Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (780)

Search Parameters:
Keywords = forearm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 849 KiB  
Article
Morphofunctional Profile Focusing on Strength and Ultrasound of the Upper Limbs in Female Breast Cancer Survivors: A Comparative Cross-Sectional Study Between Groups with and Without Lymphoedema and Between Ipsilateral and Contralateral Limbs
by Ana Rafaela Cardozo Da Silva, Juliana Netto Maia, Vanessa Maria Da Silva Alves Gomes, Naiany Tenório, Juliana Fernandes de Souza Barbosa, Ana Claudia Souza da Silva, Vanessa Patrícia Soares de Sousa, Leila Maria Alvares Barbosa, Armèle de Fátima Dornelas de Andrade and Diego Dantas
Biomedicines 2025, 13(8), 1884; https://doi.org/10.3390/biomedicines13081884 (registering DOI) - 2 Aug 2025
Abstract
Background: Breast cancer is the most common neoplasm in women. Despite effective treatments, sequelae such as decreased muscle strength, upper limb dysfunction, and tissue changes are common, highlighting the need for functional assessments during rehabilitation. This study analysed the morphofunctional profile of [...] Read more.
Background: Breast cancer is the most common neoplasm in women. Despite effective treatments, sequelae such as decreased muscle strength, upper limb dysfunction, and tissue changes are common, highlighting the need for functional assessments during rehabilitation. This study analysed the morphofunctional profile of the upper limbs in breast cancer survivors, comparing muscle strength and ultrasound findings between groups with and without lymphoedema, as well as between ipsilateral and contralateral limbs. Methods: This cross-sectional study included female breast cancer survivors treated at an oncology physical therapy clinic. Muscle strength was measured using dynamometry (handgrip and arm flexor strength), and ultrasound assessed the thickness of the dermal–epidermal complex (DEC), subcutaneous tissue (SUB), and muscle (MT). Results: The upper limbs of 41 women were evaluated. No significant differences were observed between those with and without breast cancer-related lymphoedema (BCRL). When comparing the ipsilateral and contralateral limbs, significant reductions were observed in arm flexor strength (p < 0.001; 95% CI: −9.77 to −2.50), handgrip strength (p < 0.001; 95% CI: −4.10 to −1.22), and tissue thickness, with increased DEC thickness on the forearm (0.20 mm; p = 0.022) and arm flexors (0.25 mm; p < 0.001) of the ipsilateral limb. Conclusion: Significant differences in muscle strength and tissue structure between ipsilateral and contralateral limbs may reflect surgical and local pathophysiological effects. A trend toward reduced values for these parameters was also noted in limbs with BCRL, reinforcing the importance of future research to elucidate underlying mechanisms and guide more effective therapeutic strategies. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

14 pages, 827 KiB  
Article
Sensor Fusion for Enhancing Motion Capture: Integrating Optical and Inertial Motion Capture Systems
by Hailey N. Hicks, Howard Chen and Sara A. Harper
Sensors 2025, 25(15), 4680; https://doi.org/10.3390/s25154680 - 29 Jul 2025
Viewed by 257
Abstract
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The [...] Read more.
This study aimed to create and evaluate an optimization-based sensor fusion algorithm that combines Optical Motion Capture (OMC) and Inertial Motion Capture (IMC) measurements to provide a more efficient and reliable gap-filling process for OMC measurements to be used for future research. The proposed algorithm takes the first and last frame of OMC data and fills the rest with gyroscope data from the IMC. The algorithm was validated using data from twelve participants who performed a hand cycling task with an inertial measurement unit (IMU) placed on their hand, forearm, and upper arm. The OMC tracked a cluster of reflective markers that were placed on top of each IMU. The proposed algorithm was evaluated with simulated gaps of up to five minutes. Average total root-mean-square errors (RMSE) of <1.8° across a 5 min duration were observed for all sensor placements for the cyclic upper limb motion pattern used in this study. The results demonstrated that the fusion of these two sensing modalities is feasible and shines light on the possibility of more field-based studies for human motion analysis. Full article
Show Figures

