Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (322)

Search Parameters:
Keywords = force density ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15398 KiB  
Article
Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles
by Hamid Bellache, Pierre Chapelle and Jean-Sébastien Kroll-Rabotin
Fluids 2025, 10(8), 201; https://doi.org/10.3390/fluids10080201 (registering DOI) - 1 Aug 2025
Abstract
A combination of lattice Boltzmann method (LBM)-based computations and Lagrangian particle tracking simulations is presented to study the dispersion and clustering of inertial particles in a forced homogeneous and isotropic turbulent flow and to analyze the relative importance of the various forces acting [...] Read more.
A combination of lattice Boltzmann method (LBM)-based computations and Lagrangian particle tracking simulations is presented to study the dispersion and clustering of inertial particles in a forced homogeneous and isotropic turbulent flow and to analyze the relative importance of the various forces acting on particles. The particle dynamics are investigated across a wide range of particle-to-fluid density ratios (from 0.01 to 1000) and Stokes numbers (from 1.4 × 10−6 to 55.4), at a Taylor microscale Reynolds number of 33.6. Particle clustering is quantified using Voronoï tessellations. Results confirm that clustering intensity is maximized at Stokes numbers around unity, where particles preferentially accumulate in low-vorticity regions. Particle dynamics within the turbulent flow considered here vary fundamentally with density and size, even among tracer-like particles. Low-density and neutrally buoyant particles mimic tracers via either velocity matching or acceleration balance, while dense particles follow inertia-dominated dynamics. Full article
Show Figures

Figure 1

10 pages, 2061 KiB  
Article
Controlled Synthesis of Tellurium Nanowires and Performance Optimization of Thin-Film Transistors via Percolation Network Engineering
by Mose Park, Zhiyi Lyu, Seung Hyun Song and Hoo-Jeong Lee
Nanomaterials 2025, 15(14), 1128; https://doi.org/10.3390/nano15141128 - 21 Jul 2025
Viewed by 271
Abstract
In this study, we propose a method for systematic nanowire length control through the precise control of the polyvinylpyrrolidone (PVP) concentration during the synthesis of tellurium nanowires. Furthermore, we report the changes in the electrical properties of thin-film transistor (TFT) devices with different [...] Read more.
In this study, we propose a method for systematic nanowire length control through the precise control of the polyvinylpyrrolidone (PVP) concentration during the synthesis of tellurium nanowires. Furthermore, we report the changes in the electrical properties of thin-film transistor (TFT) devices with different lengths of synthesized tellurium nanowires used as channels. Through the use of scanning electron microscopy (SEM) and atomic force microscopy (AFM), it was determined that the length of the wires increased in relation to the amount of PVP incorporated, while the diameter remained consistent. The synthesized long wires formed a well-connected percolation network with a junction density of 4.6 junctions/µm2, which enabled the fabrication of devices with excellent electrical properties, the highest on/off ratio of 103, and charge mobility of 1.1 cm2/V·s. In contrast, wires with comparatively reduced PVP content demonstrated a junction density of 2.1 junctions/µm2, exhibiting a lower on/off ratio and reduced charge mobility. These results provide guidance on how the amount of PVP added during wire growth affects the length of the synthesized wires and how it affects the connectivity between the wires when they form a network, which may help optimize the performance of high-performance nanoelectronic devices. Full article
(This article belongs to the Special Issue Nanowires: Growth, Properties, and Applications)
Show Figures

