Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (579)

Search Parameters:
Keywords = formation and collapse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2645 KB  
Article
Sol–Gel Synthesis of Carbon-Containing Na3V2(PO4)3: Influence of the NASICON Crystal Structure on Cathode Material Properties
by Oleg O. Shichalin, Zlata E. Priimak, Alina Seroshtan, Polina A. Marmaza, Nikita P. Ivanov, Anton V. Shurygin, Danil K. Tsygankov, Roman I. Korneikov, Vadim V. Efremov, Alexey V. Ognev and Eugeniy K. Papynov
J. Compos. Sci. 2025, 9(10), 543; https://doi.org/10.3390/jcs9100543 - 3 Oct 2025
Abstract
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is [...] Read more.
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is given to developing NASICON -sodium (Na) super ionic conductor, type cathode materials, especially Na3V2(PO4)3, which exhibits high thermal and structural stability. This study focuses on the sol–gel synthesis of Na3V2(PO4)3 using citric acid and ethylene glycol, as well as investigating the effect of annealing temperature (400–1000 °C) on its structural and electrochemical properties. Phase composition, morphology, textural characteristics, and electrochemical performance were systematically analyzed. Above 700 °C, a highly crystalline NASICON phase free of secondary impurities was formed, as confirmed by X-ray diffraction (XRD). Microstructural evolution revealed a transition from a loose amorphous structure to a dense granular morphology, accompanied by changes in specific surface area and porosity. The highest surface area (67.40 m2/g) was achieved at 700 °C, while increasing the temperature to 1000 °C caused pore collapse due to sintering. X-ray photoelectron spectroscopy (XPS) confirmed the predominant presence of V3+ ions and the formation of V4+ at the highest temperature. The optimal balance of high crystallinity, uniform elemental distribution, and stable texture was achieved at 900 °C. Electrochemical testing in a Na/NVP half-cell configuration delivered an initial capacity of 70 mAh/g, which decayed to 55 mAh/g by the 100th cycle, attributed to solid-electrolyte interphase (SEI) formation and irreversible Na+ trapping. These results demonstrate that the proposed approach yields high-quality Na3V2(PO4)3 cathode materials with promising potential for sodium-ion battery applications. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
16 pages, 1520 KB  
Article
Shadow of a Collapsing Star in a Regular Spacetime
by Daniel Nuñez and Juan Carlos Degollado
Universe 2025, 11(10), 330; https://doi.org/10.3390/universe11100330 - 3 Oct 2025
Abstract
In this study, we describe the dynamical formation of the shadow of a collapsing star in Hayward spacetime from the points of view of an observer far away from the center and a free-falling observer. By solving the time-like and light-like radial geodesics, [...] Read more.
In this study, we describe the dynamical formation of the shadow of a collapsing star in Hayward spacetime from the points of view of an observer far away from the center and a free-falling observer. By solving the time-like and light-like radial geodesics, we determine the angular size of the shadow as a function of time. We find that the formation of the shadow is a finite process for both observers, and the size of the shadow is affected by the Hayward spacetime parameters. In this study, we consider several scenarios, from the Schwarzschild limit to an extreme Hayward black hole. Full article
(This article belongs to the Section Gravitation)
42 pages, 6991 KB  
Review
Phenomenological Analysis of Percolation Phenomena in Porous Low-k Dielectrics
by Mungunsuvd Gerelt-Od, Md Rasadujjaman, Valerii E. Arkhincheev, Konstantin A. Vorotilov and Mikhail R. Baklanov
Coatings 2025, 15(10), 1138; https://doi.org/10.3390/coatings15101138 - 1 Oct 2025
Abstract
This work reviews percolation-related phenomena in porous organosilica glass (OSG) low-k dielectrics and their critical impact on mass transport, electrical conductivity, mechanical integrity, and dielectric breakdown. We discuss how leakage current arises from the formation of minimal percolating conductive paths along pores [...] Read more.
This work reviews percolation-related phenomena in porous organosilica glass (OSG) low-k dielectrics and their critical impact on mass transport, electrical conductivity, mechanical integrity, and dielectric breakdown. We discuss how leakage current arises from the formation of minimal percolating conductive paths along pores and defect chains, while dielectric breakdown requires system-spanning pore connectivity, resulting in a higher effective percolation threshold. Mechanical properties similarly degrade when pores coalesce into a connected network, exhibiting multiple percolation thresholds due to both chemical network modifications and porosity. Experimental trends demonstrate that leakage current increases sharply at low porosity, whereas breakdown voltage and mechanical stiffness collapse at higher porosity levels (~20%–30%). We highlight that distinct percolation classes govern transport, mechanical, and nonlinear phenomena, with correlation length and diffusion timescales providing a unified framework for understanding these effects. The analysis underscores the fundamental role of network connectivity in determining the performance of organosilicate glass-based ultra-low-k dielectrics and offers guidance for material design strategies aimed at simultaneously improving electrical, mechanical, and chemical robustness. Full article
Show Figures