Figure 1

5 pages, 1191 KiB  
Interesting Images
Iliac Arteriovenous Fistula and Pseudoaneurysm Secondary to Gunshot Trauma
by Ibrahim Akbudak, Muhammed Tekinhatun, Mehmet Sait Duyu and Fatih Cihan
Diagnostics 2025, 15(15), 1882; https://doi.org/10.3390/diagnostics15151882 - 27 Jul 2025
Viewed by 283
Abstract
Abdominal arteriovenous fistula [AVF] is a rare but serious complication of penetrating trauma, often associated with high morbidity and mortality. This report presents the case of a 24-year-old male who sustained multiple gunshot wounds, leading to the formation of an ilio-iliac AVF and [...] Read more.
Abdominal arteriovenous fistula [AVF] is a rare but serious complication of penetrating trauma, often associated with high morbidity and mortality. This report presents the case of a 24-year-old male who sustained multiple gunshot wounds, leading to the formation of an ilio-iliac AVF and a pseudoaneurysm. The patient arrived at the emergency department hemodynamically unstable, with bullet wounds to the forearm, thigh, and lumbosacral region. Initial non-arterial phase CT revealed a pseudoaneurysm anterior to the right external iliac vessels and a surrounding hematoma, raising suspicion for AVF. A second biphasic CTA confirmed an AVF connection between the right external iliac artery and external iliac vein, as well as the arterialization of the vein. Additionally, fat stranding and bowel wall thickening suggested potential hollow viscus injury. Due to the patient’s unstable condition and possible intra-abdominal injuries, an open laparotomy was performed. A stent was placed in the right external iliac artery, the vein was primarily repaired, and serosal injuries to the duodenum and cecum were surgically addressed. The patient recovered gradually, although a persistent serous discharge was noted and managed in follow-up. This case highlights the importance of considering AVF in penetrating abdominal trauma and the critical role of biphasic CTA in diagnosis and surgical planning. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

10 pages, 1053 KiB  
Review
Huriez Syndrome and SCC Risk: A Narrative Review Highlighting Surgical Challenges and Oncologic Considerations
by Alessia Pagnotta, Luca Patanè, Carmine Zoccali, Francesco Saverio Loria, Federico Lo Torto and Diego Ribuffo
J. Clin. Med. 2025, 14(15), 5214; https://doi.org/10.3390/jcm14155214 - 23 Jul 2025
Viewed by 272
Abstract
Background: Huriez syndrome is a rare hereditary skin disorder marked by early-onset sclerodactyly, hyperkeratosis of the palms and soles, and nail dysplasia. A key concern is the early and aggressive development of cutaneous squamous cell carcinoma (SCC), typically affecting the dorsal aspects [...] Read more.
Background: Huriez syndrome is a rare hereditary skin disorder marked by early-onset sclerodactyly, hyperkeratosis of the palms and soles, and nail dysplasia. A key concern is the early and aggressive development of cutaneous squamous cell carcinoma (SCC), typically affecting the dorsal aspects of the hands. Methods: This narrative review summarizes clinical features, genetic aspects, and oncologic implications of Huriez syndrome. A systematic search was conducted in PubMed and Scopus, including English-language articles published up to May 2025. Relevant case reports and small case series were analyzed. Results: Seven patients (58.3%) underwent multiple surgeries due to recurrent or bilateral disease. Six patients (50%) required amputations, including finger, hand, and arm amputations, with no foot amputations reported. Reconstruction after oncological resection was performed in six patients (50%) using skin grafts (3), pedicled flaps (2), or free flaps (1). Amputation was mainly for advanced disease, with radial forearm flaps used for reconstruction. All flaps remained disease-free. Five cases (41.6%) had a history of local recurrence. Conclusions: The early diagnosis of Huriez syndrome is crucial to enable the surveillance and timely treatment of SCC. A multidisciplinary team including dermatologists, oncologists, plastic surgeons, and geneticists is recommended. Further research is needed to clarify genetic mechanisms and develop early detection strategies to improve outcomes. Full article
Show Figures

