrosis, perforation, and fistula formation. While well documented in children, adult cases—particularly those complicated by entero-enteric fistula—remain rare, and management is largely extrapolated from pediatric guidelines. Objective: [...] Read more.
Background: Multiple high-powered magnet ingestion is a surgical emergency due to inter-loop attraction leading to ischemia, necrosis, perforation, and fistula formation. While well documented in children, adult cases—particularly those complicated by entero-enteric fistula—remain rare, and management is largely extrapolated from pediatric guidelines. Objective: To present a rare case of adult entero-enteric fistula following multiple neodymium magnet ingestion, we review the literature and propose an adapted management algorithm for adults. Methods: A narrative PubMed review was performed to identify pediatric and adult cases of magnet ingestion complicated by gastrointestinal fistula. Search terms included magnet ingestion, entero-enteric fistula, neodymium, and adult. Reported case characteristics, diagnostic modalities, treatments, and outcomes were analyzed. Results: A 38-year-old male with schizophrenia presented with small bowel obstruction five days after ingesting multiple magnets. Abdominal radiography revealed clustered radiopaque bodies in the distal ileum. Emergency laparotomy identified an entero-enteric fistula caused by pressure necrosis from inter-loop magnetic attraction. Segmental enterectomy with side-to-side anastomosis was performed, with uneventful recovery. The literature review identified only a few adult cases, which showed similar pathophysiology but frequent diagnostic delays and higher complication rates compared with pediatric cases. Conclusions: This case adds to the scarce adult literature on magnet-induced entero-enteric fistula and supports the adaptation of pediatric-based protocols for adults, with attention paid to psychiatric comorbidity and delayed presentation. Early imaging, timely intervention, and multidisciplinary care are essential to prevent severe gastrointestinal injury. Full article
Show Figures

Figure 1

19 pages, 6432 KB  
Article
Storage and Production Aspects of Reservoir Fluids in Sedimentary Core Rocks
by Jumana Sharanik, Ernestos Sarris and Constantinos Hadjistassou
Geosciences 2025, 15(10), 386; https://doi.org/10.3390/geosciences15100386 - 3 Oct 2025
Viewed by 292
Abstract
Understanding the fluid storage and production mechanisms in sedimentary rocks is vital for optimising natural gas extraction and subsurface resource management. This study applies high-resolution X-ray computed tomography (≈15 μm) to digitise rock samples from onshore Cyprus, producing digital rock models from DICOM [...] Read more.
Understanding the fluid storage and production mechanisms in sedimentary rocks is vital for optimising natural gas extraction and subsurface resource management. This study applies high-resolution X-ray computed tomography (≈15 μm) to digitise rock samples from onshore Cyprus, producing digital rock models from DICOM images. The workflow, including digitisation, numerical simulation of natural gas flow, and experimental validation, demonstrates strong agreement between digital and laboratory-measured porosity, confirming the methods’ reliability. Synthetic sand packs generated via particle-based modelling provide further insight into the gas storage mechanisms. A linear porosity–permeability relationship was observed, with porosity increasing from 0 to 35% and permeability from 0 to 3.34 mD. Permeability proved critical for production, as a rise from 1.5 to 3 mD nearly doubled the gas flow rate (14 to 30 fm3/s). Grain morphology also influenced gas storage. Increasing roundness enhanced porosity from 0.30 to 0.41, boosting stored gas volume by 47.6% to 42 fm3. Although based on Cyprus retrieved samples, the methodology is applicable to sedimentary formations elsewhere. The findings have implications for enhanced oil recovery, CO2 sequestration, hydrogen storage, and groundwater extraction. This work highlights digital rock physics as a scalable technology for investigating transport behaviour in porous media and improving characterisation of complex sedimentary reservoirs. Full article
(This article belongs to the Special Issue Advancements in Geological Fluid Flow and Mechanical Properties)
Show Figures

