Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (541)

Search Parameters:
Keywords = force control for robotic systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3926 KB  
Article
Robotic Removal and Collection of Screws in Collaborative Disassembly of End-of-Life Electric Vehicle Batteries
by Muyao Tan, Jun Huang, Xingqiang Jiang, Yilin Fang, Quan Liu and Duc Pham
Biomimetics 2025, 10(8), 553; https://doi.org/10.3390/biomimetics10080553 - 21 Aug 2025
Viewed by 110
Abstract
The recycling and remanufacturing of end-of-life (EoL) electric vehicle (EV) batteries are urgent challenges for a circular economy. Disassembly is crucial for handling EoL EV batteries due to their inherent uncertainties and instability. The human–robot collaborative disassembly of EV batteries as a semi-automated [...] Read more.
The recycling and remanufacturing of end-of-life (EoL) electric vehicle (EV) batteries are urgent challenges for a circular economy. Disassembly is crucial for handling EoL EV batteries due to their inherent uncertainties and instability. The human–robot collaborative disassembly of EV batteries as a semi-automated approach has been investigated and implemented to increase flexibility and productivity. Unscrewing is one of the primary operations in EV battery disassembly. This paper presents a new method for the robotic unfastening and collecting of screws, increasing disassembly efficiency and freeing human operators from dangerous, tedious, and repetitive work. The design inspiration for this method originated from how human operators unfasten and grasp screws when disassembling objects with an electric tool, along with the fusion of multimodal perception, such as vision and touch. A robotic disassembly system for screws is introduced, which involves a collaborative robot, an electric spindle, a screw collection device, a 3D camera, a six-axis force/torque sensor, and other components. The process of robotic unfastening and collecting screws is proposed by using position and force control. Experiments were carried out to validate the proposed method. The results demonstrate that the screws in EV batteries can be automatically identified, located, unfastened, and removed, indicating potential for the proposed method in the disassembly of EoL EV batteries. Full article
(This article belongs to the Special Issue Intelligent Human–Robot Interaction: 4th Edition)
Show Figures

Figure 1

21 pages, 3373 KB  
Article
RBF Neural Network-Based Anti-Disturbance Trajectory Tracking Control for Wafer Transfer Robot Under Variable Payload Conditions
by Bo Xu, Luyao Yuan and Hao Yu
Appl. Sci. 2025, 15(16), 9193; https://doi.org/10.3390/app15169193 - 21 Aug 2025
Viewed by 240
Abstract
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal [...] Read more.
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal that nonlinear load inertia growth increases joint reaction forces and diminishes trajectory precision. The RBFNN dynamically approximates system nonlinearities, while an adaptive law updates its weights online to compensate for load variations and external disturbances. Secondly, an event-triggered mechanism is introduced, updating the controller only when specific conditions are met, thereby reducing communication burden and actuator wear. Subsequently, Lyapunov stability analysis proves the closed-loop system is Uniformly Ultimately Bounded (UUB) and prevents Zeno behavior. Finally, simulations on a planar 2-DOF manipulator demonstrate significantly enhanced trajectory tracking accuracy under variable loads. Critically, the adaptive neural network control method reduces trajectory tracking error by 50% and decreases controller update frequency by 84.7%. This work thus provides both theoretical foundations and engineering references for high-precision wafer transfer robot control. Full article
Show Figures