Figure 1

10 pages, 1668 KiB  
Case Report
Novel Surgical Reconstruction Using a 3D Printed Cement Mold Following Resection of a Rare Case of Proximal Ulna Osteosarcoma: A Case Report and Description of the Surgical Technique
by Abdulrahman Alaseem, Hisham A. Alsanawi, Waleed Albishi, Ibrahim Alshaygy, Sara Alhomaidhi, Mohammad K. Almashouq, Abdulaziz M. AlSudairi, Yazeed A. Alsehibani and Abdulaziz O. Almuhanna
Curr. Oncol. 2025, 32(8), 411; https://doi.org/10.3390/curroncol32080411 - 22 Jul 2025
Viewed by 195
Abstract
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the [...] Read more.
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the complex anatomy and limited reconstructive options. We report a rare case of a 19-year-old female with non-metastatic, high-grade giant cell-rich osteosarcoma involving the right proximal ulna. To our knowledge, this is only the second reported adult case of this histological subtype in this location. The patient was treated at a specialized oncology center with neoadjuvant and adjuvant chemotherapy, along with wide intra-articular resection for local tumor control. Reconstruction was achieved using a novel, customized 3D-printed articulating cement spacer mold with plate osteosynthesis. Artificial elbow ligamentous reconstruction was performed using FiberTape and FiberWire sutures passed through drill holes, and the triceps tendon was reattached to the cement mold using an endobutton. This cost-effective and personalized surgical approach allowed successful joint reconstruction while maintaining elbow stability and function. Our case highlights a feasible reconstructive option for rare and anatomically challenging osteosarcoma presentations, contributing to the limited literature on proximal ulna giant cell-rich osteosarcoma. Full article
(This article belongs to the Section Bone and Soft Tissue Oncology)
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Polymer Prosthetic Hand with Finger Copies for Persons with Congenital Defects or After Amputation Using 3D Printing Technology
by Anna Włodarczyk-Fligier, Magdalena Polok-Rubiniec, Aneta Kania, Sebastian Jakubik, Jakub Painta, Justyna Ryś, Jakub Wieczorek, Marta Marianek, Agata Ociepka, Mikołaj Micuła and Jakub Osuch
Polymers 2025, 17(14), 1983; https://doi.org/10.3390/polym17141983 - 19 Jul 2025
Viewed by 406
Abstract
The research presented in this paper focuses on the utilization of 3D printing technology in the design and manufacture of a prosthetic hand, equipped with a digit replicator. The subject of this study was a young man who had undergone the amputation of [...] Read more.
The research presented in this paper focuses on the utilization of 3D printing technology in the design and manufacture of a prosthetic hand, equipped with a digit replicator. The subject of this study was a young man who had undergone the amputation of two fingers on his right hand. The electronic control of the movement of the finger copy was developed using Arduino language. A concept and outline drawings were developed in ProCreate. Three-dimensional scan of the hand and forearm was made using an EinScan PRO HD SHINING 3D scanner. Using CAD software—Autodesk Inventor and Autodesk Meshmixer, the prosthesis was designed. Printing was carried out on a 3D printer of the i3 MK3 and MK3+ series using a PLA (polylactic acid) filament. It was determined that PLA is an optimal material for printing, as it is considered to be safe for future patients’ skin. Work on the electronic circuitry started in Autodesk TinkerCad simulation software, allowing the code to be verified and ensuring the safety of the control system. The prosthesis’s design demonstrates the potential to reach as many people in need as possible by using readily available, low-cost, and easy-to-use components. Full article
(This article belongs to the Special Issue 3D Printing Polymer Materials and Their Biomedical Applications)
Show Figures