Figure 1

17 pages, 9414 KiB  
Article
Influence of High-Speed Flow on Aerodynamic Lift of Pantograph at 400 km/h
by Zhao Xu, Hongwei Zhang, Wen Wang and Guobin Lin
Infrastructures 2025, 10(7), 188; https://doi.org/10.3390/infrastructures10070188 - 17 Jul 2025
Viewed by 256
Abstract
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at [...] Read more.
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at 300, 350, and 400 km/h showed lift fluctuation amplitude increases with speed, peaking near 50 N at 400 km/h. Power spectral density (PSD) energy, dominated by low frequencies, peaked around 10 dB/Hz in the low-frequency band, highlighting exacerbated lift instability. Component analysis revealed the smallest lift-to-drag ratio and most significant fluctuations at the head, primarily due to boundary-layer separation and vortex shedding from its non-streamlined design. Turbulence energy analysis identified the head and base as main turbulence sources; however, base vibrations are absorbed by the vehicle body, while the head causes pantograph–catenary vibrations due to direct contact. These findings confirm that aerodynamic instability at the head is the main cause of contact force fluctuations. Optimizing head design is necessary to suppress fluctuations, ensuring safe operation at 400 km/h and above. Results provide a theoretical foundation for aerodynamic optimization and improved dynamic performance of high-speed pantographs. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

17 pages, 1731 KiB  
Article
The Effect of Duck Breeds on Carcass Composition and Meat Quality at Different Slaughter Ages
by Lixia Wang, Xing Chen, Yu Yang, Shengqiang Ye, Ping Gong, Yanan Wang, Mingli Zhai, Yan Wu and Yunguo Qian
Animals 2025, 15(14), 2106; https://doi.org/10.3390/ani15142106 - 16 Jul 2025
Viewed by 275
Abstract
Meat quality is influenced by factors such as age, breed, slaughter weight, and nutrition. This study investigated the growth performance, slaughter performance, and meat quality of ducks across different breeds and ages. Results indicated that at the same age, significant differences in body [...] Read more.
Meat quality is influenced by factors such as age, breed, slaughter weight, and nutrition. This study investigated the growth performance, slaughter performance, and meat quality of ducks across different breeds and ages. Results indicated that at the same age, significant differences in body weight were observed among breeds (p < 0.05), with the weight ranking in descending order as follows: Cherry Valley ducks (C) > Wuqin 10 meat ducks (W) > Mianyang Partridge ducks (M) > Liancheng White ducks (L). A comparison of the same breed across different ages revealed that the pectoral muscle ratio tended to increase with age, whereas the leg muscle ratio showed the opposite trend; however, total meat production gradually rose. At all three growth stages, C ducks exhibited higher body weight and meat yield than the other breeds. W ducks demonstrated excellent meat quality traits and appropriate meat production, with indices such as shear force, water-holding capacity, and fat content all higher than those of the other breeds. L ducks and M ducks had relatively lower body weight and meat production compared to the other breeds, yet their shear force and water-holding capacity were superior to those of C ducks. The analysis of meat quality at different times showed that across all breeds, shear force, meat color, muscle fiber diameter, crude protein content, and fat content increased with age, while drip loss rate and muscle fiber density decreased. A comprehensive multi-index evaluation model for duck meat quality under different breeds was established, along with a four-factor principal component model (Z1, Z2, Z3, Z4). Using the comprehensive ranking equation K, the meat quality performance of different breeds at various ages, in descending order, was as follows: 63-day-old W > 90-day-old M > 63-day-old C > 90-day-old L > 63-day-old M > 90-day-old C > 63-day-old L > 90-day-old W > 42-day-old C > 42-day-old W. This study not only provides a theoretical basis for evaluating meat quality traits in different duck breeds but also offers insights for breed selection and age-related quality optimization. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

19 pages, 11197 KiB  
Article
Modeling of Linear Die Filling Based on Dimensional Analysis Using DEM-CFD Methods
by Jie Li, Sunsheng Zhou, Shiyan Yan, Yuanqiang Tan and Jiangtao Zhang
Materials 2025, 18(14), 3261; https://doi.org/10.3390/ma18143261 - 10 Jul 2025
Viewed by 299
Abstract
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based [...] Read more.
Linear die filling is currently widely employed in industries. However, there is no comprehensive and systematic model to describe the powder die filling process. This paper utilizes dimensional analysis to extract and analyze various factors that affect the flow characteristics of powder based on DEM-CFD simulations. Several dimensionless parameters including the ratio of particle size to die depth (dphD1), solid density number (ρpρg1), shoe speed number (vρgLDμ1), and force number (GpFDrag1) were proposed based on the Pi theorem. The results showed that the filling ratio δ increased with the increase in dphD1 and ρpρg1 due to GpFDrag1 rising. But it decreased with the increase in vρgLDμ1 due to the shortening of effective filling time. Finally, a semi-empirical modeling of linear die filling was developed, taking the critical value (dphD1)90 as the dependent variable and the solid density number (ρpρg1) and shoe speed number (vρgLDμ1) as independent variables. Hence, this model provides a new approach to computing the smallest shoe speed and designing the sizes of dies based on measurable material properties under complete die filling. Full article
Show Figures

