Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (692)

Search Parameters:
Keywords = force-controlled mechanical testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5798 KB  
Article
Electric Field-Driven Melt Jetting Polycaprolactone Rotational Printing of Fully Degradable Vascular Stents and Mechanical Characterization
by Yanpu Chao, Fulai Cao, Hao Yi, Shuai Lu, Chengyan Zhang, Hui Cen, Zhongfu Liu, Yihang Yao and Xiaobo Zhao
Polymers 2026, 18(1), 74; https://doi.org/10.3390/polym18010074 (registering DOI) - 26 Dec 2025
Abstract
Addressing technical challenges in personalized fabrication and mechanical regulation of bioresorbable vascular scaffolds, this study pioneers an electric field-driven melt jetting rotational printing technique to fabricate polycaprolactone (PCL) scaffolds (Ø3–8 mm). Multiscale characterization confirms a rhombic mesh macrostructure with uniform fibers and fusion-enhanced [...] Read more.
Addressing technical challenges in personalized fabrication and mechanical regulation of bioresorbable vascular scaffolds, this study pioneers an electric field-driven melt jetting rotational printing technique to fabricate polycaprolactone (PCL) scaffolds (Ø3–8 mm). Multiscale characterization confirms a rhombic mesh macrostructure with uniform fibers and fusion-enhanced nodal junctions, demonstrating synergistic control of electrohydrodynamic forces and surface tension over microfiber deposition. Mechanical testing reveals triphasic tensile behavior (elastic-plastic-fracture), where 5 mm scaffolds exhibit 38% enhanced peak load due to superior interfacial bonding and densified geometry, while 8 mm counterparts suffer premature failure from structural weakening. Fractography identifies brittle fracture initiation at stress-concentrated nodes versus ductile dominance in straight segments, confirming co-regulation by intrinsic material properties and architecture. Compression tests demonstrate characteristic load-holding-recovery behavior, with 20% increased load-bearing capacity and enhanced elastic recovery in larger scaffolds. This work establishes a structure–property correlation framework for optimizing degradable vascular implants, providing novel methodologies and theoretical foundations for clinical compatibility. Full article
(This article belongs to the Special Issue Polymer Microfabrication and 3D/4D Printing)
Show Figures

Figure 1

9 pages, 2591 KB  
Proceeding Paper
Application of Momentary Shoulder-Contraction Principles from Traditional Japanese Martial Arts to Reduce Upper-Body Load in Agricultural Tasks
by Hajime Shiraishi, Taisuke Sakaki, Makoto Iwamura and Haruhiro Shiraishi
Eng. Proc. 2025, 120(1), 9; https://doi.org/10.3390/engproc2025120009 (registering DOI) - 26 Dec 2025
Viewed by 12
Abstract
In agricultural workplaces, upper-body strain arises not only from lifting and carrying harvest crates but also from pushing, pulling, twisting, and squatting motions. Drawing inspiration from the momentary shoulder contraction and whole-body coordination characteristic of traditional Japanese martial arts, this study proposes a [...] Read more.
In agricultural workplaces, upper-body strain arises not only from lifting and carrying harvest crates but also from pushing, pulling, twisting, and squatting motions. Drawing inspiration from the momentary shoulder contraction and whole-body coordination characteristic of traditional Japanese martial arts, this study proposes a method for “moving efficiently with minimal exertion” across multiple task actions, specifically, lateral pushing, fore-aft pulling, and trunk rotation. Each action is modeled as a control system, and mechanical-engineering simulations are employed to derive optimal muscle-output patterns. Simulation results indicate that peak muscular force can be lowered compared with conventional techniques. A simple physical test rig confirms the load-reduction effect, showing decreases in both perceived exertion and electromyographic activity. These findings offer practical knowledge that can be immediately applied not only to agriculture but also to logistics, nursing care, and other settings involving repetitive handling of heavy objects or machine operations. Full article
Show Figures

