Morphological and Functional Asymmetry Among Competitive Female Fencing Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Study Group
2.1.2. Ethical Consents
2.2. Methods
2.2.1. Author’s Survey Questionnaire
2.2.2. Unilateral and Bilateral Anthropometric Measurements
2.2.3. Anthropometric Indices
2.2.4. Functional Asymmetry
2.2.5. Statistical Methods
3. Results
4. Discussion
4.1. Fencing and Asymmetry: Insights from Elite Polish Athletes
4.2. Functional Dominance in Elite Female Fencers
4.3. Strengths and Future Directions of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohm, S.; Mersmann, F.; Marzilger, R.; Schroll, A.; Arampatzis, A. Asymmetry of Achilles tendon mechanical and morphological properties between both legs. Scand. J. Med. Sci. Sports 2014, 25, e124–e132. [Google Scholar] [CrossRef]
- Johne, M. The impact of fencing training symmetrisation on simple reaction time. Biomed. Hum. Kinet. 2021, 13, 231–236. [Google Scholar] [CrossRef]
- Kalata, M.; Maly, T.; Hank, M.; Michalek, J.; Bujnovsky, D.; Kunzmann, E.; Zahalka, F. Unilateral and Bilateral Strength Asymmetry among Young Elite Athletes of Various Sports. Medicina 2020, 56, 683. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.; Montalvo, S.; Dietze-Hermosa, M.; Gomez, M.; Dorgo, S. A Comparison of Morphological, Jump, and Sprint Kinematic Asymmetries in Division I Track and Field Athletes. Int. J. Exerc. Sci. 2023, 16, 1306–1319. [Google Scholar] [CrossRef] [PubMed]
- D’Hondt, J.; Chapelle, L.; Bishop, C.; Aerenhouts, D.; De Pauw, K.; Clarys, P.; D’Hondt, E. Association Between Inter-Limb Asymmetry and Determinants of Middle- and Long-distance Running Performance in Healthy Populations: A Systematic Review. Sports Med. Open 2024, 10, 1–19. [Google Scholar] [CrossRef]
- Villanueva Guerrero, O.; Gadea Uribarri, H.; Álvarez, V.; Calero Morales, S.; Mainer Pardos, E. Relationship between Interlimb Asymmetries and Performance Variables in Adolescent Tennis Players. Life 2024, 14, 959. [Google Scholar] [CrossRef]
- Rotar, P.; Kozinc, Ž.; Katanic, B. Investigation of Dynamic Balance, Limb Asymmetry and Flexibility in Jiu-Jitsu Athletes: A Preliminary Exploratory Study. Sport. Mont. J. 2024, 22, 17–24. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Chavda, S.; Turner, A. Asymmetries of the lower limb: The calculation conundrum in strength training and conditioning. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb asymmetries: Understanding how to calculate differences from bilateral and unilateral tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef]
- Mala, L.; Maly, T.; Cabell, L.; Hank, M.; Bujnovsky, D.; Zahalka, F. Anthropometric, Body Composition, and Morphological Lower Limb Asymmetries in Elite Soccer Players: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 1140. [Google Scholar] [CrossRef]
- Chapelle, L.; Bishop, C.; D’Hondt, J.; D’Hondt, E.; Clarys, P. Morphological and functional asymmetry in elite youth tennis players compared to sex- and age-matched controls. J. Sports Sci. 2022, 40, 1618–1628. [Google Scholar] [CrossRef] [PubMed]