Figure 1

18 pages, 5983 KiB  
Article
Fixed Particle Size Ratio Pure Copper Metal Powder Molding Fine Simulation Analysis
by Yuanbo Zhao, Mengyao Weng, Wenchao Wang, Wenzhe Wang, Hui Qi and Chongming Li
Crystals 2025, 15(7), 628; https://doi.org/10.3390/cryst15070628 - 5 Jul 2025
Viewed by 265
Abstract
In this paper, a discrete element method (DEM) coupled with a finite element method (FEM) was used to elucidate the impact of packing structures and size ratios on the cold die compaction behavior of pure copper powders. HCP structure, SC structure, and three [...] Read more.
In this paper, a discrete element method (DEM) coupled with a finite element method (FEM) was used to elucidate the impact of packing structures and size ratios on the cold die compaction behavior of pure copper powders. HCP structure, SC structure, and three random packing structures with different particle size ratios (1:2, 1:3, and 1:4) were generated by the DEM, and then simulated by the FEM to analyze the average relative density, von Mises stress, and force chain structures of the compact. The results show that for HCP and SC structures with a regular stacking structure, the average relative densities of the compact were higher than those of random packing structures, which were 0.9823, 0.9693, 0.9456, 0.9502, and 0.9507, respectively. Compared with their initial packing density, it could be improved by up to 21.13%. For the bigger particle in HCP and SC structures, the stress concentration was located between the adjacent layers, while in the small particles, it was located between contacted particles. During the initial compaction phase, smaller particles tend to occupy the voids between larger particles. As the pressure increases, larger particles deform plastically in a notable way to create a stabilizing force chain. This action reduces the axial stress gradient and improves radial symmetry. The transition from a contact-dominated to a body-stress-dominated state is further demonstrated by stress distribution maps and contact force vector analysis, highlighting the interaction between particle rearrangement and plasticity. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