Figure 1

17 pages, 2974 KB  
Article
Genetic-Algorithm-Based Research on Key Technologies for Motion System Calibration and Error Control for the Precision Marking System
by Jiang Li, Shuangxiong Yin, Zexiao Li, Yongxu Xiang and Xiaodong Zhang
Photonics 2026, 13(1), 4; https://doi.org/10.3390/photonics13010004 - 22 Dec 2025
Viewed by 169
Abstract
To counteract accuracy degradation in micrometer-scale precision marking—where the precision marking (PM) system denotes the precision marking platform and the Optical Microscope (OM) system denotes the camera-based visual guidance module—a genetic-algorithm-based framework for motion-system calibration and error control is introduced. A kinematic error [...] Read more.
To counteract accuracy degradation in micrometer-scale precision marking—where the precision marking (PM) system denotes the precision marking platform and the Optical Microscope (OM) system denotes the camera-based visual guidance module—a genetic-algorithm-based framework for motion-system calibration and error control is introduced. A kinematic error model is established to capture multi-source coupled errors in the PM system, and the propagation mechanisms of axis misalignment, pose misregistration, and flatness-induced errors are analyzed. Building on this model, a GA-driven multi-objective calibration scheme and a coordinated optimization model jointly address axis-orthogonality correction, PM-OM extrinsic-pose calibration, and workpiece flatness compensation. Furthermore, a dynamic error-compensation framework leveraging real-time monitoring and adaptive adjustment sustains long-term high-precision marking. In post-calibration tests-after correcting axis orthogonality, aligning the PM-OM extrinsic pose, and compensating workpiece flatness, the PM system achieves dimensional accuracies of ±0.05, ±0.08, and ±0.10 μm for nominal 1, 2, and 3 μm marks, respectively, with positional accuracy better than ±0.2 μm. Marking consistency improves markedly, and the indentation force closely matches the target mark size, validating the approach. These techniques provide both theoretical and practical support for the engineering deployment of PM systems and are significant for improving the quality and productivity of micrometer-scale precision marking. Full article
(This article belongs to the Special Issue Emerging Topics in Freeform Optics)
Show Figures

Figure 1

17 pages, 3041 KB  
Article
Electrospun Polycaprolactone/Carbon Nanotube Membranes for Transdermal Drug Delivery Systems
by Elizabeth Ortiz-Maldonado, Eduardo San Martin-Martínez, Ningel Omar Gama-Castañeda, Marquidia Pacheco, Ulises Figueroa-López, Andrea Guevara-Morales, Esmeralda Juárez, Andy Ruiz and Horacio Vieyra
Polymers 2026, 18(1), 15; https://doi.org/10.3390/polym18010015 - 21 Dec 2025
Viewed by 156
Abstract
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane [...] Read more.
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane reinforced with different concentrations (0.04%, 0.05%, 0.075%, and 0.2%) of functionalized multi-walled carbon nanotubes (f-MWCNTs) intended for biomedical applications, such as transdermal devices. We characterized the resulting composites using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and dynamic mechanical analysis (DMA) to evaluate their morphology, chemical composition, and mechanical properties. We also measured their cytotoxicity upon contact with peripheral blood mononuclear cells. The nanofibers had diameters below 100 nm and inclusions of microspheres, which were attributed to the electrospinning expansion phenomenon. Spectroscopic and mechanical analyses confirmed molecular interactions between the PCL matrix and the f-MWCNTs. Finally, biological tests demonstrated that both the dispersion of f-MWCNTs and the nanofiber sizing render the membranes biocompatible, supporting their potential use as drug-delivery systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

27 pages, 21097 KB  
Article
Hydraulic Fracture Propagation in Topological Fractured Rock Masses: Insights from Visualized Experiments and Discrete Element Simulation
by Xin Gong, Jinquan Xing, Cheng Zhao, Haoyu Pan, Huiguan Chen, Jialun Niu and Yimeng Zhou
Materials 2026, 19(1), 25; https://doi.org/10.3390/ma19010025 - 20 Dec 2025
Viewed by 179
Abstract
The topological structure of fracture networks fundamentally controls the mechanical behavior and fluid-driven failure of brittle materials. However, a systematic understanding of how topology dictates hydraulic fracture propagation remains limited. This study conducted experimental investigations on granite specimens containing 10 different topological fracture [...] Read more.
The topological structure of fracture networks fundamentally controls the mechanical behavior and fluid-driven failure of brittle materials. However, a systematic understanding of how topology dictates hydraulic fracture propagation remains limited. This study conducted experimental investigations on granite specimens containing 10 different topological fracture structures using a self-developed visual hydraulic fracturing test system and an improved Digital Image Correlation (DIC) method. It systematically revealed the macroscopic control laws of topological nodes on crack initiation, propagation path, and peak pressure. The experimental results indicate that hydraulic crack initiation follows the “proximal-to-loading-end priority” rule. Macroscopically, the breakdown pressure shows a significant negative correlation with topological parameters (number of nodes, number of branches, normalized total fracture length). However, specific configurations (e.g., X-shaped nodes) can exhibit a configuration-strengthening effect due to dispersed stress concentration, leading to a higher breakdown pressure than simpler topological configurations. Discrete Element Method (DEM) simulations revealed the underlying mechanical essence at the meso-scale: the topological structure governs crack initiation behavior and initiation pressure by regulating the distribution of force chains and the mode of stress concentration within the rock mass. These findings advance the fundamental understanding of fracture–topology–property relationships in rock masses and provide insights for optimizing fluid-driven fracturing processes in engineered materials and reservoirs. Full article
Show Figures