Figure 1

17 pages, 1788 KiB  
Article
Morphological and Functional Asymmetry Among Competitive Female Fencing Athletes
by Wiktoria Bany, Monika Nyrć and Monika Lopuszanska-Dawid
Appl. Sci. 2025, 15(14), 8020; https://doi.org/10.3390/app15148020 - 18 Jul 2025
Viewed by 242
Abstract
Maintaining body symmetry in sports characterized by high lateralization is crucial for optimizing long-term athletic performance and mitigating injury risk. This study aimed to evaluate the extent of morphological asymmetry in anthropometric features among elite professional fencers. Additionally, the presence of functional asymmetry [...] Read more.
Maintaining body symmetry in sports characterized by high lateralization is crucial for optimizing long-term athletic performance and mitigating injury risk. This study aimed to evaluate the extent of morphological asymmetry in anthropometric features among elite professional fencers. Additionally, the presence of functional asymmetry and its associations with morphological asymmetry were assessed. Thirty-two Polish adult female fencers, aged 18–33 yrs, were examined. Data collection involved a questionnaire survey, anthropometric measurements, calculation of anthropological indices, and assessment of functional asymmetry. For the 24 bilateral anthropometric features, small differences were found in seven characteristics: foot length, subscapular skinfold thickness, upper arm circumference, minimum and maximum forearm circumference, upper limb length, and arm circumference in tension. Morphological asymmetry index did not exceed 5%. Left-sided lateralization of either the upper or lower limbs was associated with significantly high asymmetry, specifically indicating larger minimum forearm circumferences in the right limb. Continuous, individualized monitoring of morphological asymmetry and its direction in athletes is essential, demanding concurrent consideration of functional lateralization. This ongoing assessment establishes a critical baseline for evaluating training adaptations, reducing injury susceptibility, and optimizing rehabilitation strategies. Deeper investigation of symmetry within non-dominant limbs is warranted to enhance our understanding. Full article
Show Figures

Figure 1

14 pages, 895 KiB  
Article
Biomechanical Trade-Offs Between Speed and Agility in the Northern Brown Bandicoot
by Kaylah Del Simone, Skye F. Cameron, Christofer J. Clemente, Taylor J. M. Dick and Robbie S. Wilson
Biomechanics 2025, 5(3), 52; https://doi.org/10.3390/biomechanics5030052 - 17 Jul 2025
Viewed by 228
Abstract
Background/Objectives: Australian terrestrial mammals that fall within the critical weight range (35 g–5.5 kg) have experienced large population declines due to a combination of habitat loss and modification, and the introduction of non-native cats, dogs, and foxes. Because running speed typically increases with [...] Read more.
Background/Objectives: Australian terrestrial mammals that fall within the critical weight range (35 g–5.5 kg) have experienced large population declines due to a combination of habitat loss and modification, and the introduction of non-native cats, dogs, and foxes. Because running speed typically increases with body size, predators are usually faster but less agile than their prey due to the biomechanical trade-offs between speed and agility. Quantifying the maximum locomotor capacities of Australian mammals in the critical weight range, and the magnitude of the trade-off between speed and agility, can aid in estimating species’ vulnerability to predation. Methods: To do this, we quantified the trade-off between speed and agility in both males and females (n = 36) of a critical weight range species, the northern brown bandicoot (Isoodon macrourus), and determined if there was an influence of morphology on locomotor performance. Results: When turning, individuals who had higher turn approach speeds, and higher within-turn speeds, had greater turning radii and lower angular velocities, meaning a decrease in overall maneuverability. Females were more agile and exhibited greater turning speeds at similar turning radii than males. For both sexes, individuals with longer relative hind digits had relatively faster sprint speeds, while those with longer forearms had relatively smaller turning radii and higher agility. Conclusions: Due to the constrained limb morphology of the bandicoot species, these findings could translate across this group to provide a better understanding of their escape performance and risk of predation. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