Figure 1

14 pages, 5130 KB  
Article
Study on the Drying Characteristics of Moist Fine Lignite in a Dense Gas–Solid Separation Fluidized Bed
by Huicheng Lei, Tengfeng Wan, Tingguan Chen, Bingbing Ma, Zongxu Yao, Bao Xu, Qingfei Wang and Xuan Xu
Minerals 2025, 15(10), 1039; https://doi.org/10.3390/min15101039 - 30 Sep 2025
Abstract
Coal serves as a cornerstone and stabilizer for China’s energy security; utilizing it in a clean and efficient manner aligns with the current national energy situation. The moisture content of coal is a crucial factor affecting its calorific value and separation efficiency. Therefore, [...] Read more.
Coal serves as a cornerstone and stabilizer for China’s energy security; utilizing it in a clean and efficient manner aligns with the current national energy situation. The moisture content of coal is a crucial factor affecting its calorific value and separation efficiency. Therefore, enhancing the drying rate while simultaneously reducing the moisture content in coal is essential to improve separation efficiency. This paper primarily investigates the drying and separation characteristics of wet fine coal particles within a gas–solid fluidized bed system. A hot gas–solid fluidized bed was employed to study the particle fluidization behavior, heat–mass transfer, and agglomeration drying properties under varying airflow temperatures. The results indicate that as the airflow temperature increases, the minimum fluidization velocity tends to decrease. Additionally, with an increase in bed height, the particle temperature correspondingly decreases, leading to weakened heat exchange capability in the upper layer of the bed. Faster heating rates facilitate rapid moisture removal while minimizing agglomeration formation. The lower the proportion of moisture and magnetite powder present, the less force is required to break apart particle agglomerates. The coal drying process exhibits distinct stages. Within a temperature range of 75 °C to 100 °C, there is a significant enhancement in drying rate, while issues such as particle fragmentation or pore structure collapse are avoided at elevated temperatures. This research aims to provide foundational insights into effective drying processes for wet coal particles in gas–solid fluidized beds. Full article
Show Figures

