Controlled Synthesis of Tellurium Nanowires and Performance Optimization of Thin-Film Transistors via Percolation Network Engineering
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Morphology Control Synthesis of Tellurium Nanowires
2.3. Device Fabrication
2.4. Material Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Zhao, S.; Pang, X.; Zhang, A.; Li, C.; Lin, Y.; Zhu, J. Biomimetic wafer-scale alignment of tellurium nanowires for high-mobility flexible and stretchable electronics. Sci. Adv. 2024, 10, eadm9322. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Xu, J.; Hu, W.; Yang, J.L.; Yu, S.H. Systematic synthesis of tellurium nanostructures and their optical properties: From nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2016, 2, 167–170. [Google Scholar] [CrossRef]
- Cao, W.; Bu, H.; Vinet, M.; Cao, M.; Takagi, S.; Hwang, S.; Banerjee, K. The future transistors. Nature 2023, 620, 501–515. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, Y. Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications. Adv. Mater. Technol. 2019, 4, 1800546. [Google Scholar] [CrossRef]
- Peng, M.; Xie, R.; Wang, Z.; Wang, P.; Wang, F.; Ge, H.; Hu, W. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 2021, 7, eabf7358. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Ruan, H.; Cheng, Z.; Yao, Y.; Zhuge, F.; Zhai, T. Programmable nucleation and growth of ultrathin tellurium nanowires via a pulsed physical vapor deposition design. Adv. Funct. Mater. 2023, 33, 2211527. [Google Scholar] [CrossRef]
- Pokhrel, D.; Bastola, E.; Phillips, A.B.; Heben, M.J.; Ellingson, R.J. Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications. Mater. Adv. 2020, 1, 2721–2728. [Google Scholar] [CrossRef]
- Zhu, H.; Fan, L.; Wang, K.; Liu, H.; Zhang, J.; Yan, S. Progress in the Synthesis and Application of Tellurium Nanomaterials. Nanomaterials 2023, 13, 2057. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; He, D.; Wang, Y.; Hwang, E.; Yang, Y. Morphology-controlled synthesis, growth mechanism, and applications of tellurium nanostructures. Mater. Adv. 2024, 5, 7548–7560. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Yang, Y.; Hu, Z.; Peng, S.; Liang, J.; Qian, Y. Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium. New J. Chem. 2003, 27, 1748–1752. [Google Scholar] [CrossRef]
- Lyu, Z.; Park, M.; Tang, Y.; Choi, H.; Song, S.H.; Lee, H.-J. Large-Scale Green Method for Synthesizing Ultralong Uniform Tellurium Nanowires for Semiconductor Devices. Nanomaterials 2024, 14, 1625. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zou, H.; Wang, C.; Lv, S.; Jin, Y.; Hu, H.; Yang, X. Controllable synthesis, formation mechanism, and photocatalytic activity of tellurium with various nanostructures. Micromachines 2023, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yu, S.-H.; Zhu, J. Amino acids controlled growth of shuttle-like scrolled tellurium nanotubes and nanowires with sharp tips. Chem. Mater. 2005, 17, 2785–2788. [Google Scholar] [CrossRef]
- Yu, P.; Zhou, L.; Jia, Z.; Wu, K.; Cui, J. Morphology and property tuning of Te nanostructures in a hydrothermal growth. J. Mater. Sci. Mater. Electron. 2020, 31, 16332–16337. [Google Scholar] [CrossRef]
- Mayers, B.; Xia, Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 2002, 12, 1875–1881. [Google Scholar] [CrossRef]
- Zhong, B.N.; Fei, G.T.; Fu, W.B.; Gong, X.X.; Xu, S.H.; Gao, X.D.; De Zhang, L. Controlled solvothermal synthesis of single-crystal tellurium nanowires, nanotubes and trifold structures and their photoelectrical properties. CrystEngComm 2017, 19, 2813–2820. [Google Scholar] [CrossRef]