17 pages, 1353 KiB  
Review
Improving Wrist Strength Assessment Reliability: A Review of Handheld Dynamometry Protocols and Their Clinical Implications
by Diego Mazzocato, Valentina Biasol, Pasquale Arcuri, Tracy Fairplay, Fabio Vita, Donati Danilo, Davide Zanin, Paolo Boccolari and Roberto Tedeschi
J. Clin. Med. 2025, 14(14), 5059; https://doi.org/10.3390/jcm14145059 - 17 Jul 2025
Viewed by 307
Abstract
Background: Handheld dynamometry (HHD) is widely utilized for assessing muscle strength, particularly in the wrist. However, variability in measurement reliability due to differences in testing protocols poses a challenge for clinical and research applications. Methods: The design of this study includes [...] Read more.
Background: Handheld dynamometry (HHD) is widely utilized for assessing muscle strength, particularly in the wrist. However, variability in measurement reliability due to differences in testing protocols poses a challenge for clinical and research applications. Methods: The design of this study includes a scoping review of the literature, conducted following the PRISMA-ScR checklist methodology developed by the Joanna Briggs Institute. The databases most commonly cited in review articles were consulted: EBSCO, PEDro, PubMed, Scopus, and Cochrane Library. The following MeSH terms were used: “Handheld Dynamometer”, “Wrist”, “Forearm”, “Muscle”, and “Strength”. The search strings were built using combinations of these terms. Article screening was performed by three reviewers independently, blinded to each other’s selections. Results: The review indicates that HHD can provide reliable measurements when standardized protocols are used. Most studies reported high intra-examiner reliability with Intraclass Correlation Coefficients (ICCs) between 0.71 and 0.90. However, inter-examiner reliability showed more variability, particularly when more than two examiners were involved. The review also highlights the importance of precise dynamometer placement and consistent patient positioning in order to reduce measurement variability. Conclusions: While HHD is a valuable tool for wrist strength assessment, the effectiveness of its measurements largely depends on the testing procedure’s standardization. Implementing validated standardized protocols is essential in enhancing measurement reliability and ensuring their consistent application across clinical settings. Further research is needed to firmly implement these protocols and expand their application in clinical practice. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