Graphical abstract

20 pages, 3712 KB  
Article
Analysis of Control Factors for Sensitivity of Coalbed Methane Reservoirs
by Peng Li, Cong Zhang, Bin Fan, Jie Zhang and Zhongxiang Zhao
Processes 2025, 13(10), 3133; https://doi.org/10.3390/pr13103133 - 29 Sep 2025
Abstract
Formation damage sensitivity is a primary constraint on productivity in coalbed methane (CBM) reservoirs. Conventional experimental methods, which often employ crushed or plug coal samples, disrupt the natural fracture network, thereby overestimating matrix damage and underestimating fracture-related damage. In this study, synchronous comparative [...] Read more.
Formation damage sensitivity is a primary constraint on productivity in coalbed methane (CBM) reservoirs. Conventional experimental methods, which often employ crushed or plug coal samples, disrupt the natural fracture network, thereby overestimating matrix damage and underestimating fracture-related damage. In this study, synchronous comparative experiments were conducted using raw coal and briquette coal cores, integrated with scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) analyses to characterize coal composition and pore structure. This approach elucidates the underlying mechanisms controlling reservoir sensitivity. The main findings are as follows: The dual-sample comparative system reveals substantial deviations in traditional experimental assessments. Due to post-dissolution compaction, briquette coal samples overestimate acid sensitivity while underestimating water sensitivity. Stress sensitivity is primarily attributed to the irreversible compression of natural fractures. Differences in acid sensitivity are governed by structural integrity: mineral dissolution leads to collapse in briquette coal, whereas fractures help maintain stability in raw coal. Raw coal exhibits a lower critical flow rate for velocity sensitivity and undergoes significant water sensitivity damage below 1 MPa. Both sample types show weak alkaline sensitivity, with damage acceleration observed within the pH range of 7 to 10. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 5327 KB  
Article
Long-Term Changes in the Structural and Functional Composition of Spruce Forests in the Center of the East European Plain
by Tatiana Chernenkova, Nadezhda Belyaeva, Alexander Maslov, Anastasia Titovets, Alexander Novikov, Ivan Kotlov, Maria Arkhipova and Mikhail Popchenko
Forests 2025, 16(10), 1526; https://doi.org/10.3390/f16101526 - 29 Sep 2025
Abstract
Norway spruce (Picea abies (L.) H. Karst.) is a primary forest-forming species in the European part of Russia, both in terms of its distribution and economic importance. A number of studies indicate that one of the reasons for the disturbance of spruce [...] Read more.
Norway spruce (Picea abies (L.) H. Karst.) is a primary forest-forming species in the European part of Russia, both in terms of its distribution and economic importance. A number of studies indicate that one of the reasons for the disturbance of spruce forests is linked to rising temperatures, particularly the detrimental effects of extreme droughts. The aim of our research is to identify changes in the structural and functional organization of mature spruce forests at the center of the East European Plain. The study was conducted in intact spruce forests using resurveyed vegetation relevés within the Smolensk–Moscow Upland, with relevés repeated after 40 years (in 1985 and 2025). Changes in structural and functional parameters of spruce communities were analyzed. The results showed that significant disturbances of the tree layer led to changes in the vegetation of subordinate layers, as well as the successional dynamics of spruce forests. It was found that following the collapse of old-growth spruce stands, two types of secondary succession developed: (1) with the renewal of spruce and (2) with active development of shrubs (hazel and rowan) and undergrowth of broadleaved species. It was also demonstrated that the typological diversity of the studied communities changed over 40 years not only due to the loss of the tree layer and the formation of new “non-forest” types but also because several mixed spruce-broadleaved communities transitioned into broadleaved ones, and pine–spruce communities of boreal origin shifted to nemoral types. An analysis of the complete species composition of spruce forests based on Ellenberg’s scales scoring revealed changes in habitat conditions over the 40-year period. A noticeable trend was an increase in the proportion of thermophilic and alkaliphilic species, indicating a shift toward a nemoral vegetation spectrum. It is expected that under the current forest management regime, the next 40 to 60 years will see a decline in the proportion of spruce within mixed stands, potentially culminating in the complete collapse of monospecific spruce forests in the center of the East European Plain. Full article
(This article belongs to the Special Issue Features of Forest Stand Structure Under Changing Conditions)
Show Figures

