A Novel, Sport-Specific EMG-Based Method to Evaluate Movement Efficiency in Karate Punching
Abstract
1. Introduction
2. Materials and Methods
2.1. Movement Execution Protocol
2.2. Data Processing and Evaluation
3. Results
4. Discussion
Future Development Possibilities
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Acceleration |
AD | Deltoid muscle, anterior head |
BB | Biceps Brachii muscle |
ECR | Extensor Carpi Radialis muscle |
EO | Abdominal External Oblique muscle |
LT | Triceps Brachii, lateral head |
MG | Gastrocnemius, medial head |
PM | Major Pectoral muscle |
RF | Rectus Femoris muscle |
SD | Standard Deviation |
sEMG | Surface ElectroMyoGraphy |
SENIAM | Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles |
TKEO | Teager–Kaiser Energy Operator |
WKF | World Karate Federation |
References
- Holliday, W.; Swart, J. A Dynamic Approach to Cycling Biomechanics. Phys. Med. Rehabil. Clin. N. Am. 2022, 33, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dugan, S.A.; Bhat, K.P. Biomechanics and Analysis of Running Gait. Phys. Med. Rehabil. Clin. N. Am. 2005, 16, 603–621. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.M.; Conway, R.; Harrison, A.J. Muscle Activity in Sprinting: A Review. Sports Biomech. 2018, 17, 1–17. [Google Scholar] [CrossRef]
- Papagiannis, G.I.; Triantafyllou, A.I.; Roumpelakis, I.M.; Zampeli, F.; Eleni, P.G.; Koulouvaris, P.; Papadopoulos, E.C.; Papagelopoulos, P.J.; Babis, G.C. Methodology of Surface Electromyography in Gait Analysis: Review of the Literature. J. Med. Eng. Technol. 2019, 43, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Hachaj, T.; Piekarczyk, M.; Ogiela, M.R. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes. Sensors 2017, 17, 2590. [Google Scholar] [CrossRef]
- Jaegers, S.; Peterson, R.; Hillen, B.; Geuze, R.H.; Schellekens, J.; Dantuma, R. Kinesiologic Aspects of Motor Learning in Dart Throwing. J. Hum. Mov. Stud. 1989, 16, 161–171. [Google Scholar]
- Vecchio, L.D.; Whitting, J.; Hollier, J.; Keene, A.; Climstein, M. Reliability and Practical Use of a Commercial Device for Measuring Punch and Kick Impact Kinetics. Sports 2022, 10, 206. [Google Scholar] [CrossRef]
- Neto, O.P.; Magini, M. Electromiographic and Kinematic Characteristics of Kung Fu Yau-Man Palm Strike. J. Electromyogr. Kinesiol. 2008, 18, 1047–1052. [Google Scholar] [CrossRef]
- Emad, B.; Atef, O.; Shams, Y.; El-Kerdany, A.; Shorim, N.; Nabil, A.; Atia, A. IKarate: Karate Kata Guidance System. Procedia Comput. Sci. 2020, 175, 149–156. [Google Scholar] [CrossRef]
- Hofmann, M.; Witte, K.; Emmermacher, P. Biomechanical Analysis of Fist Punch Gyaku-Zuki in Karate. In Proceedings of the ISBS Conference 2008, Seoul, Republic of Korea, 14 July 2008. [Google Scholar]
- Venkatraman, J.; Nasiriavanaki, M. Biomechanics of Kumite Style Gyaku Tsuki in Karate. Biomed. J. Sci. Tech. Res. 2019, 14, 10656–10662. [Google Scholar] [CrossRef]
- Cesari, P.; Bertucco, M. Coupling between Punch Efficacy and Body Stability for Elite Karate. J. Sci. Med. Sport 2008, 11, 353–356. [Google Scholar] [CrossRef] [PubMed]
- VencesBrito, A.M.; Ferreira, M.A.R.; Cortes, N.; Fernandes, O.; Pezarat-Correia, P. Kinematic and Electromyographic Analyses of a Karate Punch. J. Electromyogr. Kinesiol. 2011, 21, 1023–1029. [Google Scholar] [CrossRef]
- Okazaki, T.; Stricevic, M.V. The Textbook of Modern Karate; Kodansha: New York, NY, USA, 1984; ISBN 9780870114618. [Google Scholar]
- Nakayama, M. Dynamic Karate, 1st ed.; Kodansha International: Tokyo, Japan, 2012; ISBN 978-1568364131. [Google Scholar]
- Nishiyama, H.; Brown, R.C. Karate the Art of Empty-Hand Fighting; Tuttle Publishing: Tokyo, Japan, 1995. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, D.; Hermens, H. Standards for Suface Electromyography: The European Project Surface EMG for Non-Invasive Assessment of Muscles (SENIAM). Enschede Roessingh Res. Dev. 2007, 10, 8–12. [Google Scholar]
- Konrad, P. The ABC of EMG A Practical Introduction to Kinesiological Electromyography; Noraxon Inc.: Scottsdale, AZ, USA, 2005. [Google Scholar]
- Ball, N.; Scurr, J. Electromyography Normalization Methods for High-Velocity Muscle Actions: Review and Recommendations. J. Appl. Biomech. 2013, 29, 600–608. [Google Scholar] [CrossRef]