12 pages, 7858 KiB  
Article
Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings
by Bastien Van Esbeen, Valentin Manto, Damien Kinet, Corentin Guyot and Christophe Caucheteur
Sensors 2025, 25(13), 3921; https://doi.org/10.3390/s25133921 - 24 Jun 2025
Viewed by 371
Abstract
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce [...] Read more.
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce costs and maintenance time, and to prevent machine failures. First, FBG strain sensors were glued vertically along the tower to investigate the sensors behavior as a function of their height. The maximum signal-to-noise ratio is obtained when FBGs are placed at the tower base. Then, four packages were installed inside the tower, at the base, according to four cardinal directions. Each package contains an FBG strain sensor, and an extra temperature FBG for discrimination. The use of easy-to-deploy packages is a must for industrial installations. Afterwards, by using power spectral density (PSD) on the strain signals, three sources of tower oscillations are discovered: wind force, structure unbalance, and 1st tower mode resonance, each with its intrinsic frequency. Wind force and structure unbalance cause mechanical stresses at a frequency proportional to the wind turbine rotational speed, while the 1st tower mode frequency depends only on the machine geometry, regardless of the rotational speed. This study also analyzes the deformation amplitude for different rotational rates within the VAWT operational range (10–35 rpm). The resonance amplitude depends on the proximity of the rotational rate to the resonant frequency (22 rpm) and the duration at that rate. For structure unbalance, the oscillation amplitude increases with the rotational rate, due to the centrifugal effect. It is supposed that wind force deformation amplitude naturally depends on wind speed, which is unpredictable at a given precise time. The results of our experimental observations are very valuable for both the wind turbine manufacturer and owner. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 4734 KiB  
Article
Hyaluronic Acid Dipeptide Gels Studied by Raman Spectroscopy
by Vlasta Mohaček-Grošev and Jože Grdadolnik
Crystals 2025, 15(6), 559; https://doi.org/10.3390/cryst15060559 - 13 Jun 2025
Viewed by 511
Abstract
This study presents a detailed Raman spectroscopic investigation of hydrogels composed of sodium hyaluronate and two N-terminally blocked dipeptides: N-acetyl-L-alanine-methyl-amide (NAcAlaNHMA) and N-acetyl-L-tyrosine-methyl-amide (NAcTyrNHMA). Vibrational spectra of the dipeptides in both crystalline and aqueous forms were analyzed and supported by density functional theory [...] Read more.
This study presents a detailed Raman spectroscopic investigation of hydrogels composed of sodium hyaluronate and two N-terminally blocked dipeptides: N-acetyl-L-alanine-methyl-amide (NAcAlaNHMA) and N-acetyl-L-tyrosine-methyl-amide (NAcTyrNHMA). Vibrational spectra of the dipeptides in both crystalline and aqueous forms were analyzed and supported by density functional theory (DFT) calculations. Spectral features of the hyaluronan component were elucidated by simulating the vibrational modes of its two principal disaccharide building blocks. Gels were prepared with varying dipeptide-to-hyaluronan ratios, and their structural characteristics were examined using Raman spectroscopy and atomic force microscopy. The results showed that while NAcAlaNHMA exhibited no significant interaction with the HA matrix, NAcTyrNHMA demonstrated specific binding behavior, as evidenced by notable shifts in its N–H and C–O–H vibrational bands. These findings indicate that NAcTyrNHMA binds to hyaluronic acid via hydrogen bonding, likely involving carboxyl and hydroxyl functional groups. This study highlights the potential for selective tuning of HA-based hydrogels using dipeptides, with implications for biomedical applications such as drug delivery, antimicrobial gels and biomaterial design. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Graphical abstract

16 pages, 5375 KiB  
Article
DEM-FEM Simulation of Double Compaction of Cu and Al Composite Metal Powders with Multiple Particle Sizes
by Wenchao Wang, Yuanbo Zhao, Mengyao Weng, Kangxing Dong, Hui Qi, Wenzhe Wang and Chongming Li
Crystals 2025, 15(6), 526; https://doi.org/10.3390/cryst15060526 - 30 May 2025
Cited by 1 | Viewed by 411
Abstract
In this paper, the analysis method which coupled discrete element method (DEM) and finite element method (FEM) is used to simulate the double compaction of random packing of Cu and Al composite powders with multiple particle sizes. Cu and Al composite powders with [...] Read more.
In this paper, the analysis method which coupled discrete element method (DEM) and finite element method (FEM) is used to simulate the double compaction of random packing of Cu and Al composite powders with multiple particle sizes. Cu and Al composite powders with varying particle size ratios from 1:2 to 1:5 were generated by DEM and then imported to MSC. Marc software (MSC.MARC2015 version) to construct FEM analysis. The effects of metal ratios, compaction pressure and size ratios on the relative density and von Mises stress of the compact were studied. The results show that the average relative density of the compact increases with the Al content, and the stress decreases. The stress in the Cu particle is particularly higher than that in the Al particle, mainly because the contact normal force of the Cu particle is nearly parallel at each contact surface. Therefore, the phenomenon of stress concentration is easier to occur within copper particles. When Al content is 30wt.%, the particle size difference enhances densification efficiency by up to 12.3%, as evidenced by an initial relative density increase from 0.7915 to 0.8047, primarily due to smaller Cu particles effectively filling interparticle voids. When the compaction pressure is fixed, the average relative density of the compact with the particle size ratio 1:5 is higher than the others, and the contact forces inside the particles significantly decrease. Full article
Show Figures