- Krzykała, M.; Karpowicz, M.; Bartkowiak, S.; Demuth, A.; Janowski, J. Somatic characteristic, morphological asymmetry and postural stability of youth male canoeists compared to control. A cross-sectional study. PLoS ONE 2023, 18, e0285997. [Google Scholar] [CrossRef] [PubMed]
- Poliszczuk, T.; Poliszczuk, D.; Da̧browska-Perzyna, A.; Johne, M. Asymmetry of Complex Reaction Time in Female Épée Fencers of Different Sports Classes. Pol. J. Sport. Tour. 2013, 20, 25–29. [Google Scholar] [CrossRef]
- Barrera-Domínguez, F.; Carmona-Gómez, A.; Tornero-Quiñones, I.; Padilla, J.; Sierra-Robles, Ángela; Molina-López, J. Influence of Dynamic Balance on Jumping-Based Asymmetries in Team Sport: A Between-sports Comparison in Basketball and Handball Athletes. Int. J. Environ. Res. Public Health 2021, 18, 1866. [Google Scholar] [CrossRef]
- Łojko, M.; Zaleski, A. Morphological And Functional Asymmetry of the Upper Limbs in Table Tennis Players. Pol. J. Sports Med. 2015, 31, 69–75. [Google Scholar]
- Sychev, V.S.; Davydova, S.S.; Kashkarov, V.A. Functional asymmetry in sport. Teor. I Prakt. Fiz. Kult. 2017, 11, 69–71. [Google Scholar]
- Hart, N.H.; Nimphius, S.; Weber, J.; Spiteri, T.; Rantalainen, T.; Dobbin, M.; Newton, R.U. Musculoskeletal asymmetry in football athletes: A product of limb function over time. Med. Sci. Sports Exerc. 2016, 48, 1379–1387. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef]
- Vad, V.B.; Bhat, A.L.; Basrai, D.; Gebeh, A.; Aspergren, D.D.; Andrews, J.R. Low back pain in professional golfers: The role of associated hip and low back range-of-motion deficits. Am. J. Sports Med. 2004, 32, 494–497. [Google Scholar] [CrossRef]
- Magyar, P.; Oravițan, M. Effective Training Interventions For The Development Of Speed In Fencing: A Systematic Review. Phys. Educ. Sport Kinetotherapy J. 2021, 60, 465–474. [Google Scholar]
- FIE International Fencing Federation. FIE Rules. Available online: https://fie.org/fie/documents/rules (accessed on 27 May 2025).
- Turna, B. The effect of agility training on reaction time in fencers. J. Educ. Learn. 2020, 9, 127–135. [Google Scholar] [CrossRef]
- Wei, S.; Wei, D. The biomechanical characteristics of fencing lunge movements and their implications for physical training. Mol. Cell Biomech. 2024, 21, 555. [Google Scholar] [CrossRef]
- Chen, T.L.-W.; Wong, D.W.-C.; Wang, Y.; Ren, S.; Yan, F.; Zhang, M. Biomechanics of fencing sport: A scoping review. PLoS ONE 2017, 12, e0171578. [Google Scholar] [CrossRef] [PubMed]
- Maly, T.; Sugimoto, D.; Izovska, J.; Zahalka, F.; Mala, L. Effect of muscular strength, asymmetries and fatigue on kicking performance in soccer players. Int. J. Sports Med. 2018, 39, 297–303. [Google Scholar] [CrossRef]
- Lopuszanska-Dawid, M. Trends in Health Behavior of Polish Women in 1986–2021: The Importance of Socioeconomic Status. Int. J. Environ. Res. Public Health 2023, 20, 3964. [Google Scholar] [CrossRef]
- Lopuszanska-Dawid, M.; Kołodziej, H.; Lipowicz, A.; Szklarska, A. Age, Education, and Stress Affect Ageing Males’ Symptoms More than Lifestyle Does: The Wroclaw Male Study. Int. J. Environ. Res. Public Health 2022, 19, 5044. [Google Scholar] [CrossRef]
- Polish Fencing Association. Regulations and Reports. TERAZ NR 26. Available online: https://pzszerm.pl/zwiazek-pzs/dokumenty/regulaminy-i-sprawozdania/ (accessed on 27 May 2025).