Figure 1

29 pages, 166576 KB  
Article
A Decentralized Potential Field-Based Self-Organizing Control Framework for Trajectory, Formation, and Obstacle Avoidance of Fully Autonomous Swarm Robots
by Mohammed Abdel-Nasser, Sami El-Ferik, Ramy Rashad and Abdul-Wahid A. Saif
Robotics 2025, 14(12), 192; https://doi.org/10.3390/robotics14120192 - 18 Dec 2025
Viewed by 212
Abstract
In this work, we propose a fully decentralized, self-organizing control framework for a swarm of autonomous ground mobile robots. The system integrates potential field-based mechanisms for simultaneous trajectory tracking, formation control, and obstacle avoidance, all based on local sensing and neighbor interactions without [...] Read more.
In this work, we propose a fully decentralized, self-organizing control framework for a swarm of autonomous ground mobile robots. The system integrates potential field-based mechanisms for simultaneous trajectory tracking, formation control, and obstacle avoidance, all based on local sensing and neighbor interactions without centralized coordination. Each robot autonomously computes attractive, repulsive, and formation forces to navigate toward target positions while maintaining inter-robot spacing and avoiding both static and dynamic obstacles. Inspired by biological swarm behavior, the controller emphasizes robustness, scalability, and flexibility. The proposed method has been successfully validated in the ARGoS simulator, which provides realistic physics, sensor modeling, and a robust environment that closely approximates real-world conditions. The system was tested with up to 15 robots and is designed to scale to larger swarms (e.g., 100 robots), demonstrating stable performance across a range of scenarios. Results obtained using ARGoS confirm the swarm’s ability to maintain formation, avoid collisions, and reach a predefined goal area within a configurable 1 m radius. This zone serves as a spatial convergence region suitable for multi-robot formation, even in the presence of unknown fixed obstacles and movable agents. The framework can seamlessly handle the addition or removal of swarm members without reconfiguration. Full article
(This article belongs to the Special Issue Advanced Control and Optimization for Robotic Systems)
Show Figures

Figure 1

22 pages, 6434 KB  
Article
Design and Construction of a Prototype Tensegrity Structure with Integrated Pretensioning and Instrumentation Features
by Manuel Alejandro Fernández-Ruiz, Milagros Huerta-Gómez-Merodio, Pedro López-Jiménez and Juan Francisco Carbonell-Márquez
Buildings 2025, 15(24), 4506; https://doi.org/10.3390/buildings15244506 - 12 Dec 2025
Viewed by 269
Abstract
Tensegrity structures have developed greatly in recent years due to their unique mechanical, structural, and mathematical properties. This study presents the design and fabrication of a tensegrity structure prototype. A pretensioning device is designed, and it is directly integrated into the tension element. [...] Read more.
Tensegrity structures have developed greatly in recent years due to their unique mechanical, structural, and mathematical properties. This study presents the design and fabrication of a tensegrity structure prototype. A pretensioning device is designed, and it is directly integrated into the tension element. This component enables precise application and regulation of cable pretension. Another instrumentation device was designed to enable internal force monitoring during structural testing. A physical prototype of the second member of the Octahedron family, known as the expanded octahedron, was constructed using 1 m long steel struts with a rigid auxiliary support frame specifically designed for this purpose. This frame allows the geometry of the tensegrity structure to be controlled at any stage of the fabrication process, and it proved highly effective—maximum nodal displacements were restricted to ±0.4 mm, and the final prestress state in all 24 cables was achieved within a tight tolerance of ±5% (i.e., 600 ± 30 N). This paper provides an essential methodological reference for the structure’s fabrication and assembly, supporting future experimental analysis of its mechanical response. Full article
Show Figures

