Erosion, Mechanical and Microstructural Evolution of Cement Stabilized Coarse Soil for Embankments
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimens Preparation
2.3. Testing Procedures
2.3.1. Hole Erosion Test
2.3.2. Modified Crumb Test
2.3.3. Triaxial Test
2.3.4. Hydraulic Conductivity
2.3.5. Microstructure Analysis
3. Results and Analysis
3.1. Previous Characterization
3.2. Hole Erosion Test
3.2.1. Eroded Particles Mass
3.2.2. Outflow
3.2.3. Hole’s Final Diameter
3.3. Modified Crumb Test
3.4. Triaxial Test
3.5. Microstructure Analysis
3.5.1. Thermogravimetric Analysis
3.5.2. Scanning Electron Microscopy
3.5.3. Mercury Intrusion Porosity
3.6. Hydraulic Conductivity
4. Discussion
4.1. Cemented Soils
4.2. Embankment Scalability and Durability
4.3. Geoenvironmental Alternative Materials
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HET | Hole erosion test |
SEM | Scanning electron microscope |
TGA | Thermogravimetric analysis |
MIP | Mercury intrusion porosimetry |
XRD | X-ray diffraction analysis |
EDX | Energy-dispersive X-ray analysis |
References
- Talukdar, P.; Dey, A. Hydraulic failures of earthen dams and embankments. Innov. Infrastruct. Solut. 2019, 4, 42. [Google Scholar] [CrossRef]
- Powledge, G.R.; Ralston, D.C.; Miller, P.; Chen, Y.H.; Clopper, P.E.; Temple, D.M. Mechanics of overflow erosion on embankments. II: Hydraulic and design considerations. J. Hydraul. Eng. 1989, 115, 1056–1075. [Google Scholar] [CrossRef]
- Johnston, I.; Murphy, W.; Holden, J. A review of floodwater impacts on the stability of transportation embankments. Earth-Sci. Rev. 2021, 215, 103553. [Google Scholar] [CrossRef]
- Bonelli, S. (Ed.) Erosion in Geomechanics Applied to Dams and Levees; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Certini, G.; Scalenghe, R.; Woods, W.I. The impact of warfare on the soil environment. Earth-Sci. Rev. 2013, 127, 1–15. [Google Scholar] [CrossRef]
- Hore, S.; Alim, M.A.; Hore, R. Impact of Earthquakes on Soil Chemical Properties: A Review of Mechanisms, Changes, and Implications for Environmental and Structural Resilience. Earthquake 2025, 3, 1. [Google Scholar] [CrossRef]
- Bonelli, S. (Ed.) Erosion of Geomaterials; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dunne, T. Hydrology mechanics, and geomorphic implications of erosion by subsurface flow. In Groundwater Geomorphology:The Role of Subsurface Water in Earth-Surface Processes and Landforms; Geological Society of America: Boulder, CO, USA, 1990; Volume 252. [Google Scholar] [CrossRef]
- Umar, I.H.; Abubakar, A.; Salisu, I.M.A.; Lin, H.; Hassan, J.I. Geotechnical Stability Analysis of the Tiga Dam, Nigeria on the Assessment of Downstream Soil Properties, Erosion Risk, and Seasonal Expansion. Appl. Sci. 2024, 14, 56422. [Google Scholar] [CrossRef]
- Yao, Y.; Fan, J.; Li, J. A Review of Advanced Soil Moisture Monitoring Techniques for Slope Stability Assessment. Water 2025, 17, 390. [Google Scholar] [CrossRef]
- Nciizah, A.D.; Wakindiki, I.I. Physical indicators of soil erosion, aggregate stability and erodibility. Arch. Agron. Soil Sci. 2015, 61, 827–842. [Google Scholar] [CrossRef]