- Martin, R.; Saller, K. Lehrbuch der Anthropologie in Systematischer Darstellung Mit Besonderer Berücksichtigung der Anthropologischen Methoden; G. Fischer: Stuttgart, Germany, 1957. [Google Scholar]
- Kopecký, M.; Rimárová, K.; Dorko, E.; Kikalová, K.; Miškárová, S.; Tejová, M. Prevalence of overweight and obesity in 6–15-year-old boys and girls before the COVID-19 pandemic: Results from anthropological research 2001–2019 in the Czech Republic. Cent. Eur. J. Public Health 2024, 32, 42–51. [Google Scholar] [CrossRef]
- Liczbińska, G.; Antosik, S.; Brabec, M.; Tomczyk, A.M. Ambient temperature-related sex ratio at birth in historical urban populations: The example of the city of Poznań, 1848–1900. Sci. Rep. 2024, 14, 14001. [Google Scholar] [CrossRef]
- Lopuszanska-Dawid, M.; Kołodziej, H.; Lipowicz, A.; Szklarska, A.; Kopiczko, A.; Bielicki, T. Social class-specific secular trends in height among 19-year old Polish men: 6th national surveys from 1965 till 2010. Econ. Hum. Biol. 2020, 37, 100832. [Google Scholar] [CrossRef]
- Lopuszanska-Dawid, M.; Szklarska, A. Growth change in Polish women: Reduction of the secular trends? PLoS ONE 2020, 15, e0242074. [Google Scholar] [CrossRef]
- Kopiczko, A.; Łopuszańska-Dawid, M.; Gryko, K. Bone mineral density, hand grip strength, smoking status and physical activity in Polish young men. Homo 2018, 69, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Physical Status: The Use and Interpretation of Anthropometry; WHO Technical Report Series 854; WHO: Geneva, Switzerland, 1995.
- WHO. Mean Body Mass Index (BMI); WHO: Geneva, Switzerland, 2019.
- NHLBI—National Heart, Lung, and Blood Institute; North American Association for the Study of Obesity (NAASO). The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (No. 00-4084); National Institutes of Health: Rockville, MD, USA, 2000. [Google Scholar]
- NICE Centre for Public Health Excellence at NICE (UK, and National Collaborating Centre for Primary Care) UK. Obesity: The Prevention, Identification, Assessment and Management of Overweight and Obesity in Adults and Children; National Institute for Health and Clinical Excellence (UK): London, UK, 2006. [Google Scholar]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, W. Lifestyle, Health Behaviors and Somatic Structure of Women and Men Practicing Fencing. Master’s Thesis, Józef Piłsudski University od Physical Education, Warsaw, Poland, 2021. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System); Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017; Available online: http://statistica.io. (accessed on 10 May 2025).
- Akpinar, S.; Sainburg, R.L.; Kirazci, S.; Przybyla, A. Motor asymmetry in elite fencers. J. Mot. Behav. 2015, 47, 302–311. [Google Scholar] [CrossRef]
- Abdelkader, N.; Brown, S.H.M.; Beach, T.A.C.; Howarth, S.J. Dynamic Balance is Similar Between Lower Extremities in Elite Fencers. Int. J. Sports Phys. Ther. 2021, 16, 1426–1433. [Google Scholar] [CrossRef]
- Witkowski, M.; Tomczak, M.; Karpowicz, K.; Solnik, S.; Przybyla, A. Effects of Fencing Training on Motor Performance and Asymmetry Vary With Handedness. J. Mot. Behav. 2019, 52, 50–57. [Google Scholar] [CrossRef]