- Osu, R.; Franklin, D.W.; Kato, H.; Gomi, H.; Domen, K.; Yoshioka, T.; Kawato, M. Short- and Long-Term Changes in Joint Co-Contraction Associated with Motor Learning as Revealed From Surface EMG. J. Neurophysiol. 2002, 88, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Witte, K.; Emmermacher, P.; Hofmann, M.; Schwab, K.; Witte, H. Electromyographic Researches of Gyaku-Zuki in Karate Kumite. In Proceedings of the ISBS-Conference, Beijing, China, 16 March 2008. [Google Scholar]
- Solnik, S.; Rider, P.; Steinweg, K.; DeVita, P.; Hortobágyi, T. Teager–Kaiser Energy Operator Signal Conditioning Improves EMG Onset Detection. Eur. J. Appl. Physiol. 2010, 110, 489–498. [Google Scholar] [CrossRef]
- Li, X.; Zhou, P.; Aruin, A.S. Teager–Kaiser Energy Operation of Surface EMG Improves Muscle Activity Onset Detection. Ann. Biomed. Eng. 2007, 35, 1532–1538. [Google Scholar] [CrossRef]
- Carvalho, C.R.; Fernández, J.M.; del-Ama, A.J.; Barroso, F.O.; Moreno, J.C. Review of Electromyography Onset Detection Methods for Real-Time Control of Robotic Exoskeletons. J. Neuroeng. Rehabil. 2023, 20, 141. [Google Scholar] [CrossRef]
- Dunn, E.C.; Humberstone, C.E.; Franchini, E.; Iredale, K.F.; Blazevich, A.J. Relationships Between Punch Impact Force and Upper- and Lower-Body Muscular Strength and Power in Highly Trained Amateur Boxers. J. Strength Cond. Res. 2022, 36, 1019–1025. [Google Scholar] [CrossRef]
- Bozec, S.L.; Maton, B.; Cnockaert, J.C. The Synergy of Elbow Extensor Muscles during Dynamic Work in Man. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 44, 255–269. [Google Scholar] [CrossRef] [PubMed]
- World Karate Federation, Competition Rules 2020. Available online: https://www.britishkaratefederation.com/news-wkf/WKF_Competition_Rules_2020_EN_Jan22_markup.pdf (accessed on 25 June 2025).
Electrode | Side | Muscle (Abbreviation) | Function |
---|---|---|---|
1 | Right | Gastrocnemius, medial head (MG) | Ankle plantar flexion |
2 | Left | ||
3 | Right | Rectus femoris (RF) | Knee extension |
4 | Left | ||
5 | Right | Abdominal External Oblique (EO) | Trunk rotation |
6 | Left | ||
7 | Right | Major Pectoral (PM) | Arm adduction |
8 | Left | ||
9 | Right | Deltoid, anterior head (AD) | Shoulder anteflexion |
10 | Left | ||
11 | Right | Biceps Brachii (BB) | Elbow stabilization |
12 | Left | ||
13 | Right | Triceps Brachii, lateral head (LT) | Elbow extension/stabilization |
14 | Left | ||
15 | Right | Extensor Carpi Radialis (ECR) | Wrist stabilization |
16 | Left |
Sequence | Side | Muscle | Activation Time (s) |
---|---|---|---|
1 | Left | Rectus Femoris | −0.308 |
2 | Right | Biceps Brachii | −0.282 |
3 | Left | Medial Gastrocnemius | −0.277 |
4 | Right | Abdominal External Oblique | −0.275 |
5 | Right | Rectus Femoris | −0.250 |
6 | Left | Anterior Deltoid | −0.233 |
7 | Left | Abdominal External Oblique | −0.217 |
8 | Right | Anterior Deltoid | −0.216 |
9 | Right | Medial Gastrocnemius | −0.206 |
10 | Right | Major Pectoral | −0.193 |
11 | Left | Major Pectoral | −0.183 |
12 | Left | Lateral Triceps | −0.178 |
13 | Left | Extensor Carpi Radialis | −0.151 |
14 | Left | Biceps Brachii | −0.127 |
15 | Right | Lateral Triceps | −0.118 |
16 | Right | Extensor Carpi Radialis | −0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csákvári, L.; Kopper, B.; Horváth, T. A Novel, Sport-Specific EMG-Based Method to Evaluate Movement Efficiency in Karate Punching. Sports 2025, 13, 218. https://doi.org/10.3390/sports13070218
Csákvári L, Kopper B, Horváth T. A Novel, Sport-Specific EMG-Based Method to Evaluate Movement Efficiency in Karate Punching. Sports. 2025; 13(7):218. https://doi.org/10.3390/sports13070218
Chicago/Turabian StyleCsákvári, László, Bence Kopper, and Tamás Horváth. 2025. "A Novel, Sport-Specific EMG-Based Method to Evaluate Movement Efficiency in Karate Punching" Sports 13, no. 7: 218. https://doi.org/10.3390/sports13070218
APA StyleCsákvári, L., Kopper, B., & Horváth, T. (2025). A Novel, Sport-Specific EMG-Based Method to Evaluate Movement Efficiency in Karate Punching. Sports, 13(7), 218. https://doi.org/10.3390/sports13070218