- Ghosh, A.; Manna, M.C.; Jha, S.; Singh, A.K.; Misra, S.; Srivastava, R.C.; Singh, S.P. Impact of soil-water contaminants on tropical agriculture, animal and societal environment. Adv. Agron. 2022, 176, 209–274. [Google Scholar] [CrossRef]
- Roshan, M.J.; Rashid, A.S.B.A. Geotechnical characteristics of cement stabilized soils from various aspects: A comprehensive review. Arab. J. Geosci. 2024, 17, 1. [Google Scholar] [CrossRef]
- Pongsivasathit, S.; Horpibulsuk, S.; Piyaphipat, S. Assessment of mechanical properties of cement stabilized soils. Case Stud. Constr. Mater. 2019, 11, e00301. [Google Scholar] [CrossRef]
- Belmana, A.; Mellas, M.; Cavaleiro, V. Assessment of coarse soil’s stability towards internal erosion: Case of Biskra’s dam soil. Civ. Environ. Eng. 2024, 20, 332–348. [Google Scholar] [CrossRef]
- Ghadakpour, M.; Choobbasti, A.J.; Kutanaei, S.S. Experimental study of impact of cement treatment on the shear behavior of loess and clay. Arab. J. Geosci. 2020, 13, 184. [Google Scholar] [CrossRef]
- Croft, J.B. The influence of soil mineralogical composition on cement stabilization. Geotechnique 1967, 17, 119–135. [Google Scholar] [CrossRef]
- Millogo, Y.; Morel, J.C. Microstructural characterization and mechanical properties of cement stabilised adobes. Mater. Struct. 2012, 45, 1311–1318. [Google Scholar] [CrossRef]
- Osula, D.O.A. A comparative evaluation of cement and lime modification of laterite. Eng. Geol. 1996, 42, 71–81. [Google Scholar] [CrossRef]
- Khemissa, M.; Mahamedi, A. Cement and lime mixture stabilization of an expansive overconsolidated clay. Appl. Clay Sci. 2014, 95, 104–110. [Google Scholar] [CrossRef]
- Bhattacharja, S.; Bhatty, J. Comparative Performance of Portland Cement and Lime Stabilization of Moderate to High Plasticity Clay Soils. Portl. Cem. Assoc. 2003, 2066, 60–67. Available online: www.cement.org (accessed on 25 January 2025).
- Jafer, H.M.; Atherton, W.; Ruddock, F.; Loffil, E. Comparative Study of the Performance of Ordinary Portland Cement and a Waste Material in Soft Soil Stabilisation. Available online: https://www.researchgate.net/publication/301684397 (accessed on 25 January 2025).
- Al-Rawas, A.A.; Hago, A.W.; Al-Sarmi, H. Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Build. Environ. 2005, 40, 681–687. [Google Scholar] [CrossRef]
- Eid, J.; Taibi, S.; Lefebvre, A.; Dandjinou, J.E. Le Traitement des sols à la Chaux et aux Liants Hydrauliques—Aspects Physico-chimiques. In Rencontres Universitaires de Génie Civil, Gradignan, France; 2015; Available online: https://hal.science/hal-01167621/ (accessed on 25 January 2025).
- Jauberthie, R.; Rendell, F.; Rangeard, D.; Molez, L. Stabilisation of estuarine silt with lime and/or cement. Appl. Clay Sci. 2010, 50, 395–400. [Google Scholar] [CrossRef]
- Saussaye, L.; Boutouil, M.; Baraud, F.; Leleyter, L. Soils Treatment with Hydraulic Binders: Physicochemical and Geotechnical Aspects. 2012. Available online: https://www.researchgate.net/publication/260122864 (accessed on 25 January 2025).