Figure 1

14 pages, 815 KiB  
Article
Unlocking the Potential of Paper Mulberry Powder in Cherry Valley Ducks: Impacts on Growth, Serum Biochemistry, and Cecum Microbiome
by Yi Xiong, Chu Tang, Xuekai Wang, Yongsheng Wang and Fuyu Yang
Animals 2025, 15(11), 1602; https://doi.org/10.3390/ani15111602 - 30 May 2025
Viewed by 377
Abstract
This study investigates the effects of incorporating paper mulberry (Broussonetia papyrifera L.) powder into the diets of Cherry Valley ducks on growth performance, serum biochemistry, and the gut microbiome. A total of 350 14-day-old male Cherry Valley ducks were randomly assigned to [...] Read more.
This study investigates the effects of incorporating paper mulberry (Broussonetia papyrifera L.) powder into the diets of Cherry Valley ducks on growth performance, serum biochemistry, and the gut microbiome. A total of 350 14-day-old male Cherry Valley ducks were randomly assigned to five groups receiving diets with 0%, 4%, 6%, 8%, and 10% paper mulberry powder for 42 days. Growth performance, meat quality, serum immunity, and cecal microbial composition were assessed. The results showed no significant differences in average daily feed intake and feed conversion ratio among treatments, with the 6% paper mulberry group showing the highest average daily gain (79.73 g) (p < 0.05). Meat quality parameters, including color, drip loss, cooking loss, and shear force, were not significantly affected by paper mulberry powder supplementation, while the 8% paper mulberry group showed the highest pH24 value (5.47) (p < 0.05). Serum biochemistry revealed increased total protein (G0, G4, G6, G8, and G10: 41.50, 44.47, 45.58, 45.67, and 45.85 g/L, respectively), albumin (G0, G4, G6, G8, and G10: 18.61, 19.56, 20.29, 20.2, and 20.39 g/L, respectively), total cholesterol (G0, G4, G6, G8, and G10: 5.31, 4.96, 5.37, 5.53, and 5.59 mmol/L, respectively), and high-density lipoprotein cholesterol (HDL) in ducks fed 6%, 8%, and 10% paper mulberry powder, with lower alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBI) in the 8% and 10% groups (p < 0.05). Cecal microbial diversity was enhanced with paper mulberry powder, particularly in the 6% group, which showed increased Bacteroides abundance (p < 0.05). Supplementing duck diets with 6% paper mulberry powder increased average daily gain, without adversely affecting meat quality and health, suggesting its potential as a sustainable feed ingredient in the duck meat industry. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Graphical abstract

17 pages, 2457 KiB  
Article
Cellular Structures Analysis Under Compression Test
by Maria C. Bedoya, J. William Restrepo, Luis V. Wilches and Johnnatan Rodriguez
Polymers 2025, 17(11), 1476; https://doi.org/10.3390/polym17111476 - 26 May 2025
Viewed by 535
Abstract
Cellular structures, formed by periodic two- or three-dimensional cells, offer weight reduction without compromising mechanical performance and are commonly fabricated via additive manufacturing. This study investigates the compressive behaviour of three polymer lattice structures—gyroid, diamond, and octet truss—fabricated by fused filament fabrication (FFF). [...] Read more.
Cellular structures, formed by periodic two- or three-dimensional cells, offer weight reduction without compromising mechanical performance and are commonly fabricated via additive manufacturing. This study investigates the compressive behaviour of three polymer lattice structures—gyroid, diamond, and octet truss—fabricated by fused filament fabrication (FFF). A Box–Behnken experimental design was used to systematically evaluate the influence of three key parameters: cell size, strut/wall thickness, and layer thickness. A total of 225 samples were produced using PLA and subjected to compression testing in accordance with ASTM D1621. Linear regression and response surface methodology were employed to determine the statistical significance and impact of each factor. The results indicate that cell size has the strongest influence on both maximum force and displacement, followed by strut/wall thickness and layer thickness. Among the configurations, gyroid structures had the highest strength-to-density ratio, while diamond structures had the highest deformation capacity. These findings provide design insights for optimising lattice structures in lightweight applications and highlight the importance of carefully balancing geometric and printing parameters in FFF-based polymer components. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