Figure 1

29 pages, 17179 KB  
Article
Spatiotemporal Cavitation Dynamics and Acoustic Responses of a Hydrofoil
by Ding Tian, Xin Xia, Yu Lu, Jianping Yuan and Qiaorui Si
Water 2025, 17(18), 2776; https://doi.org/10.3390/w17182776 - 19 Sep 2025
Viewed by 172
Abstract
This study aims to investigate the spatiotemporal evolution of cavitating flow and the associated acoustic responses around a NACA0015 hydrofoil. A coupled fluid–acoustic interaction model is developed by integrating a nonlinear cavitation model with vortex–sound coupling theory. Numerical simulations are conducted within a [...] Read more.
This study aims to investigate the spatiotemporal evolution of cavitating flow and the associated acoustic responses around a NACA0015 hydrofoil. A coupled fluid–acoustic interaction model is developed by integrating a nonlinear cavitation model with vortex–sound coupling theory. Numerical simulations are conducted within a computational domain established for the hydrofoil to capture the interactions between cavitation dynamics and acoustic radiation. The results indicate that the temporal variations in cavity evolution and pressure fluctuations agree well with experimental observations. The simulations predict a dominant pressure fluctuation frequency of 30.15 Hz, consistent with the cavitation shedding frequency, revealing that the evolution of leading-edge vortex structures governs the periodic variations in the lift-to-drag ratio. Cavitation significantly modifies the development of vortex structures, with vortex stretching effects mainly concentrated near cavitation regions. The dilation–contraction term is closely associated with cavity formation, while the pressure–torque tilting term predominantly affects cloud cavitation collapse. Dynamic mode decomposition (DMD) shows that the coherent structures of the leading modes exhibit morphological similarity to multiscale cavitation and vortex structures. Furthermore, hydrofoil cavitation noise consists mainly of loading noise and cavitation-induced pulsating radiation noise, with surface acoustic sources concentrated in cloud cavitation shedding regions. The dominant frequency of cavitation-induced radiation noise is highly consistent with experimental measurements. Full article
Show Figures

Figure 1

17 pages, 723 KB  
Review
Rebuilding Mitochondrial Homeostasis and Inhibiting Ferroptosis: Therapeutic Mechanisms and Prospects for Spinal Cord Injury
by Qin Wang, Qingqing Qin, Wenqiang Liang, Haoran Guo, Yang Diao, Shengsheng Tian and Xin Wang
Biomedicines 2025, 13(9), 2290; https://doi.org/10.3390/biomedicines13092290 - 18 Sep 2025
Viewed by 301
Abstract
During the pathological process of spinal cord injury (SCI), ferroptosis is closely related to mitochondrial homeostasis. Following the occurrence of SCI, the interruption of local blood supply leads to mitochondrial damage within cells and a reduction in Adenosine triphosphate (ATP) production. This results [...] Read more.
During the pathological process of spinal cord injury (SCI), ferroptosis is closely related to mitochondrial homeostasis. Following the occurrence of SCI, the interruption of local blood supply leads to mitochondrial damage within cells and a reduction in Adenosine triphosphate (ATP) production. This results in the loss of transmembrane ion gradients, causing an influx of Ca2+ into the cells, which in turn generates a significant amount of Reactive oxygen species (ROS) and reactive nitrogen species. This leads to severe mitochondrial dysfunction and an imbalance in mitochondrial homeostasis. Ferroptosis is a form of programmed cell death that differs from other types of apoptosis, as it is dependent on the accumulation of iron and lipid peroxides, along with their byproducts. The double bond structures in intracellular polyunsaturated fatty acids (PUFA) are particularly susceptible to attack by ROS, leading to the formation of lipid alkyl free radicals. This accumulation of lipid peroxides within the cells triggers ferroptosis. After SCI, the triggering of ferroptosis is closely associated with the “death triangle”—a core network that catalyzes cell death through the interaction of three factors: local iron overload, collapse of antioxidant defenses, and dysregulation of PUFA metabolism (where PUFA are susceptible to attack by reactive ROS leading to lipid peroxidation). These three elements interact to form a central network driving cell death. In the pathological cascade of SCI, mitochondria serve as both a major source of ROS and a primary target of their attack, playing a crucial role in the initiation and execution of cellular ferroptosis. Mitochondrial homeostasis imbalance is not only a key inducer of the “death triangle” (such as the intensification of lipid peroxidation by mitochondrial ROS), but is also reverse-regulated by the “death triangle” (such as the destruction of mitochondrial structure by lipid peroxidation products). Through the cascade reaction of this triangular network, mitochondrial homeostasis imbalance and the “death triangle” jointly drive the progression of secondary damage. This study aims to synthesize the mechanisms by which various therapeutic approaches mitigate SCI through targeted regulation of mitochondrial homeostasis and inhibition of ferroptosis. Unlike previous research, we integrate the bidirectional regulatory relationship between “mitochondrial homeostasis disruption” and “ferroptosis” in SCI, and emphasize their importance as a synergistic therapeutic target. We not only elaborate in detail how mitochondrial homeostasis—including biogenesis, dynamics, and mitophagy—modulates the initiation and execution of ferroptosis, but also summarize recent strategies that simultaneously target both processes to achieve neuroprotection and functional recovery. Furthermore, this review highlights the translational potential of various treatments in blocking the pathological cascade driven by oxidative stress and lipid peroxidation. These insights provide a novel theoretical framework and propose combinatory therapeutic approaches, thereby laying the groundwork for designing precise and effective comprehensive treatment strategies for SCI in clinical settings. Full article
(This article belongs to the Special Issue Traumatic CNS Injury: From Bench to Bedside (2nd Edition))
Show Figures