- Lemaire, K.; Deneele, D.; Bonnet, S.; Legret, M. Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng. Geol. 2013, 166, 255–261. [Google Scholar] [CrossRef]
- Eskisar, T. Influence of cement treatment on unconfined compressive strength and compressibility of lean clay with medium plasticity. Arab. J. Sci. Eng. 2015, 40, 763–772. [Google Scholar] [CrossRef]
- Consoli, N.C.; Foppa, D.; Festugato, L.; Heineck, K.S. Key parameters for strength control of artificially cemented soils. J. Geotech. Geoenviron. Eng. 2007, 133, 197–205. [Google Scholar] [CrossRef]
- Consoli, N.C.; Cruz, R.C.; Floss, M.F.; Festugato, L. Parameters controlling tensile and compressive strength of artificially cemented sand. J. Geotech. Geoenviron. Eng. 2010, 136, 759–763. [Google Scholar] [CrossRef]
- Bellezza, I.; Fratalocchi, E. Effectiveness of cement on hydraulic conductivity of compacted soil–cement mixtures. Proc. Inst. Civ. Eng.-Ground Improv. 2006, 10, 77–90. [Google Scholar] [CrossRef]
- Melbouci, B. Étude comparative du traitement du sol marneux à la chaux et au ciment dans les couches de forme des chaussées. Commun. Sci. Technol. 2017, 18, 79–98. Available online: https://www.researchgate.net/publication/316514778 (accessed on 25 January 2025).
- Rekik, B.; Boutouil, M.; Pantet, A. Geotechnical properties of cement treated sediment: Influence of the organic matter and cement contents. Int. J. Geotech. Eng. 2009, 3, 205–214. [Google Scholar] [CrossRef]
- Al-Amoudi, O.S.B. Characterization and chemical stabilization of Al-Qurayyah sabkha soil. J. Mater. Civ. Eng. 2002, 14, 478–484. [Google Scholar] [CrossRef]
- Ranaivomanana, H.; Razakamanantsoa, A. Toward a better understanding of the effects of cement treatment on microstructure and hydraulic properties of compacted soils. In MATBUD’2018; EDP Sciences: Les Ulis, France, 2018; Volume 163, 8p. [Google Scholar] [CrossRef]
- Nussbaum, P.J.; Colley, B.E. Dam Construction and Facing with Soil-Cement; Portland Cement Association: Skokie, IL, USA, 1971. [Google Scholar]
- Mehenni, A.; Cuisinier, O.; Masrouri, F. Impact of lime, cement, and clay treatments on the internal erosion of compacted soils. J. Mater. Civ. Eng. 2016, 28, 04016071. [Google Scholar] [CrossRef]
- Sariosseiri, F.; Muhunthan, B. Effect of cement treatment on geotechnical properties of some Washington State soils. Eng. Geol. 2009, 104, 119–125. [Google Scholar] [CrossRef]
- Currin, D.D.; Allen, J.J.; Little, D.N. Validation of Soil Stabilization Index System with Manual Development; Frank J. Seiler Researcher Laboratory, USAF Academy: Colorado Springs, CO, USA, 1976. [Google Scholar]
- Catton, M.D. Research on the physical relations of soil & soil mechanics. Highw. Res. Board Bull. 1940, 23, 831–855. [Google Scholar]
- Wooltorton, F.L.D. Engineering pedology and soil stabilization. Highw. Res. Board Bull. 1955, 108, 29–57. [Google Scholar]
- Handy, R.L.; Davidson, D.T. On the curious resemblance between fly ash and meteoritic dust. Proc. Iowa Acad. Sci. 1953, 60, 373–379. [Google Scholar]
- Pakbaz, M.S.; Alipour, R. Influence of cement addition on the geotechnical properties of an Iranian clay. Appl. Clay Sci. 2012, 67, 1–4. [Google Scholar] [CrossRef]
- Halsted, G.E.; Adaska, W.S.; McConnell, W.T. Guide to Cement-Modified Soil (CMS); Portland Cement Association: Stokie, IL, USA, 2008; Available online: https://secement.org/wp-content/uploads/2017/04/EB242.pdf (accessed on 25 January 2025).