- Sohrabi, A.; Naderi, A. Inter-limb Asymmetry in Y Balance and Single Leg Hop as a Predictor of Sports Injuries in Volleyball Players. J. Clin. Res. Paramed. Sci. 2025, 14, e158911. [Google Scholar] [CrossRef]
- Wang, P.; Qin, Z.; Zhang, M. Association between pre-season lower limb interlimb asymmetry and non-contact lower limb injuries in elite male volleyball players. Sci. Rep. 2025, 15, 14481. [Google Scholar] [CrossRef]
- Dworak, B.L.; Wojtkowiak, T. Strength asymetry of the muscles extending lower limbs among males [in:] The aspects of age and different physical activity patterns. In Proceedings of the 3rd International Conference of Sport Kinetics, Poznań, Poland, 8–11 September 1993; pp. 121–125. [Google Scholar]
- Rutkowska-Kucharska, A.; Szpala, A.; Pieciuk, A. Symmetry of muscle activity during abdominal exercises. Acta Bioeng. Biomech. 2009, 11, 25–30. [Google Scholar]
- Salvo, V.D.; Parisi, A.; Buonomini, C.; Iellamo, F.; Pigozzi, F. Abdominal and lumbar muscles strength gains using two types of sit-up exercises. Biol. Sport. 2002, 19, 303–328. [Google Scholar]
- Al-Hashel, J.Y.; Ahmed, S.F.; Al-Mutairi, H.; Hassan, S.; Al-Awadhi, N.; Al-Saraji, M. Association of Cognitive Abilities and Brain Lateralization among Primary School Children in Kuwait. Neurosci. J. 2016, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Badau, D.; Baydil, B.; Badau, A. Differences among Three Measures of Reaction Time Based on Hand Laterality in Indyvidual Sports. Sports 2018, 6, 45. [Google Scholar] [CrossRef]
- Yamauchi, M.; Imanaka, K.; Nakayama, M.; Nishizawa, S. Lateral Difference and Interhemispheric Transfer on Arm-Positioning Movement between Right and Left Handers. Percept. Mot. Ski. 2004, 98, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Virgile, A.; Peña, J.; Jordan, M.; García-de-Alcaraz, A.; Sá, M.; Bishop, C. On uneven ground: Embracing the challenges of inter-limb asymmetries and their assessment. Asymmetry 2025, 1, 0004. [Google Scholar] [CrossRef]
- Scharoun, S.M.; Bryden, P.J. Hand preference, performance abilities, and hand selection in children. Front. Psychol. 2014, 5, 82. [Google Scholar] [CrossRef]
- Teo, I.; Thompson, J.; Neo, Y.N.; Lundie, S.; Munnoch, D.A. Lower limb dominance and volume in healthy individuals. Lymphology 2017, 50, 197–202. [Google Scholar]
- Matúš, I.; Ružbarský, P.; Vadašová, B.; Čech, P. Dominacja nóg i wydajność OSB12 Kick Start u młodych pływaków wyczynowych. Int. J. Environ. Res. Public Health 2021, 18, 13156. [Google Scholar] [CrossRef]
- Lijewski, M.; Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Stachoń, A. Asymmetry of Muscle Mass Distribution and Grip Strength in Professional Handball Players. Int. J. Environ. Res. Public Health 2021, 18, 1913. [Google Scholar] [CrossRef]
- Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Chromik, K.; Stachoń, A. Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists. Int. J. Environ. Res. Public Health 2020, 17, 4695. [Google Scholar] [CrossRef]
- Tamura, A. Body composition asymmetry between dominant and non-dominant arms in experienced overhead throwing sports athletes. J. Sports Med. Phys. Fit. 2024, 64, 1071–1078. [Google Scholar] [CrossRef]