16 pages, 5397 KiB  
Article
Evaluation of Technical and Anthropometric Factors in Postures and Muscle Activation of Heavy-Truck Vehicle Drivers: Implications for the Design of Ergonomic Cabins
by Esteban Ortiz, Daysi Baño-Morales, William Venegas, Álvaro Page, Skarlet Guerra, Mateo Narváez and Iván Zambrano
Appl. Sci. 2025, 15(14), 7775; https://doi.org/10.3390/app15147775 - 11 Jul 2025
Viewed by 442
Abstract
This study investigates how three technical factors—steering wheel tilt, torque, and cabin vibration frequency—affect driver posture. Heavy-truck drivers often suffer from musculoskeletal disorders (MSDs), mainly due to poor cabin ergonomics and prolonged postures during work. In countries like Ecuador, making major structural changes [...] Read more.
This study investigates how three technical factors—steering wheel tilt, torque, and cabin vibration frequency—affect driver posture. Heavy-truck drivers often suffer from musculoskeletal disorders (MSDs), mainly due to poor cabin ergonomics and prolonged postures during work. In countries like Ecuador, making major structural changes to cabin design is not feasible. These factors were identified through video analysis and surveys from drivers at two Ecuadorian trucking companies. An experimental system was developed using a simplified cabin to control these variables, while posture and muscle activity were recorded in 16 participants using motion capture, inertial sensors, and electromyography (EMG) on the upper trapezius, middle trapezius, triceps brachii, quadriceps muscle, and gastrocnemius muscle. The test protocol simulated key truck-driving tasks. Data were analyzed using ANOVA (p<0.05), with technical factors and mass index as independent variables, and posture metrics as dependent variables. Results showed that head mass index significantly affected head abduction–adduction (8.12 to 2.18°), and spine mass index influenced spine flexion–extension (0.38 to 6.99°). Among technical factors, steering wheel tilt impacted trunk flexion–extension (13.56 to 16.99°) and arm rotation (31.1 to 19.7°). Steering wheel torque affected arm rotation (30.49 to 6.77°), while vibration frequency influenced forearm flexion–extension (3.76 to 16.51°). EMG signals showed little variation between muscles, likely due to the protocol’s short duration. These findings offer quantitative support for improving cabin ergonomics in low-resource settings through targeted, cost-effective design changes. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 686 KiB  
Review
Fracture Risk in Chronic Kidney Disease: Addressing an Overlooked Complication
by Guido Gembillo, Concetto Sessa, Walter Morale, Luca Zanoli, Antonino Catalano, Salvatore Silipigni, Luca Soraci, Andrea Corsonello, Maria Princiotto, Carlo Lomonte and Domenico Santoro
Metabolites 2025, 15(7), 460; https://doi.org/10.3390/metabo15070460 - 7 Jul 2025
Viewed by 612
Abstract
Fracture risk is a serious yet underrecognized complication among patients with chronic kidney disease (CKD), especially in those with stages G3-G5D. The overlap between CKD-Mineral and Bone Disorder (CKD-MBD) and osteoporosis leads to complex bone changes that increase the likelihood of fragility fractures. [...] Read more.
Fracture risk is a serious yet underrecognized complication among patients with chronic kidney disease (CKD), especially in those with stages G3-G5D. The overlap between CKD-Mineral and Bone Disorder (CKD-MBD) and osteoporosis leads to complex bone changes that increase the likelihood of fragility fractures. Studies show that 18% to 32% of CKD patients also have osteoporosis, and these individuals are more than 2.5 times as likely to suffer from fractures compared to those without CKD. In the advanced stages of the disease, fracture risk is up to four times higher than in the general population, with the femur, forearm, and humerus being the most commonly affected sites. Hip fractures are of particular concern as they are linked to longer hospital stays and higher rates of morbidity and mortality. Furthermore, dialysis patients who experience hip fractures have a mortality rate 2.4 times higher than those in the general population with similar fractures. This increased risk underscores the need for proactive bone health maintenance in CKD patients to prevent fractures and related complications. This review explores the underlying pathophysiological mechanisms, diagnostic challenges, and treatment options related to bone fragility in CKD. Diagnostic tools, such as bone mineral density (BMD) assessments, the trabecular bone score (TBS), and biochemical markers, remain underused, especially in advanced CKD stages. Recent treatment strategies emphasize a multidisciplinary, stage-specific approach, incorporating calcium and vitamin D supplements, anti-resorptive agents like denosumab, and anabolic therapies such as teriparatide and romosozumab. Effective management needs to be tailored to the patient’s bone turnover status and stage of CKD. Despite progress in understanding bone fragility in CKD, significant gaps remain in both diagnosis and treatment. Personalized care, guided by updated KDIGO recommendations and based on an interdisciplinary approach, is essential to reduce fracture risk and improve outcomes in this vulnerable population. Further research is needed to validate risk assessment tools and refine therapeutic protocols. Full article
Show Figures

Figure 1

10 pages, 1238 KiB  
Article
A Novel, Sport-Specific EMG-Based Method to Evaluate Movement Efficiency in Karate Punching
by László Csákvári, Bence Kopper and Tamás Horváth
Sports 2025, 13(7), 218; https://doi.org/10.3390/sports13070218 - 7 Jul 2025
Viewed by 428
Abstract
Background: This study aimed to develop a method to analyze the kinetic and kinematic characteristics of the traditional karate Gyaku Tsuki (reverse punch), focusing on the activation sequence of lower and upper extremities and trunk muscles during execution. Methods: An elite male (N [...] Read more.
Background: This study aimed to develop a method to analyze the kinetic and kinematic characteristics of the traditional karate Gyaku Tsuki (reverse punch), focusing on the activation sequence of lower and upper extremities and trunk muscles during execution. Methods: An elite male (N = 1) karate athlete (in kata) performed 20 Gyaku Tsuki punches while equipped with 16 wireless surface EMG sensors integrated with 3-axis accelerometers. The five punches with the highest forearm acceleration were selected for analysis. EMG, accelerometer, and synchronized video data were recorded and processed. Results: A novel visualization technique was developed to represent muscle activation over time, distinguishing a spectrum of 0–25–50–75–100% activation levels. Muscle activation times for arm, leg, and trunk muscles ranged from −0.31 to −0.11 s relative to punch execution, indicating rapid, coordinated muscle engagement. Conclusions: This method enables detailed analysis of muscle activation patterns in karate punches. It offers valuable insights for biomechanics researchers and practical applications for coaches aiming to enhance performance and prevent injuries through better understanding of movement dynamics. Full article
Show Figures