- Ratiat, A.; Khettal, T.; Meddi, M. The piezometric and isotopic analysis of leaks in earth dams: The case of the fountain of Gazelle dam, Biskra, Algeria. Environ. Earth Sci. 2020, 79, 138. [Google Scholar] [CrossRef]
- NF P 11-300; Exécution des Terrassements: Classification des Matériaux Utilisables dans la Construction des Remblais et des Couches de Forme D’infrastructures Routières. AFNOR: Saint-Denis, France, 1992.
- NA442; Ciment—Composition, Spécification et Critères de Conformité des Ciments Courants. Institut Algérien de Normalisation: Alger, Algeria, 2013.
- EN197-1; Cement—Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- NF P 94-093; Sols: Reconnaissance et Essais Détermination des Références de Compactage d’un Matériau. Essai Proctor Normal—Essai Proctor Modifié. AFNOR: Saint-Denis, France, 1994.
- Volk, G.M. Method of Determination of the Degree of Dispersion of the Clay Fraction of Soils. Proc. Soil Sci. Soc. Am. 1937, 1, 432–445. [Google Scholar]
- ASTM D4647; Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test. ASTM: West Conshohocken, PA, USA, 2006.
- ASTM D6572-13; Standard Test Methods for Determining Dispersive Characteristics of Clayey Soils by the Crumb Test. ASTM: West Conshohocken, PA, USA, 2013.
- NF P 94-074; Sols: Reconnaissance et Essais. Essais à L’appareil Triaxial de Révolution. AFNOR: Saint-Denis, France, 1994.
- Bowles, E.J. Engineering Properties of Soils and Their Measurements, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- ASTM D2434-94; Standard Test Method for Permeability of Granular Soils (Constant Head). ASTM: West Conshohocken, PA, USA, 2000.
- Coats, A.W.; Redfern, J.P. Thermogravimetric analysis: A review. Analyst 1963, 88, 906–924. [Google Scholar] [CrossRef]
- Indraratna, B.; Nutalaya, P.; Kuganenthira, N. Stabilization of a dispersive soil by blending with fly ash. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 275–290. [Google Scholar] [CrossRef]
- Elandaloussi, R. Étude du Renforcement/Confortement des Ouvrages de Protection Contre les Inondations et L’érosion Interne. Ph.D. Thesis, Université Paris-Est, Créteil, France, 2015. [Google Scholar]
- Yi, Y.; Gu, L.; Liu, S. Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Appl. Clay Sci. 2015, 103, 71–76. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sivapullaiah, P.V. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 2016, 56, 205–212. [Google Scholar] [CrossRef]
- Sharma, N.K.; Swain, S.K.; Sahoo, U.C. Stabilization of a clayey soil with fly ash and lime: A micro level investigation. Geotech. Geol. Eng. 2012, 30, 1197–1205. [Google Scholar] [CrossRef]
- Peethamparan, S.; Olek, J.; Diamond, S. Mechanism of stabilization of Na-montmorillonite clay with cement kiln dust. Cem. Concr. Res. 2009, 39, 580–589. [Google Scholar] [CrossRef]
- Kolias, S.; Kasselouri-Rigopoulou, V.; Karahalios, A. Stabilisation of clayey soils with high calcium fly ash and cement. Cem. Concr. Compos. 2005, 27, 301–313. [Google Scholar] [CrossRef]
- MacPhee, D.E.; Black, C.J.; Taylor, A.H. Cements incorporating brown coal fly ash from the Latrobe Valley region of Victoria, Australia. Cem. Concr. Res. 1993, 23, 507–517. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The role of calcium carbonate in cement hydration. Cem. Concr. Res. 2007, 37, 551–558. [Google Scholar] [CrossRef]