Figure 1

18 pages, 10785 KB  
Article
Microstructure, Texture, and Mechanical Properties of 6N Ultra-High-Purity Copper Processed by Cryorolling for Advanced Sputtering Targets
by Wenpeng Yuan, Shifeng Liu, Hang Zhao, Linyu Lu, Qiuyan Xie and Xinggui Lei
Metals 2025, 15(12), 1369; https://doi.org/10.3390/met15121369 - 12 Dec 2025
Viewed by 221
Abstract
The performance of ultra-high-purity copper sputtering targets is critical for nanoscale integrated circuit fabrication, yet challenges such as dynamic recovery and recrystallization hinder grain refinement and texture control. In the present work, cryogenic deformation was introduced to address these issues. Through electron backscatter [...] Read more.
The performance of ultra-high-purity copper sputtering targets is critical for nanoscale integrated circuit fabrication, yet challenges such as dynamic recovery and recrystallization hinder grain refinement and texture control. In the present work, cryogenic deformation was introduced to address these issues. Through electron backscatter diffraction (EBSD), X-ray diffraction (XRD), and mechanical testing, the microstructure, texture, and mechanical properties of 6N ultra-high-purity copper processed by room-temperature rolling (RTR) and cryorolling (CR) were comparatively investigated. Results reveal that RTR deformation is dominated by slip mechanisms; the RTR sample with 90% reduction exhibits obvious dynamic recrystallization (DRX) and forms a bimodal structure dominated by Copper ({112}⟨111⟩) and S ({123}⟨634⟩) textures. In contrast, CR suppresses thermal activation processes, enabling deformation mechanisms suggestive of twinning activity, leading to ultrafine fibrous structures, while shifting texture components toward Brass ({110}⟨112⟩) and S. Compared to RTR-processed samples, CR-processed samples possess superior mechanical performance. The CR sample with 90% reduction exhibits: a microhardness of 164.60 HV, a yield strength of 385.61 MPa, and a tensile strength of 648.02 MPa, which are, respectively, 33.2%, 91.7%, and 84.6% higher than those of RTR counterparts. Williamson–Hall analysis confirms that the CR sample with 90% reduction achieves finer substructure sizes (~133 nm) and higher stored energy (~22 J·mol−1) by suppressing dynamic recovery, providing a robust driving force for subsequent annealing. This work demonstrates that cryorolling optimizes microstructure and texture through twin-dislocation synergy, providing a fundamental basis for the development of advanced sputtering targets. Full article
Show Figures

Figure 1

20 pages, 7938 KB  
Article
Combination of Finite Element Spindle Model with Drive-Based Cutting Force Estimation for Assessing Spindle Bearing Load of Machine Tools
by Chris Schöberlein, Daniel Klíč, Michal Holub, Holger Schlegel and Martin Dix
Machines 2025, 13(12), 1138; https://doi.org/10.3390/machines13121138 - 12 Dec 2025
Viewed by 320
Abstract
Monitoring spindle bearing load is essential for ensuring machining accuracy, reliability, and predictive maintenance in machine tools. This paper presents an approach that combines drive-based cutting force estimation with a finite element method (FEM) spindle model. The drive-based method reconstructs process forces from [...] Read more.
Monitoring spindle bearing load is essential for ensuring machining accuracy, reliability, and predictive maintenance in machine tools. This paper presents an approach that combines drive-based cutting force estimation with a finite element method (FEM) spindle model. The drive-based method reconstructs process forces from the motor torque signal of the feed axes by modeling and compensating motion-related torque components, including static friction, acceleration, gravitation, standstill, and periodic disturbances. The inverse mechanical and control transfer behavior is also considered. Input signals include the actual motor torque, axis position, and position setpoint, recorded by the control system’s internal measurement function at the interpolator clock rate. Cutting forces are then calculated in MATLAB/Simulink and used as inputs for the FEM spindle model. Rolling elements are replaced by bushing joints with stiffness derived from datasheets and adjusted through experiments. Force estimation was validated on a DMC 850 V machining center using a standardized test workpiece, with results compared against a dynamometer. The spindle model was validated separately on a MCV 754 Quick machine under static loading. The combined approach produced consistent results and identified the front bearing as the most critically loaded. The method enables practical spindle bearing load estimation without external sensors, lowering system complexity and cost. Full article
(This article belongs to the Special Issue Machines and Applications—New Results from a Worldwide Perspective)
Show Figures