Figure 1

14 pages, 1400 KB  
Article
Role of Glyoxalase in Astrocytes’ Supportive Function Under Hyperglycemic Conditions: Aminoguanidine and Kir4.1 Channel Recovery
by Jadier Colón-Vázquez, Nathaly M. Rosado-Rivera, Joshua J. Navedo-Jackson, Arelys A. Angueira-Laureano, Yanitza Hernandez-Santiago, Geronimo Maldonado-Martinez, Miguel P. Méndez-González, Misty J. Eaton, Serguei N. Skatchkov and David E. Rivera-Aponte
Brain Sci. 2025, 15(10), 1075; https://doi.org/10.3390/brainsci15101075 - 3 Oct 2025
Viewed by 318
Abstract
Background/Objectives: Diabetes mellitus is a metabolic disorder, and hyperglycemia results in abnormal brain function. Since glycolysis is the main energy pathway in glial cells, astrocytes possess a more developed glyoxalase (Glo) system than neurons and exhibit better survival. Glycolysis helps to protect glia [...] Read more.
Background/Objectives: Diabetes mellitus is a metabolic disorder, and hyperglycemia results in abnormal brain function. Since glycolysis is the main energy pathway in glial cells, astrocytes possess a more developed glyoxalase (Glo) system than neurons and exhibit better survival. Glycolysis helps to protect glia from (i) dicarbonyl stress and (ii) formation of advanced glycation end products (AGEs). Since aminoguanidine (AG) is an inhibitor of AGE production, the purpose of this study was to determine the role of AG in crucial astrocytic proteins, such as Kir4.1, Glo1, and Glo2, in hyperglycemic conditions. Methods: We cultured astrocytes in normal (5 mM)- and high (25 mM)-glucose conditions. After two weeks, we seeded the cells in six-well plates, with 300,000 cells/well, and then treated them with 9 mM of AG for 24 h. Results: Expression of the glyoxalases Glo1 and Glo2, and of Kir4.1, is decreased in hyperglycemic conditions; however, treatment with AG recovers the expression of the Kir4.1 protein as well as the inward currents of hyperglycemic astrocytes. Conclusion: We demonstrated that regulation of the glyoxalase system via AG or another scavenger of carbonyl and aldehydes containing polyamine groups can contribute to the recovery of astrocyte function in diabetic patients. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

14 pages, 2100 KB  
Article
Recovery of Copper from Pregnant Leach Solutions of Copper Concentrate Using Aluminum Shavings
by Oscar Joaquín Solís Marcial, Alfonso Nájera-Bastida, Orlando Soriano-Vargas, José Pablo Ruelas Leyva, Alfonso Talavera-López, Horacio Inchaurregui and Roberto Zárate Gutiérrez
Minerals 2025, 15(10), 1048; https://doi.org/10.3390/min15101048 - 2 Oct 2025
Viewed by 248
Abstract
Copper is one of the most used metals today due to its wide range of applications. Traditionally, this metal has been primarily extracted through pyrometallurgical methods, which presents several environmental and energy-related drawbacks. An alternative is hydrometallurgy, which has achieved acceptable copper extraction [...] Read more.
Copper is one of the most used metals today due to its wide range of applications. Traditionally, this metal has been primarily extracted through pyrometallurgical methods, which presents several environmental and energy-related drawbacks. An alternative is hydrometallurgy, which has achieved acceptable copper extraction rates. However, this process has not found widespread industrial application due to operational challenges and the complexity associated with the selective recovery of copper ions from the Pregnant Leach Solution (PLS), especially due to the coexistence of copper and iron ions, complicating the efficient separation of both metals. In this work, the use of aluminum shavings as a cementation agent is proposed, analyzing variables such as the initial shaving concentration (2.5, 5, 10, 15, and 20 g/L), the agitation speed (0, 200, and 400 rpm), and a temperature of 20, 30, and 40 °C. The results demonstrated selective copper cementation, achieving a 100% recovery in 30 min under stirring conditions of 400 rpm. The analysis performed using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) revealed the formation of solid phases such as metallic copper (Cu), aluminum hydroxide [Al(OH)3], and elemental sulfur (S). Additionally, it was observed that the iron ion concentration remained constant throughout the experiment, indicating a high selectivity in the process. The kinetic analysis revealed that the reaction follows a first-order model without stirring. An activation energy of 62.6 kJ/mol was determined within the experimental temperature range of 20–40 °C, confirming that the process fits the chemical reaction model. These findings provide a deeper understanding of the system’s behavior, highlighting its feasibility and potential for industrial-scale applications. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