Graphical abstract

21 pages, 1627 KiB  
Article
Estimation of Cylinder Grasping Contraction Force of Forearm Muscle in Home-Based Rehabilitation Using a Stretch-Sensor Glove
by Adhe Rahmatullah Sugiharto Suwito P, Ayumi Ohnishi, Tsutomu Terada and Masahiko Tsukamoto
Appl. Sci. 2025, 15(13), 7534; https://doi.org/10.3390/app15137534 - 4 Jul 2025
Viewed by 270
Abstract
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, [...] Read more.
Monitoring forearm muscle contraction force in home-based rehabilitation remains challenging. Electromyography (EMG), as a standard technique, is considered impractical and complex for independent use by patients at home, which poses a risk of device misattachment and inaccurate recorded data. Considering the muscle-related modality, several studies have demonstrated an excellent correlation between stretch sensors and EMG, which provides significant potential for addressing the monitoring issue at home. Additionally, due to its flexible nature, it can be attached to the finger, which facilitates the logging of the kinematic mechanisms of a finger. This study proposes a method for estimating forearm muscle contraction in a cylinder grasping environment during home-based rehabilitation using a stretch-sensor glove. This study employed support vector machine (SVM), multi-layer perceptron (MLP), and random forest (RF) to construct the estimation model. The root mean square (RMS) of the EMG signal, representing the muscle contraction force, was collected from 10 participants as the target learning for the stretch-sensor glove. This study constructed an experimental design based on a home-based therapy protocol known as the graded repetitive arm supplementary program (GRASP). Six cylinders with varying diameters and weights were employed as the grasping object. The results demonstrated that the RF model achieved the lowest root mean square error (RMSE) score, which differed significantly from the SVM and MLP models. The time series waveform comparison revealed that the RF model yields a similar estimation output to the ground truth, which incorporates the contraction–relaxation phases and the muscle’s contraction force. Additionally, despite the subjectivity of the participants’ grasping power, the RF model could produce similar trends in the muscle contraction forces of several participants. Utilizing a stretch-sensor glove, the proposed method demonstrated great potential as an alternative modality for monitoring forearm muscle contraction force, thereby improving the practicality for patients to self-implement home-based rehabilitation. Full article
(This article belongs to the Special Issue Applications of Emerging Biomedical Devices and Systems)
Show Figures

Figure 1

16 pages, 5295 KiB  
Article
Upper Limb-Salvage Surgery in Pediatric Patients with Malignant Bone Tumors Using Microsurgical Free Flaps: Long-Term Follow-Up
by Jakub Opyrchał, Bartosz Pachuta, Daniel Bula, Krzysztof Dowgierd, Dominika Krakowczyk, Anna Raciborska and Łukasz Krakowczyk
Biomedicines 2025, 13(7), 1638; https://doi.org/10.3390/biomedicines13071638 - 4 Jul 2025
Viewed by 405
Abstract
Background: Primary malignant bone tumors among adolescent patients are most commonly associated with burdensome surgeries that can severely affect young patients’ early life. To this day, despite available autologous tissue donor sites, cement spacers or endoprostheses are still most commonly used as [...] Read more.
Background: Primary malignant bone tumors among adolescent patients are most commonly associated with burdensome surgeries that can severely affect young patients’ early life. To this day, despite available autologous tissue donor sites, cement spacers or endoprostheses are still most commonly used as a form of reconstruction of post-resection defects. Methods: The study group includes 20 adolescent patients diagnosed with Osteosarcoma or Ewing Sarcoma involving the upper limbs. The inclusion criteria were as follows: primary malignant bone tumors sensitive to neoadjuvant chemotherapy, tumors not infiltrating major blood vessels and nerves, and the appliance of the microsurgical free flap as a reconstructive method. Poor tumor response to neodajuvant chemotherapy or patients with incomplete follow-up were excluded from this study. To achieve the functional reconstruction of post-resection defects, fibula free flaps were applied. In cases of resection, including the metaphysis of a long bone, a modification of the flap harvest was applied in order to prevent arthrodesis. The MSTS (Musculoskeletal Tumor Society Scoring System) scale was used as a functional outcome measurement tool. Results: The reported outcomes of this study prove the efficiency of the treatment’s approach of combining the resection of the tumor with subsequent microsurgical restoration with the use of autologous tissues. The average score on the MSTS scale, which assesses the functional outcome, was 26.8/30 points, which indicates great motor outcomes. There were no reports of local recurrence during follow-up. Conclusions: Patients with primary malignant bone tumors in the upper limbs can benefit from microsurgical techniques, which are highly customized; effective; and give sufficient functionality following extensive resection. Full article
Show Figures