Figure 1

24 pages, 4981 KB  
Article
Propulsive Force Characterization of a Bio-Robotic Sea Lion Foreflipper: A Kinematic Basis for Agile Propulsion
by Anthony Drago, Nicholas Marcouiller, Shraman Kadapa, Frank E. Fish and James L. Tangorra
Biomimetics 2025, 10(12), 831; https://doi.org/10.3390/biomimetics10120831 - 12 Dec 2025
Viewed by 265
Abstract
Unmanned underwater vehicles (UUVs) capable of agile, high-speed maneuvering in complex environments require propulsion systems that can dynamically modulate three-dimensional forces. The California sea lion (Zalophus californianus) provides an exceptional biological model, using its foreflippers to achieve rapid turns and powerful [...] Read more.
Unmanned underwater vehicles (UUVs) capable of agile, high-speed maneuvering in complex environments require propulsion systems that can dynamically modulate three-dimensional forces. The California sea lion (Zalophus californianus) provides an exceptional biological model, using its foreflippers to achieve rapid turns and powerful propulsion. However, the specific kinematic mechanisms that govern instantaneous force generation from its powerful foreflippers remain poorly quantified. This study experimentally characterizes the time-varying thrust and lift produced by a bio-robotic sea lion foreflipper to determine how flipper twist, sweep, and phase overlap modulate propulsive forces. A three-degree-of-freedom bio-robotic flipper with a simplified, low-aspect-ratio planform and single compliant hinge was tested in a circulating flow tank, executing parameterized power and paddle strokes in both isolated and combined-phase trials. The time-resolved force data reveal that the propulsive stroke functions as a tunable hybrid system. The power phase acts as a force-vectoring mechanism, where the flipper’s twist angle reorients the resultant vector: thrust is maximized in a broad, robust range peaking near 45°, while lift increases monotonically to 90°. The paddle phase operates as a flow-insensitive, geometrically driven thruster, where twist angle (0° optimal) regulates thrust by altering the presented surface area. In the full stroke, a temporal-phase overlap governs thrust augmentation, while the power-phase twist provides robust steering control. Within the tested inertial flow regime (Re ≈ 104–105), this control map is highly consistent with propulsion dominated by geometric momentum redirection and impulse timing, rather than circulation-based lift. These findings establish a practical, experimentally derived control map linking kinematic inputs to propulsive force vectors, providing a foundation for the design and control of agile, bio-inspired underwater vehicles. Full article
Show Figures

Graphical abstract

18 pages, 4275 KB  
Article
Full-Field In-Plane Tensile Characterization of Cotton Fabrics Using 2D Digital Image Correlation
by Nenad Mitrovic, Aleksandra Mitrovic, Mirjana Reljic and Svetlana Pelemis
Textiles 2025, 5(4), 67; https://doi.org/10.3390/textiles5040067 - 11 Dec 2025
Viewed by 315
Abstract
Textile materials are widely used in diverse applications, yet their anisotropic structure and large deformations present major challenges in mechanical characterization. Conventional uniaxial tensile tests can quantify bulk properties but offer limited insight into local strain distributions. In this work, it was shown [...] Read more.
Textile materials are widely used in diverse applications, yet their anisotropic structure and large deformations present major challenges in mechanical characterization. Conventional uniaxial tensile tests can quantify bulk properties but offer limited insight into local strain distributions. In this work, it was shown that a 2D Digital Image Correlation (DIC) technique captures full-field strain data in three types of woven cotton fabrics with distinct weave patterns and densities, each tested in warp and weft orientations. In controlled tensile experiments conducted per EN ISO 13934-1, DIC revealed that strain in the loading direction (EpsY) was highly orientation-dependent (p < 0.001), whereas strain perpendicular to loading (EpsX) was unaffected by orientation (p = 0.193). These findings contrast with traditional tensile data, which indicate significant orientation effects on maximum force and elongation (both p < 0.001). Compared to point-based techniques, 2D DIC provided richer information on anisotropic deformation, including the ability to detect local strain concentrations before failure. The strong interaction between fabric type and orientation indicates that each fabric exhibits distinct strain response when loaded along warp and weft directions, underscoring the importance of evaluating both orientations when designing or selecting textiles for multidirectional loading. By combining standard tensile testing with full-field optical strain measurements, a more comprehensive understanding of textile behavior emerges, enabling improved material selection, enhanced product performance, and broader applications in engineering and textile fields. Full article
Show Figures