- Nguyen, T.T.H. Stabilisation des Sols Traités à la Chaux et Leur Comportement au Gel. Ph.D. Thesis, Université Paris-Est, Créteil, France, 2015. [Google Scholar]
- Stocker, P.T. Diffusion and diffuse cementation in lime and cement stabilised clayey soils chemical aspects. Aust. Road Res. 1972, 5, 6–47. [Google Scholar]
- Fan, J.; Wang, D.; Qian, D. Soil-cement mixture properties and design considerations for reinforced excavation. J. Rock Mech. Geotech. Eng. 2018, 10, 791–797. [Google Scholar] [CrossRef]
- Axel, M.; Li, X.; Wen, F.; An, M.-X. Microstructure and Strength Parameters of Cement-Stabilized Loess. Geotechnics 2023, 3, 161–178. [Google Scholar] [CrossRef]
- Chabrat, N.; Cuisinier, O.; Masrouri, F. In Situ Alteration of the Hydro-Mechanical Behaviour of a Compacted Stabilised Expansive Soil. Geotechnics 2023, 3, 921–936. [Google Scholar] [CrossRef]
- Abdallah, A.; Russo, G.; Cuisinier, O. Statistical and Predictive Analyses of the Strength Development of a Cement-Treated Clayey Soil. Geotechnics 2023, 3, 465–479. [Google Scholar] [CrossRef]
- Alzayani, N.J.; Royal, A.C.; Ghataora, G.S.; Jefferson, I. Cement-bentonite in comparison with other cemented materials. Environ. Geotech. 2017, 4, 353–372. [Google Scholar] [CrossRef]
- Zhu, J.F.; Tao, Y.L.; Xu, R.Q.; Yang, H.; Pan, B.J. Investigation on the optimal formulation and mechanism of marine organic silt improved with magnesium-cement-based stabilizer. Constr. Build. Mater. 2022, 341, 127233. [Google Scholar] [CrossRef]
- Petchgate, W.; Pongsivasathit, S.; Tangpagasit, J.; Piyaphipat, S.; Pinpatthanapong, K.; Thongindam, P. Sustainable soil stabilization: Evaluating the feasibility of hydraulic cement in the deep mixing method. Case Stud. Constr. Mater. 2025, 22, e04394. [Google Scholar] [CrossRef]
- Li, J.; Qian, J.; He, C. Experimental analysis of cement-treated red sandstone coarse-grained soil and its microstructural evolution. Case Stud. Constr. Mater. 2022, 17, e01535. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Madushani, S.S.; Monrose, J.; Rathnayake, U. Diagnosis of Low-Carbon Permeable Pavements: Bearing Capacity and Long-Term Clogging Behaviour. Int. J. Pavement Res. Technol. 2025. [Google Scholar] [CrossRef]
- Al-Hadidi, M.T.; Al-Maamori, Z.H.N. Improvement of Earth Canals Constructed on Gypseous Soil by Soil Cement Mixture. J. Eng. 2019, 25, 23–37. [Google Scholar] [CrossRef]
- Prakash, K.G.; Krishnamoorthy, A. Stability of Embankment Constructed on Soft Soil Treated with Soil–Cement Columns. Transp. Infrastruct. Geotech. 2023, 10, 595–615. [Google Scholar] [CrossRef]
- Fode, T.A.; Jande, Y.A.C.; Kivevele, T. Physical, mechanical, and durability properties of concrete containing different waste synthetic fibers for green environment—A critical review. Heliyon 2024, 10, e32950. [Google Scholar] [CrossRef]