Figure 1

12 pages, 3998 KiB  
Review
Bifocal Radial Fracture/Dislocation and Distal Ulnar Fracture—A Rare Case of Proximal Forearm Instability Not Yet Classified and Literature Review
by Michele Dario Gurzì, Giacomo Capece, Guido Bocchino, Alessandro El Motassime, Rocco Maria Comodo, Massimiliano Nannerini, Giulio Maccauro and Raffaele Vitiello
J. Clin. Med. 2025, 14(13), 4694; https://doi.org/10.3390/jcm14134694 - 2 Jul 2025
Viewed by 310
Abstract
Introduction: Monteggia fractures, first described by Giovanni Battista Monteggia, involve a fracture of the proximal ulna with anterior dislocation of the radial head. Bado’s 1967 classification divides these injuries into four types. Rare mixed patterns exist, overlapping with other forearm injuries such as [...] Read more.
Introduction: Monteggia fractures, first described by Giovanni Battista Monteggia, involve a fracture of the proximal ulna with anterior dislocation of the radial head. Bado’s 1967 classification divides these injuries into four types. Rare mixed patterns exist, overlapping with other forearm injuries such as Galeazzi and Essex–Lopresti lesions. These complex fractures/dislocations pose significant diagnostic and therapeutic challenges and are not adequately represented in current classification systems. Methods and Case Presentation: We report the case of a 56-year-old woman with a complex forearm injury sustained from a fall, presenting with radial head fracture/dislocation, mid-shaft radial fracture, distal ulna fracture, and ulnar collateral ligament rupture. Intraoperative imaging confirmed DRUJ stability and partial interosseous membrane disruption. Surgical management included radial head prosthesis implantation, radial shaft fixation with an anatomical locking plate, intramedullary nailing of the distal ulna, and ligament reconstruction. At two-year follow-up, the patient demonstrated full recovery of elbow flexion–extension and satisfactory forearm function. A narrative literature review was also conducted, focusing on hybrid injury variants. Results: Intraoperative examination under anesthesia revealed good elbow stability with 130° flexion, 15° extension lag, and forearm pronation/supination of 70°/60°. An initial Mayo Elbow Performance Score (MEPS) of 65 was recorded, limited by range of motion and stability. Pain during passive mobilization was mild, with a Visual Analogue Scale (VAS) score of 3/10. Postoperative recovery included 15 days of immobilization followed by structured rehabilitation. At two years, the patient regained full elbow flexion–extension but had residual deficits in pronation–supination, attributed to pre-existing conditions. Conclusions: This case illustrates a previously unreported hybrid Monteggia variant, combining features of Monteggia, Galeazzi, and Essex–Lopresti injuries. It highlights the limitations of current classification systems and supports the need for an expanded diagnostic framework. Successful management required a multidisciplinary surgical approach tailored to the injury’s complexity. Further studies are warranted to refine classification and treatment strategies for these rare combined injuries. Full article
Show Figures

Figure 1

Back to TopTop