12 pages, 2197 KiB  
Article
A Self-Powered Density-Based Device for Automatic Mixed-Oil Cutting in Field Pipelines
by Zhen Zhang, Yonggang Zuo, Huishu Liu and Biao He
Sensors 2025, 25(10), 3030; https://doi.org/10.3390/s25103030 - 11 May 2025
Viewed by 400
Abstract
Efficient oil transportation in field-deployed mobile pipelines is critical, but mixed-oil zones at interfaces reduce quality and increase waste, necessitating effective interface detection and cutting. Existing online densitometers, such as vibrating tube or high-accuracy magnetic suspension types, typically require external power, limiting their [...] Read more.
Efficient oil transportation in field-deployed mobile pipelines is critical, but mixed-oil zones at interfaces reduce quality and increase waste, necessitating effective interface detection and cutting. Existing online densitometers, such as vibrating tube or high-accuracy magnetic suspension types, typically require external power, limiting their use in remote or emergency/temporary field operations. A self-powered device is presented that leverages gravitational force variations acting on a float to detect density changes and trigger automatic cutting. Validated with gasoline, diesel, kerosene, and water, it achieves a 10 kg/m3 resolution, deemed sufficient for functional batch separation in its target application, with switching times of 61–395 s for density differences (760–835 kg/m3). It supports 20–90% blending ratios, with a vent mitigating gas effects. The modular, robust, self-powered design suits emergency operations, offering a practical alternative to powered systems. Future work targets improved resolution and environmental testing. Full article
Show Figures

Figure 1

15 pages, 3312 KiB  
Article
Recycling of Poly(Propylene) Based Car Bumpers in the Perspective of Polyolefin Nanoclay Composite Film Production
by Nemr El Hajj, Sylvain Seif and Nancy Zgheib
Recycling 2025, 10(3), 95; https://doi.org/10.3390/recycling10030095 - 10 May 2025
Viewed by 728
Abstract
This study uses the melt compounding method to recycle polypropylene-based car bumper waste (PP-CBW) in order to produce nanocomposite films for mulch application. The nanocomposite films were compounded by mixing virgin linear low-density polyethylene (LLDPE) with PP-CBW at a constant ratio of 4:1 [...] Read more.
This study uses the melt compounding method to recycle polypropylene-based car bumper waste (PP-CBW) in order to produce nanocomposite films for mulch application. The nanocomposite films were compounded by mixing virgin linear low-density polyethylene (LLDPE) with PP-CBW at a constant ratio of 4:1 in the presence of different percentages of nanofillers. Nanocomposites reinforced with nanoclays were compatibilized with an anhydride grafted polyethylene (PE-g-MAH), at a constant compatibilizer-to-clay ratio equal to 3, to improve the adherence between the nonpolar matrix and the hydrophilic nanoclay and acrylic paint present in the car bumper. An extruder with a corotating twin screw was used to produce blends of different compositions. To create nanocomposite films, the mixtures were further processed in a blown film extruder. The effect of the presence of nanoclays on the barrier, thermal, and mechanical properties of the nanocomposite films was investigated. The dispersion of clay layers in the matrix was examined by atomic force microscopy (AFM). The results indicate that 3 wt% of clay loading maximized the tensile strength in the transverse direction (TD) and machine direction (MD). A 1 wt% clay loading increased the MD tear resistance by 66% and manifested an optimum dart impact strength. Significant improvements in thermal and barrier properties were also achieved in the presence of 3 wt% clay loading. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Graphical abstract