Figure 1

9 pages, 1285 KB  
Proceeding Paper
Reliability of Strength Test Results on Materials Using Statistical and Computational Methods
by Alexander Savaidis, Stamatia Gavela and Georgios Papadakos
Eng. Proc. 2025, 119(1), 5; https://doi.org/10.3390/engproc2025119005 - 10 Dec 2025
Viewed by 151
Abstract
Destructive testing evaluates material strength but prohibits repeated measurements on the same specimen. Finite element simulations, such as those using ANSYS Mechanical, provide a cost-effective alternative by delivering deterministic solutions under defined conditions. To incorporate input variability, the Monte Carlo method applies assigned [...] Read more.
Destructive testing evaluates material strength but prohibits repeated measurements on the same specimen. Finite element simulations, such as those using ANSYS Mechanical, provide a cost-effective alternative by delivering deterministic solutions under defined conditions. To incorporate input variability, the Monte Carlo method applies assigned probability distributions to parameters like magnitude and angle of the applied force and geometric tolerances of the specimen. Thus, input variability yields distributions for output such as stress and deformation, enabling uncertainty quantification. In this study, an example of static force on a concrete cube was modeled in ANSYS, and uncertainty was propagated using the Monte Carlo method, as described in JCGM 101:2008. This approach enables the identification of critical factors affecting the outcome and provides confidence intervals that might be used as decision rules to support comparisons of numerical simulations with experimental data and of results of different models and to calculate the limits of quality control charts of a testing laboratory. Full article
Show Figures

Figure 1

23 pages, 4970 KB  
Article
Research on Autonomous Bottom-Landing Technology of Deep-Sea AUVs
by Hongbin Zhang, Qifeng Zhang, Yuliang Wang, Hao Chen, Xiaoyong Wang and Chunhui Xu
J. Mar. Sci. Eng. 2025, 13(12), 2343; https://doi.org/10.3390/jmse13122343 - 9 Dec 2025
Viewed by 232
Abstract
To extend the near-seabed survey operation duration of deep-sea Autonomous Underwater Vehicles (AUVs), this paper proposes a deep-sea bottom-landing and dwelling technical scheme integrating the drive of a variable buoyancy adjustment mechanism with the support of a “biped” telescopic bottom-landing mechanism. This scheme [...] Read more.
To extend the near-seabed survey operation duration of deep-sea Autonomous Underwater Vehicles (AUVs), this paper proposes a deep-sea bottom-landing and dwelling technical scheme integrating the drive of a variable buoyancy adjustment mechanism with the support of a “biped” telescopic bottom-landing mechanism. This scheme offers a flexible, low-cost, multi-site repeatable bottom-landing process, and sensitive water area-applicable dwelling solution for marine surveys. Firstly, for hard seabed sediments, the mechanical response of AUVs during hard landing under different driving forces and attitudes is solved through simulation analysis, and the local optimal solution of reasonable driving forces is obtained to provide input for the design of the variable buoyancy mechanism. Secondly, for soft seabeds, the variation law of the bottom-leaving adsorption force with different length-to-width ratios (L/B) under the same bottom-landing plate area is studied to provide design input for the telescopic bottom-landing mechanism. Subsequently, the bottom-landing criteria and calculation formulas for flat and uneven seabeds are established, and the bottom-landing and bottom-leaving control strategies are constructed. Finally, the two sets of mechanisms are integrated into the AUV platform. Verification via pool, lake, and sea tests has demonstrated favorable results, and scientific test data of 56 dives within 1 m of the near-seabed are obtained. Traditional technical solutions primarily rely on jettisonable ballast weights or ballast tanks for operations, enabling only a single dive, bottom-landing, and bottom-leaving process. Their concealment and operational depth are often limited. The technical achievement proposed in this paper supports the ABLUV in performing multiple repeated bottom-landing and bottom-leaving operations in deep-sea environments without the need for jettisoning ballast throughout the entire process. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