24 pages, 5930 KB  
Article
Modulating Mechanisms of Surfactants on Fluid/Fluid/Rock Interfacial Properties for Enhanced Oil Recovery: A Multi-Scale Evaluation from SARA-Based Experiments to Atomistic Simulations
by Yiming Wang, Xinru Liang, Jinze Du, Yuxing Tan, Yu Sun, Gaobo Yu, Jinjian Hou, Zhenda Tan and Jiacheng Li
Coatings 2025, 15(10), 1146; https://doi.org/10.3390/coatings15101146 - 2 Oct 2025
Viewed by 313
Abstract
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in [...] Read more.
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in carbonate reservoirs through laboratory analyses and displacement experiments. Results show that oil recovery efficiency is largely driven by rock–fluid interactions rather than fluid–fluid interactions, with optimal brine concentrations enhancing wettability alteration, boundary flexibility, and mineral leaching. These findings highlight the importance of considering both fluid–rock interactions and mineral reactivity, rather than attributing recovery to a single mechanism. Molecular dynamics simulations further supported the experimental observations. Overall, the study emphasizes that early and well-designed low-salinity injection strategies can maximize LSWF performance. The results elucidate the key interaction mechanisms between surfactants and the various components of heavy oil through atomic-scale precision modeling and dynamic process tracking. These simulations clarify, at the microscopic level, the differences in displacement dynamics and efficiency of organic solvent systems toward different hydrocarbon components. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

17 pages, 5447 KB  
Article
Design and Evaluation of Drilling Fluid Systems for Wellbore Stabilization During Drilling in Deep Coalbed Gas Reservoirs in the Ordos Basin
by Gang Cao, Chaoqun Zhang, Zhenxing Li, Hongliang Ma, Dongsheng Cai, Xin Zhou, Xinchen Zhang, Lu Bai, Peng Zhang and Junjie Zhao
Processes 2025, 13(10), 3150; https://doi.org/10.3390/pr13103150 - 1 Oct 2025
Viewed by 414
Abstract
To overcome wellbore instability problems in deep coalbed gas reservoirs in the Ordos Basin, drilling fluid additives were evaluated and a drilling fluid system was designed. According to the SEM and CT analysis results, there were not only face and butt cleats in [...] Read more.
To overcome wellbore instability problems in deep coalbed gas reservoirs in the Ordos Basin, drilling fluid additives were evaluated and a drilling fluid system was designed. According to the SEM and CT analysis results, there were not only face and butt cleats in the coal rock but also bedding and layered fractures. Potassium chloride (KCl) and Potassium formate (HCOOK) drilling fluid systems were formulated. The recovery rate of shale and coal rock cuttings reached 99%, and the linear swelling rates for coal rock in both types of drilling fluid were less than 0.18%. Measured with a servo-controlled compression frame at a loading rate of 1 mm/min, the uniaxial compression strength of coal rock was 11.74 MPa, and it was 9.13 MPa and 10.35 MPa after immersion in KCl and HCOOK drilling fluid, respectively. This indicates that both systems have good inhibition properties. The invasion depth in packed sand was 15.5 mm for KCl drilling fluid and 8 mm for HCOOK drilling fluid, demonstrating good sealing performance by the systems. Compared to KCl drilling fluid, the HCOOK system exhibited better inhibition and sealing performance. After the removal of the 10 mm deep invasion section of drilling fluid, the permeability of the coal rock recovered by more than 90%, and the drilling fluid caused minimum damage to the reservoir. The optimized drilling fluid exhibits excellent sealing and inhibition capabilities, making it highly effective in addressing wellbore stability challenges in carbonaceous mudstone formations at 4000 m in depth in the deep coalbed methane reservoirs of the Ordos Basin. Full article
Show Figures

Figure 1

Back to TopTop