26 pages, 15212 KiB  
Article
Dynamic Response and Reliability Assessment of Power Transmission Towers Under Wind-Blown Sand Loads
by Jun Lu, Jin Li, Xiaoqian Ma, Weiguang Tian, Linfeng Zhang and Peng Zhang
Energies 2025, 18(9), 2316; https://doi.org/10.3390/en18092316 - 30 Apr 2025
Viewed by 280
Abstract
The global transition toward clean energy has driven the extensive deployment of overhead tower-lines in desserts, where such structures face unique challenges from wind–sand interactions. The current design standards often overlook these combined loads due to oversimplified collision models and inadequate computational frameworks. [...] Read more.
The global transition toward clean energy has driven the extensive deployment of overhead tower-lines in desserts, where such structures face unique challenges from wind–sand interactions. The current design standards often overlook these combined loads due to oversimplified collision models and inadequate computational frameworks. These gaps are bridged in the present study through the development of a refined impact force model grounded in Hertz contact theory, which captures transient collision mechanics and energy dissipation during sand–structure interactions. Validated against field data from northwest China, the model enables a comprehensive parametric analysis of wind speed (5–60 m/s), sand density (1000–3500 kg/m3), elastic modulus (5–100 GPa), and Poisson’s ratio (0.1–0.4). Our results show that peak impact forces increase by 66.7% (with sand density) and 148% (with elastic modulus), with higher wind speeds amplifying forces nonlinearly, reaching 8 N at 30 m/s. An increased elastic modulus shifts energy dissipation toward elastic rebound, reducing the penetration depth by 28%. The dynamic analysis of a 123.6 m transmission tower under wind–sand coupling loads demonstrated significant structural response amplifications; displacements and axial forces increased by 28% and 41%, respectively, compared to pure wind conditions. These findings reveal the importance of integrating coupling load effects into design codes, particularly for towers in sandstorm-prone regions. The proposed framework provides a robust basis for enhancing structural resilience, offering practical insights for revising safety standards and optimizing maintenance strategies in arid environments. Full article
Show Figures

Figure 1

15 pages, 3782 KiB  
Article
Cassia grandis L.f. Pods as a Source of High-Value-Added Biomolecules: Optimization of Extraction Conditions and Extract Rheology
by Filipe M. M. Cordeiro, Salomé G. Bedoya, Daniel A. P. Santos, Rebeca S. Santos, Thomas V. M. Bacelar, Filipe S. Buarque, George Simonelli, Ana C. M. Silva and Álvaro S. Lima
Biomass 2025, 5(2), 24; https://doi.org/10.3390/biomass5020024 - 25 Apr 2025
Viewed by 817
Abstract
High-value-added biomolecules such as phenolic compounds and flavonoids from secondary metabolism and macromolecules such as sugars are the main constituents of several plants. Thus, this work aims to optimize the extraction of these biomolecules present in the pods of Cassia grandis L.f. Initially, [...] Read more.
High-value-added biomolecules such as phenolic compounds and flavonoids from secondary metabolism and macromolecules such as sugars are the main constituents of several plants. Thus, this work aims to optimize the extraction of these biomolecules present in the pods of Cassia grandis L.f. Initially, the effect of choline-based ionic liquids—ILs (choline chloride [Ch]Cl, dihydrogen citrate [Ch][DHC], and bitartrate [Ch][BIT]) as extracting agents for phenolic compounds and flavonoids was evaluated based on their efficiency and selectivity. Then, a 23 full factorial design with six central points was performed using the IL concentration, the solid–liquid ratio, and the temperature as independent variables. The extract obtained in the best condition was subjected to pervaporation, after which the concentrates and the crude extract were used to determine the physical properties (density, viscosity, and refractive index). The hydrophobic–hydrophilic balance of the extracting agent and the biomolecules are the extraction process’s driving force. The best extraction condition was formed by [Ch][DHC] at 15 wt%, with a solid–liquid ratio of 1:15, at 45 °C for 30 min, resulting in 153.71 ± 5.81 mg·g−1 of reducing sugars; 483.51 ± 13.10 mg·g−1 of total sugars; 11.79 ± 0.54 mg·g−1 of flavonoids; and 38.10 ± 2.90 mg·g−1 of total phenolic compounds. All the physical properties of the biomolecules are temperature-dependent; for density and refractive index, a linear correlation is observed, while for viscosity, the correlation is exponential. Increasing the temperature decreases all properties, and the extract concentration for 8× presents the highest values of density (1.283 g·cm−3), viscosity (9224 mPa·s), and refractive index (1.467). Full article
(This article belongs to the Topic Recovery and Use of Bioactive Materials and Biomass)
Show Figures

Figure 1

Back to TopTop