Graphical abstract

31 pages, 19437 KB  
Interesting Images
Fringes, Flows, and Fractures—A Schlieren Study of Fluid and Optical Discontinuities
by Emilia Georgiana Prisăcariu, Raluca Andreea Roșu and Valeriu Drăgan
Fluids 2025, 10(9), 243; https://doi.org/10.3390/fluids10090243 - 16 Sep 2025
Viewed by 305
Abstract
This article presents a collection of schlieren visualizations captured using a custom-built, laboratory-based imaging system, designed to explore a wide range of flow and refractive phenomena. The experiments were conducted as a series of observational case studies, serving as educational bloc notes for [...] Read more.
This article presents a collection of schlieren visualizations captured using a custom-built, laboratory-based imaging system, designed to explore a wide range of flow and refractive phenomena. The experiments were conducted as a series of observational case studies, serving as educational bloc notes for students and researchers working in fluid mechanics, optics, and high-speed imaging. High-resolution images illustrate various phenomena including shockwave propagation from bursting balloons, vapor plume formation from volatile liquids, optical surface imperfections in transparent materials, and the dynamic collapse of soap bubbles. Each image is accompanied by brief experimental context and interpretation, highlighting the physical principles revealed through the schlieren technique. The resulting collection emphasizes the accessibility of flow visualization in a teaching laboratory, and its value in making invisible physical processes intuitively understandable. Full article
(This article belongs to the Special Issue Physical and Chemical Phenomena in High-Speed Flows)
Show Figures

Figure 1

26 pages, 31941 KB  
Article
Erosion and Karst in Subsurface Middle Paleozoic Rocks in the Arkoma Basin, Oklahoma, USA
by A. Riley Brinkerhoff, John McBride, R. William Keach and Scott M. Ritter
Geosciences 2025, 15(9), 357; https://doi.org/10.3390/geosciences15090357 - 12 Sep 2025
Viewed by 317
Abstract
Seismic attribute analysis, guided by well data, reveals widespread stratigraphic anomalies caused by erosion or karstification in the late Ordovician-early Devonian Hunton Group in the Arkoma Basin, eastern Oklahoma, USA. This study shows that these strata are more extensive than previously known. Well [...] Read more.
Seismic attribute analysis, guided by well data, reveals widespread stratigraphic anomalies caused by erosion or karstification in the late Ordovician-early Devonian Hunton Group in the Arkoma Basin, eastern Oklahoma, USA. This study shows that these strata are more extensive than previously known. Well data and seismic mapping in the Red Oak petroleum field identify approximately 40 m thick Hunton lenses, averaging 3 km in diameter, surrounded by karsted rock. These lenses may be remnants of incomplete erosion during the Middle Devonian period (pre-Woodford unconformity) or result from Hunton rocks sagging into sinkholes caused by karstification and collapse of underlying Viola or Bromide carbonates. Using formation tops from wells, correlated with attribute and structure maps from a 3D seismic volume, we identify (1) areas lacking Hunton seismic markers, indicating complete removal; (2) areas with Hunton contacts, showing where Hunton remains; and (3) zones without Hunton but with a thin layer underlying carbonate strata, interpreted as an incipient karst zone, often near areas with Hunton. We also observe that the thickness of the overlying Woodford Shale, a key hydrocarbon target, correlates with karstic and erosional thinning of Hunton carbonates. Interpretation of 3D seismic data reveals a strong connection between thinned Hunton and thickened Woodford Shale. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