16 pages, 2857 KB  
Article
Validation of Pneumatic Actuation for Fast Fatigue Testing of Additive-Manufactured Polymers
by Davide D’Andrea, Giacomo Risitano and Dario Santonocito
Actuators 2025, 14(12), 598; https://doi.org/10.3390/act14120598 - 7 Dec 2025
Viewed by 335
Abstract
In the modern industrial context, many manufacturers design universal testing machines (UTMs) equipped with servo-hydraulic or electromechanical linear actuators, which offer excellent control capabilities and high-quality force signal measurement, at the expense of high costs due to the need for hydraulic power units [...] Read more.
In the modern industrial context, many manufacturers design universal testing machines (UTMs) equipped with servo-hydraulic or electromechanical linear actuators, which offer excellent control capabilities and high-quality force signal measurement, at the expense of high costs due to the need for hydraulic power units or dedicated electrical networks. The complexity of these systems discourages manufacturers of mechanical components, especially the ones produced through additive manufacturing (AM), from investing in machines for the determination of mechanical properties according to international standards, settling instead for information derived from technical datasheets of the base material (filament or powders), which rarely include information about fatigue life. Within this context, the Fast Fatigue Machine (FFM), designed by KnoWow srl and ItalSigma srl, makes mechanical characterization of materials a process accessible to any organization that may require it. This was made possible by designing a pneumatic benchtop testing machine with a built-in setup for Thermographic Methods (TMs) usage. The aim of this work is to validate pneumatic actuators as a viable alternative to servo-hydraulic systems, demonstrating their effectiveness and reliability. Frequency analysis on both sinusoidal waveforms, root mean square error (RMSE) evaluation, and percentage total harmonic distortion (THD%) calculations showed that, while the servo-hydraulic system closely follows the load signal with a THD of around 5%, regardless of the applied load intensity, the pneumatic system exhibits higher distortion (THD of approximately 9%, strongly dependent on the load levels) and a high-frequency harmonic component, which, however, does not affect the overall results. Life cycle assessment (LCA) analysis confirmed the convenience of the pneumatic system and TMs in material testing and fatigue characterization. Full article
(This article belongs to the Special Issue Nonlinear Control of Mechanical and Robotic Systems)
Show Figures

Figure 1

18 pages, 5646 KB  
Article
Study on Optimization of 3DP Rock Elastoplastic Properties: Coupling Experimental and DEM Simulation
by Jiecheng Song, Jianjun Liu and Rui Song
Processes 2025, 13(12), 3940; https://doi.org/10.3390/pr13123940 - 5 Dec 2025
Viewed by 320
Abstract
Three-dimensionally printed (3DP) samples with quartz sand effectively avoid the heterogeneity of reservoir rocks in underground gas storage (UGS), providing reliable supports for rock mechanics research under cyclic injection–production pressures. A study on the mechanical properties of 3DP rock samples was conducted by [...] Read more.
Three-dimensionally printed (3DP) samples with quartz sand effectively avoid the heterogeneity of reservoir rocks in underground gas storage (UGS), providing reliable supports for rock mechanics research under cyclic injection–production pressures. A study on the mechanical properties of 3DP rock samples was conducted by coupling triaxial tests with discrete element method (DEM) simulation. Key results are as follows: (1) The graded particle model (GPM) based on actual particle size distribution (PSD) closely matched experimental data, with an average peak strength error of 1.13%. (2) Cyclic saturation post-processing with silica sol significantly enhanced mechanical properties, increasing peak strength from 5.70 to 52.84 MPa and inducing a plastic-to-brittle failure transition. A power-law relationship was identified between saturation cycles and macroscopic strength. (3) DEM simulations revealed that bond effective modulus linearly controls Young’s modulus. The influence of cohesion on peak strength is greater than that of the friction angle, and the bond stiffness ratio regulates shear failure threshold. The cohesion force is 50 MPa, and the peak strength has been increased to 107.89 MPa. (4) Enhancing particle cohesive strength was key to improving the mechanical properties of 3DP rock samples. This study provides a reliable framework for customized 3DP rock preparation and UGS-related mechanical simulations. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Graphical abstract

Back to TopTop