- Plantard, A.; Sorel, N.; Bideau, J.; Pontonnier, C. Motion adaptation in fencing lunges: A pilot study. Comput. Methods Biomech. Biomed. Engin 2017, 20, S161–S162. [Google Scholar] [CrossRef]
- Aresta, S.; Musci, M.; Bottiglione, F.; Moretti, L.; Moretti, B.; Bortone, I. Motion Technologies in Support of Fence Athletes: A Systematic Review. Appl. Sci. 2023, 13, 1654. [Google Scholar] [CrossRef]
Basic Characteristics | n | % | |
---|---|---|---|
Socio-economic characteristics | |||
Age (mean 23.36, SD = 4.80), Sports Age Groups * | Junior (18.0–20.0 yrs) | 10 | 31.25 |
Youth U23 (20.1–23.0 yrs) | 6 | 18.75 | |
Senior (23.1 yrs and above) | 16 | 50.00 | |
Level of education | vocational | 3 | 9.38 |
secondary | 10 | 31.24 | |
incomplete higher | 3 | 9.38 | |
higher | 16 | 50.00 | |
Level of urbanization of place of residence | urban | 25 | 78.12 |
rural | 7 | 21.88 | |
Marital status | single | 27 | 84.37 |
married | 5 | 15.63 | |
Having siblings | yes | 28 | 87.50 |
no | 4 | 12.50 | |
The characteristics of work performed | mental | 12 | 37.50 |
physical | 10 | 31.24 | |
mental-physical (mixed) | 7 | 21.88 | |
not applicable | 3 | 9.38 | |
Characteristics of weapon training and physical activity | |||
The type of weapon | spade | 5 | 15.63 |
flare | 2 | 6.25 | |
saber | 25 | 78.12 | |
Training experience | about 2–3 years | 29 | 90.62 |
more than 3 years | 3 | 9.38 | |
Engaging in additional physical activity | yes | 25 | 78.12 |
no | 7 | 21.87 | |
Total | 32 | 100.00 |
Direct Anthropometric Measurements | ||||
Features | Minimum | Maximum | M | SD |
body height [cm] | 156.1 | 196.0 | 172.0 | 7.3 |
body weight [kg] | 49.5 | 80.3 | 62.9 | 7.0 |
waist circumference [cm] | 64.0 | 91.2 | 72.4 | 5.5 |
hip circumference [cm] | 85.1 | 116.5 | 97.9 | 6.2 |
Anthropometric Indices and Categories | ||||
Indices | Categories | n | % | |
BMI | underweight | 1 | 3.12 | |
normal weight | 30 | 93.76 | ||
overweight | 1 | 3.12 | ||
obesity | 0 | 0.00 | ||
WHR | <0.80 | 31 | 96.88 | |
≥0.80 | 1 | 3.12 |
Features | Right | Left | MAI # | p | |||
---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | ||
A. Circumferences [cm] | |||||||
1. arm circumference at rest through the biceps | 28.07 | 2.48 | 27.88 | 2.55 | 0.77 | 3.35 | 0.267 |
2. arm circumference through the biceps in tension | 28.58 | 2.28 | 28.19 | 2.29 | 1.49 | 3.57 | 0.034 * |
3. arm circumference | 26.92 | 1.98 | 26.52 | 2.14 | 1.61 | 2.94 | 0.006 ** |
4. maximum forearm circumference | 23.23 | 1.77 | 22.74 | 1.73 | 2.25 | 4.66 | 0.012 * |
5. minimum forearm circumference | 16.09 | 1.21 | 15.87 | 1.10 | 1.39 | 2.86 | 0.010 ** |
6. thigh circumference | 60.30 | 4.33 | 59.74 | 4.38 | 0.99 | 2.89 | 0.077 |
7. maximum calf circumference | 36.48 | 1.86 | 36.41 | 1.93 | 0.26 | 2.70 | 0.651 |
8. minimum calf circumference | 22.81 | 1.17 | 23.01 | 1.37 | −0.74 | 3.79 | 0.247 |
B. Width measurements [cm] | |||||||
9. elbow width | 6.16 | 0.35 | 6.14 | 0.32 | 0.34 | 3.38 | 0.615 |
10. hand width | 7.68 | 0.47 | 7.66 | 0.45 | 0.28 | 3.27 | 0.677 |
11. knee width | 8.10 | 0.93 | 8.04 | 0.96 | 0.87 | 3.64 | 0.219 |
C. Length measurements [cm] | |||||||