17 pages, 3140 KB  
Article
Optimization of Low-Carbon Drilling Fluid Systems and Wellbore Stability Control for Shaximiao Formation in Sichuan Basin with a ‘Dual Carbon’ Background
by Haiyan Jin, Lianwei Liu and Mingming Zhang
Processes 2025, 13(9), 2859; https://doi.org/10.3390/pr13092859 - 7 Sep 2025
Viewed by 464
Abstract
Driven by “Dual Carbon” goals, advancing the green development of oil and gas resources is imperative. The Shaximiao Formation tight gas reservoirs in the Sichuan Basin suffer from wellbore instability, impairing drilling efficiency and elevating energy use and emissions. This study integrates mineralogy, [...] Read more.
Driven by “Dual Carbon” goals, advancing the green development of oil and gas resources is imperative. The Shaximiao Formation tight gas reservoirs in the Sichuan Basin suffer from wellbore instability, impairing drilling efficiency and elevating energy use and emissions. This study integrates mineralogy, mechanics, drilling fluid optimization, and geostress modeling to address instability mechanisms and support low-carbon drilling. XRD shows that clay content decreases with depth (11–48%), while quartz and plagioclase dominate (45–80%). Synthetic-based drilling fluids fully inhibit clay swelling (0% expansion), outperforming calcium-based (2.4–3.1%) and water-based systems (5.4%). Synthetic and calcium-based fluids also reduce waste treatment difficulty and carbon intensity. Rolling recovery reaches 98.12% for synthetic-based vs. 78.18% for water-based. Strength tests reveal a 36.9% reduction after 14-day immersion in synthetic-based fluid, whereas water-based systems with nano-plugging agents show self-recovery, cutting energy use per foot by ~15%. Geostress modeling indicates a maximum horizontal stress of 90.08 MPa (NE114° ± 13°) and minimum of 67.2 MPa (NE24° ± 13°). Collapse pressure (48–60 MPa) varies azimuthally, requiring higher density (58–60 MPa) along the min. horizontal stress direction. A low-carbon mitigation strategy is proposed: prioritize synthetic or calcium-based drilling fluids, and optimize well trajectory using geostress models. This reduces fluid loss risk by >20%, limits methane emissions, shortens drilling cycles, and enhances efficiency while lowering carbon footprint. These insights support green and efficient natural gas development through intelligent drilling and eco-material applications. Full article
(This article belongs to the Topic Clean and Low Carbon Energy, 2nd Edition)
Show Figures