- Singh, A.; Yadav, B.P. Sustainable innovations and future prospects in construction material: A review on natural fiber-reinforced cement composites. Environ. Sci. Pollut. Res. 2024, 31, 62549–62587. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, W.; Gao, P.; Yao, Z.; Su, L.; Qiu, N.; Huang, W. Compressive strength characteristics of hybrid fiber-reinforced cemented soil. Int. J. Pavement Eng. 2022, 24, 2104843. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Q.; Zhou, N.; Su, H.; Yin, Q.; Du, B.; Zhang, L.; Yao, Y. An Experimental Study on the Mechanical Properties and Microstructure of the Cemented Paste Backfill Made by Coal-Based Solid Wastes and Nanocomposite Fibers under Dry–Wet Cycling. Materials 2024, 17, 2256. [Google Scholar] [CrossRef] [PubMed]
- Danieli, S.; Neto, J.S.A.; Soares, E.G.; Oliveira, T.F.; Brito, B.L.; Kirchheim, A.P. Shaping a Sustainable Path: Exploring Opportunities and Challenges in Carbon Capture and Utilization in Cement and Concrete Industry. Cement 2025, 19, 100135. [Google Scholar] [CrossRef]
- Pourakbar, S.; Huat, B.K. A review of alternatives traditional cementitious binders for engineering improvement of soils. Int. J. Geotech. Eng. 2017, 11, 206–216. [Google Scholar] [CrossRef]
- Serdar, M.; Bjegovic, D.; Stirmer, N.; Pecur, I.B. Alternative binders for concrete: Opportunities and challenges. In Proceedings of the Scientific Symposium: Future Trends in Civil Engineering, Zagreb, Croatia, 17 October 2019. [Google Scholar] [CrossRef]
Soil Properties 1 | Values | Oxides | Soil | Cement |
---|---|---|---|---|
Coarse Fraction (>80 µm) | 67% | Na2O | 0.77 | - |
Silt Fraction (<80 µm) | 33% | MgO | 3.38 | 1.37 |
Clay Fraction (<2 µm) | 10% | Al2O3 | 12.43 | 3.16 |
D10 (mm) | 0.002 | SiO2 | 36.15 | 10.75 |
D30 (mm) | 0.070 | K2O | 2.05 | 1.10 |
D60 (mm) | 0.450 | CaO | 37.06 | 77.93 |
Cu (-) | 225 | TiO2 | 0.73 | - |
Cc (-) | 5.4 | Fe2O3 | 6.54 | 2.84 |
MBV (-) | 0.5 | SO3 | 0.60 | 2.85 |
PI (%) | 16 | |||
Ac (-) | 1.25 | |||
GS (-) | 2.66 |
Sample 1 | MDD (t/m3) | OMC (%) | TDD (t/m3) | TMC (%) |
---|---|---|---|---|
0% (untreated) | 2.02 | 10.2 | 1.81 | 16.4 |
1% | 2.00 | 10.7 | 1.80 | 16.4 |
2% | 1.99 | 11.0 | 1.79 | 16.7 |
3% | 1.98 | 11.2 | 1.78 | 17.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmana, A.; Cavaleiro, V.; Mellas, M.; Andrade Pais, L.; Pinto, H.A.S.; Gonçalves, V.; Morais, M.V.; Studart, A.; Marchiori, L. Erosion, Mechanical and Microstructural Evolution of Cement Stabilized Coarse Soil for Embankments. Geotechnics 2025, 5, 62. https://doi.org/10.3390/geotechnics5030062
Belmana A, Cavaleiro V, Mellas M, Andrade Pais L, Pinto HAS, Gonçalves V, Morais MV, Studart A, Marchiori L. Erosion, Mechanical and Microstructural Evolution of Cement Stabilized Coarse Soil for Embankments. Geotechnics. 2025; 5(3):62. https://doi.org/10.3390/geotechnics5030062
Chicago/Turabian StyleBelmana, Adel, Victor Cavaleiro, Mekki Mellas, Luis Andrade Pais, Hugo A. S. Pinto, Vanessa Gonçalves, Maria Vitoria Morais, André Studart, and Leonardo Marchiori. 2025. "Erosion, Mechanical and Microstructural Evolution of Cement Stabilized Coarse Soil for Embankments" Geotechnics 5, no. 3: 62. https://doi.org/10.3390/geotechnics5030062
APA StyleBelmana, A., Cavaleiro, V., Mellas, M., Andrade Pais, L., Pinto, H. A. S., Gonçalves, V., Morais, M. V., Studart, A., & Marchiori, L. (2025). Erosion, Mechanical and Microstructural Evolution of Cement Stabilized Coarse Soil for Embankments. Geotechnics, 5(3), 62. https://doi.org/10.3390/geotechnics5030062