- Londoño-Calderon, A.; Williams, D.J.; Ophus, C.; Pettes, M.T. 1D to 2D transition in tellurium observed by 4D electron microscopy. Small 2020, 16, 2005447. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.X.; Liu, Y.; Du, Y.; Goddard, W.A.; Kim, M.J.; Xu, X.; et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236. [Google Scholar] [CrossRef]
- Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J.P.; Bellet, D. Metallic nanowire-based transparent electrodes for next generation flexible devices: A review. Small 2016, 12, 6052–6075. [Google Scholar] [CrossRef]
- Yan, A.; Wang, C.; Yan, J.; Wang, Z.; Zhang, E.; Dong, Y.; Ren, T.L. Thin-Film Transistors for Integrated Circuits: Fundamentals and Recent Progress. Adv. Funct. Mater. 2024, 34, 2304409. [Google Scholar] [CrossRef]
- Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire electronics: From nanoscale to macroscale. Chem. Rev. 2019, 119, 9074–9135. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Chen, C.; Bai, L.; Yu, J.; Cheng, Y.; Huang, W. Stretchable Electronics with Strain-Resistive Performance. Small 2024, 20, 2306749. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.F.; Ren, Z. Flexible transparent conductors based on metal nanowire networks. Mater. Today 2015, 18, 143–154. [Google Scholar] [CrossRef]
- Mathews, N.; Varghese, B.; Sun, C.; Thavasi, V.; Andreasson, B.P.; Sow, C.H.; Mhaisalkar, S.G. Oxide nanowire networks and their electronic and optoelectronic characteristics. Nanoscale 2010, 2, 1984–1998. [Google Scholar] [CrossRef] [PubMed]
- De, S.; King, P.J.; Lyons, P.E.; Khan, U.; Coleman, J.N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 2010, 4, 7064–7072. [Google Scholar] [CrossRef]
- Rouhi, N.; Jain, D.; Burke, P.J. High-performance semiconducting nanotube inks: Progress and prospects. ACS Nano 2011, 5, 8471–8487. [Google Scholar] [CrossRef]
- Cho, I.; Ko, J.; Henriquez, D.D.O.; Yang, D.; Park, I. Recent Advances in 1D Nanostructure Assembly and Direct Integration Methods for Device Applications. Small Methods 2024, 8, 2400474. [Google Scholar] [CrossRef]
- Zi, Y.; Zhu, J.; Hu, L.; Wang, M.; Huang, W. Nanoengineering of tin monosulfide (SnS)-based structures for emerging applications. Small Sci. 2022, 2, 2100098. [Google Scholar] [CrossRef]
- Li, M.; Liu, R.-R.; Lü, L.; Hu, M.-B.; Xu, S.; Zhang, Y.-C. Percolation on complex networks: Theory and application. Phys. Rep. 2021, 907, 1–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.; Lyu, Z.; Song, S.H.; Lee, H.-J. Controlled Synthesis of Tellurium Nanowires and Performance Optimization of Thin-Film Transistors via Percolation Network Engineering. Nanomaterials 2025, 15, 1128. https://doi.org/10.3390/nano15141128
Park M, Lyu Z, Song SH, Lee H-J. Controlled Synthesis of Tellurium Nanowires and Performance Optimization of Thin-Film Transistors via Percolation Network Engineering. Nanomaterials. 2025; 15(14):1128. https://doi.org/10.3390/nano15141128
Chicago/Turabian StylePark, Mose, Zhiyi Lyu, Seung Hyun Song, and Hoo-Jeong Lee. 2025. "Controlled Synthesis of Tellurium Nanowires and Performance Optimization of Thin-Film Transistors via Percolation Network Engineering" Nanomaterials 15, no. 14: 1128. https://doi.org/10.3390/nano15141128
APA StylePark, M., Lyu, Z., Song, S. H., & Lee, H.-J. (2025). Controlled Synthesis of Tellurium Nanowires and Performance Optimization of Thin-Film Transistors via Percolation Network Engineering. Nanomaterials, 15(14), 1128. https://doi.org/10.3390/nano15141128