Figure 1

23 pages, 5091 KB  
Article
Erosion, Mechanical and Microstructural Evolution of Cement Stabilized Coarse Soil for Embankments
by Adel Belmana, Victor Cavaleiro, Mekki Mellas, Luis Andrade Pais, Hugo A. S. Pinto, Vanessa Gonçalves, Maria Vitoria Morais, André Studart and Leonardo Marchiori
Geotechnics 2025, 5(3), 62; https://doi.org/10.3390/geotechnics5030062 - 4 Sep 2025
Viewed by 379
Abstract
Internal erosion is a significant issue caused by water flow within soils, resulting in structural collapse of hydraulic structures, particularly in coarse soils located near rivers. These soils typically exhibit granulometric instability due to low clay content, resulting in poor hydraulic and mechanical [...] Read more.
Internal erosion is a significant issue caused by water flow within soils, resulting in structural collapse of hydraulic structures, particularly in coarse soils located near rivers. These soils typically exhibit granulometric instability due to low clay content, resulting in poor hydraulic and mechanical properties. To mitigate this problem, cement treatment is applied as an alternative to soil removal, reducing transportation and storage costs. The hole erosion test (HET) and Crumbs tests, shearing behaviour through consolidated undrained (CU) triaxial, and microstructure analyses regarding scanning electron microscopy (SEM), mercury intrusion porosimeter (MIP) and thermogravimetric analysis (TGA) were conducted for untreated and treated coarse soil specimens with varying cement contents (1%, 2%, and 3%) and curing durations (1, 7, and 28 days). The findings indicate a reduction in the loss of eroded particles and overall stability of treated soils, along with an improvement in mechanical properties. SEM observations reveal the development of hydration gel after treatment, which enhances cohesion within the soil matrix, corroborated by TGA analyses. MIP reveals the formation of a new class of pores, accompanied by a reduction in dry density. This study demonstrates that low cement addition can transform locally unsuitable soils into durable construction materials, reducing environmental impact and supporting sustainable development. Full article
Show Figures

Figure 1

19 pages, 2521 KB  
Article
Amidated Pectin/Nanocellulose Hybrid Cryogel System with a pH-Responsive Release Profile for Small Intestinal Delivery
by Shuhan Feng, Patrick Laurén, Jacopo Zini, Zahra Gounani, Jinfeng Bi, Jianyong Yi and Timo Laaksonen
Gels 2025, 11(9), 700; https://doi.org/10.3390/gels11090700 - 2 Sep 2025
Viewed by 355
Abstract
Cellulose nanofibers and pectin are promising candidates for polysaccharide-based gel carriers. However, their integration into a structurally modified hybrid gel system has not been extensively investigated. In this study, hybrid cryogels with a pH-responsive release profile favoring small intestinal delivery were prepared by [...] Read more.
Cellulose nanofibers and pectin are promising candidates for polysaccharide-based gel carriers. However, their integration into a structurally modified hybrid gel system has not been extensively investigated. In this study, hybrid cryogels with a pH-responsive release profile favoring small intestinal delivery were prepared by freeze-drying various ratios of anionic nanofibrillar cellulose (aNFC) and amidated pectin (AP). Under acidic conditions, carboxylate protonation reduced intermolecular electrostatic repulsion, promoting the formation of the aNFC/AP hybrid gel network. Increasing the AP content enhanced the mechanical strength of the hydrogels and resulted in larger pore sizes after freeze-drying. The hybrid cryogels prolonged the release of a model drug for up to 20–30 min at pH 3.0, while exhibiting rapid release within 1–2 min when the pH exceeded 6.5, due to gel network collapse. The release behavior was governed by both the porous morphology and the crosslinking density of the cryogel scaffolds. These findings demonstrate that aNFC/AP hybrid cryogels possess a well-defined pH-responsive functional window (pH 6.5–7.0) and hold strong potential as oral drug delivery systems targeting the small intestine. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Figure 1