12. length of shin | 40.68 | 4.67 | 40.81 | 4.72 | −0.22 | 4.20 | 0.651 |
13. length of foot | 25.14 | 1.38 | 24.98 | 1.38 | 0.65 | 1.08 | 0.002 ** |
D. Thickness of skin-fat folds [cm] | |||||||
14. over the triceps | 1.60 | 0.54 | 1.57 | 0.51 | 3.30 | 22.10 | 0.566 |
15. over the biceps | 1.28 | 0.65 | 1.26 | 0.65 | 3.88 | 14.96 | 0.497 |
16. under the lower angle of the scapula | 1.55 | 0.44 | 1.55 | 0.43 | 1.11 | 22.07 | 0.949 |
17. on the abdomen | 1.68 | 0.43 | 1.73 | 0.43 | −2.44 | 8.74 | 0.088 |
18. on the chest | 1.69 | 0.40 | 1.64 | 0.42 | 4.81 | 20.89 | 0.261 |
19. over the hip plate | 1.83 | 0.30 | 1.87 | 0.28 | −2.79 | 5.77 | 0.005 ** |
20. over the upper anterior iliac spine | 1.40 | 0.43 | 1.43 | 0.42 | −1.71 | 8.40 | 0.302 |
21. over the knee | 1.53 | 0.49 | 1.48 | 0.48 | 4.94 | 25.07 | 0.503 |
22. on the shin | 1.63 | 0.41 | 1.65 | 0.41 | −0.90 | 8.93 | 0.470 |
Indirect measurements [cm] | |||||||
23. upper limb length | 78.85 | 3.63 | 77.75 | 3.73 | 1.47 | 3.18 | 0.019 * |
24. thigh length | 41.07 | 2.40 | 40.70 | 2.70 | 1.03 | 3.42 | 0.120 |
Limb | Features | n | % | |
---|---|---|---|---|
upper | during combat—self-assessment | right | 28 | 87.50 |
left | 4 | 12.50 | ||
ambidextrous | 0 | 0.00 | ||
holding a pen and writing | right | 28 | 87.50 | |
left | 4 | 12.50 | ||
ambidextrous | 0 | 0.00 | ||
unscrewing a bottle | right | 24 | 75.00 | |
left | 6 | 18.75 | ||
ambidextrous | 2 | 6.25 | ||
lower | during combat—self-assessment | right | 28 | 87.50 |
left | 4 | 12.50 | ||
ambidextrous | 0 | 0.00 | ||
performing a lunge | right | 28 | 87.50 | |
left | 4 | 12.50 | ||
ambidextrous | 0 | 0.00 | ||
climbing stairs | right | 24 | 75.00 | |
left | 4 | 12.50 | ||
ambidextrous | 4 | 12.50 | ||
Total | 32 | 100.00 |
Features | Upper Limb | Lower Limb | ||
---|---|---|---|---|
F | p | F | p | |
MAI arm circumference in tension | 0.025 | 0.876 | 0.195 | 0.662 |
MAI arm circumference | 0.215 | 0.646 | 0.001 | 0.974 |
MAI maximum forearm circumference | 0.268 | 0.608 | 0.890 | 0.353 |
MAI minimum forearm circumference | 20.359 | 0.001 *** | 20.637 | 0.001 *** |
MAI length of foot | 1.212 | 0.280 | 0.492 | 0.488 |
MAI skin-fat fold over the hip plate | 0.610 | 0.441 | 0.010 | 0.920 |
MAI upper limb length | 1.559 | 0.221 | 2.488 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bany, W.; Nyrć, M.; Lopuszanska-Dawid, M. Morphological and Functional Asymmetry Among Competitive Female Fencing Athletes. Appl. Sci. 2025, 15, 8020. https://doi.org/10.3390/app15148020
Bany W, Nyrć M, Lopuszanska-Dawid M. Morphological and Functional Asymmetry Among Competitive Female Fencing Athletes. Applied Sciences. 2025; 15(14):8020. https://doi.org/10.3390/app15148020
Chicago/Turabian StyleBany, Wiktoria, Monika Nyrć, and Monika Lopuszanska-Dawid. 2025. "Morphological and Functional Asymmetry Among Competitive Female Fencing Athletes" Applied Sciences 15, no. 14: 8020. https://doi.org/10.3390/app15148020
APA StyleBany, W., Nyrć, M., & Lopuszanska-Dawid, M. (2025). Morphological and Functional Asymmetry Among Competitive Female Fencing Athletes. Applied Sciences, 15(14), 8020. https://doi.org/10.3390/app15148020