7 pages, 986 KB  
Communication
A Call for Bio-Inspired Technologies: Promises and Challenges for Ecosystem Service Replacement
by Kristina Wanieck, M. Alex Smith, Elizabeth Porter, Jindong Zhang, Dave Dowhaniuk, Andria Jones, Dan Gillis, Mark Lipton, Marsha Hinds Myrie, Dawn Bazely, Marjan Eggermont, Mindi Summers, Christina Smylitopoulos, Claudia I. Rivera Cárdenas, Emily Wolf, Peggy Karpouzou, Nikoleta Zampaki, Heather Clitheroe, Adam Davies, Anibal H. Castillo, Michael Helms, Karina Benessaiah and Shoshanah Jacobsadd Show full author list remove Hide full author list
Biomimetics 2025, 10(9), 578; https://doi.org/10.3390/biomimetics10090578 - 2 Sep 2025
Viewed by 677
Abstract
Ecosystem services are crucial for animals, plants, the planet, and human well-being. Decreasing biodiversity and environmental destruction of ecosystems will have severe consequences. Designing technologies that could support, enhance, or even replace ecosystem services is a complex task that the Manufactured Ecosystems Project [...] Read more.
Ecosystem services are crucial for animals, plants, the planet, and human well-being. Decreasing biodiversity and environmental destruction of ecosystems will have severe consequences. Designing technologies that could support, enhance, or even replace ecosystem services is a complex task that the Manufactured Ecosystems Project team considers to be only achievable with transdisciplinarity, as it unlocks new directions for designing research and development systems. One of these directions in the project is bio-inspiration, learning from natural systems as the foundation for manufacturing ecosystem services. Using soil formation as a case study, text-mining of existing scientific literature reveals a critical gap: fewer than 1% of studies in biomimetics address soil formation technological replacement, despite the rapid global decline in natural soil formation processes. The team sketches scenarios of ecosystem collapse, identifying how bio-inspired solutions for equitable and sustainable innovation can contribute to climate adaptation. The short communication opens the discussion for collaboration and aims to initiate future research. Full article
Show Figures

Figure 1

18 pages, 4445 KB  
Article
Sink Strength Governs Yield Ceiling in High-Yield Cotton: Compensation Effects of Source–Sink Damage and Reproductive Stage Regulation
by Zhenwang Zhang, Kexin Li, Qinghua Liao, Zhijie Shi, Keke Yu, Junqi Zhu, Xiyu Jia, Guodong Chen, Sumei Wan, Shanwei Lou, Mingfeng Yang, Fangjun Li, Xiaoli Tian, Zhaohu Li and Mingwei Du
Agronomy 2025, 15(9), 2099; https://doi.org/10.3390/agronomy15092099 - 30 Aug 2025
Viewed by 639
Abstract
Under refined management, high-yield cotton fields are approaching their maximum output. However, how to break this yield upper limit, specifically the source–sink relationship is still inadequately researched. This experiment was conducted to explore the interaction mechanism between yield formation and source–sink parameters (photosynthesis, [...] Read more.
Under refined management, high-yield cotton fields are approaching their maximum output. However, how to break this yield upper limit, specifically the source–sink relationship is still inadequately researched. This experiment was conducted to explore the interaction mechanism between yield formation and source–sink parameters (photosynthesis, nitrogen content, canopy structure and dry matter accumulation and distribution). The treatments consisted of a no cutting source and sink treatment (CK), cutting 1/2 leaves per plant (1/2L) and cutting 1/2 bolls per plant (1/2B) at the initial flowering stage (IFS), the flower and boll stage (FABS), and the full boll stage (FBS). The results showed that 1/2L treatment minimized yield losses to 2.3–5.9% by enhancing photosynthetic compensation, with FBS-1/2L showing the smallest reduction (2.3–2.9%) due to higher leaf N content and SPAD values, whereas, the 1/2B treatments resulted in significant yield losses attributable to fewer bolls, especially the FBS-1/2B treatments, which reduced yields by 35.7–41.9%, with a compensatory rate of only 8.1–14.3%. It is noteworthy that the compensation rates of IFS-1/2B and FABS-1/2B could reach 26.7–32.3% and 18.7–23.8% of their yields due to the higher leaf N content. In a word, the source damage can be buffered by physiological compensation, while the sink loss leads to yield collapse due to the irreversibility of reproductive development. Thus, the core regulator of high-yield cotton fields was sink strength. Accordingly, optimizing the sink quality was performed through moderate boll thinning at the IFS, enhancing water and fertilizer supply at the FABS and strengthening sink organ protection at the FBS in order to realize a breakthrough in yield limit. Full article
(This article belongs to the Special Issue Crop Productivity and Management in Agricultural Systems)
Show Figures

Figure 1

Back to TopTop