Figure 1

23 pages, 3201 KB  
Review
Control Algorithms in Robot-Assisted Rehabilitation: A Systematic Review
by Ovidiu Liviu Rad and Cornel Brisan
Appl. Sci. 2025, 15(16), 9184; https://doi.org/10.3390/app15169184 - 21 Aug 2025
Viewed by 287
Abstract
Robotic-assisted rehabilitation has become an essential field in supporting the functional recovery of patients with neurological, musculoskeletal or post-traumatic conditions. This paper provides a systematic and applicative analysis of the control algorithms used in robotic rehabilitation systems, with a focus on the functional [...] Read more.
Robotic-assisted rehabilitation has become an essential field in supporting the functional recovery of patients with neurological, musculoskeletal or post-traumatic conditions. This paper provides a systematic and applicative analysis of the control algorithms used in robotic rehabilitation systems, with a focus on the functional classification: position control, force, impedance, adaptive, artificial intelligence-based and hybrid schemes. The characteristics of each type of control, clinical applications, advantages and technical limitations are discussed in detail, illustrated by block diagrams and comparative graphs. The paper also includes a synthesis of existing commercial systems, a multi-criteria evaluation of the performance of the algorithms and an analysis of emerging trends in the recent literature (2020–2024). Current challenges regarding sensor integration, system standardization, real-time clinical feasibility and the applicability of brain–machine interfaces or adaptive myoelectric prostheses are discussed. The results obtained can support the development of efficient, safe and personalized solutions in the field of robotic rehabilitation. Full article
Show Figures

Figure 1

19 pages, 7519 KB  
Article
A Shared Control Approach to Robot-Assisted Cataract Surgery Training for Novice Surgeons
by Balint Varga and Michael Poncelet
Sensors 2025, 25(16), 5165; https://doi.org/10.3390/s25165165 - 20 Aug 2025
Viewed by 233
Abstract
This paper proposes a novel virtual-fixtures-based shared control concept for eye surgery systems focusing on cataract procedures, one of the most common ophthalmic surgeries. Current research on haptic force feedback aims to enhance manipulation capabilities by integrating teleoperated medical robots. Our proposed concept [...] Read more.
This paper proposes a novel virtual-fixtures-based shared control concept for eye surgery systems focusing on cataract procedures, one of the most common ophthalmic surgeries. Current research on haptic force feedback aims to enhance manipulation capabilities by integrating teleoperated medical robots. Our proposed concept utilizes teleoperated medical robots to improve the training of young surgeons by providing haptic feedback during cataract operations based on geometrical virtual fixtures. The core novelty of our concept is the active guidance to the incision point generated directly from the geometrical representation of the virtual fixtures, and, therefore, it is computationally efficient. Furthermore, novel virtual fixtures are introduced for the posterior corneal surface of the eye during the cataract operation. The concept is tested in a human-in-the-loop pilot study, where non-medical engineering students participated. The results indicate that the proposed shared control system is helpful for the test subjects. Therefore, the inclusion of the proposed concept can be beneficial for the training of non-experienced surgeons. Full article
(This article belongs to the Special Issue Advanced Sensing for Surgical Robots and Devices)
Show Figures

Figure 1

17 pages, 10583 KB  
Article
Characterization and Optimization of a Differential System for Underactuated Robotic Grippers
by Sebastiano Angelella, Virginia Burini, Silvia Logozzo and Maria Cristina Valigi
Machines 2025, 13(8), 717; https://doi.org/10.3390/machines13080717 - 12 Aug 2025
Viewed by 294
Abstract
This paper delves into the potential of an optimized differential system within an underactuated tendon-driven soft robotic gripper, a crucial component that enhances the grasping abilities by allowing fingers to secure objects adapting to different shapes and geometries. The original version of the [...] Read more.
This paper delves into the potential of an optimized differential system within an underactuated tendon-driven soft robotic gripper, a crucial component that enhances the grasping abilities by allowing fingers to secure objects adapting to different shapes and geometries. The original version of the differential system exhibited a certain degree of deformability, which introduced some functional advantages. In particular, its flexibility allowed for more delicate grasping operations by acting as a force reducer and enabling a more gradual application of contact forces, an essential feature when handling fragile objects. Nonetheless, while these benefits are noteworthy, a rigid differential remains more effective for achieving firm and secure grasps. The primary goal of this study is to analyze the differential’s performance through FEM simulations and deformation experiments, assessing its structural behavior under various conditions. Additionally, the research explores an innovative differential geometry aimed at striking the ideal balance, ensuring a robust grasp while retaining a controlled degree of deformability. By refining the differential’s design, this study seeks to enhance the efficiency of underactuated soft robotic grippers, ultimately enhancing their capabilities in handling diverse objects ensuring a compliant and secure grasp with optimized efficiency. Full article
Show Figures

Figure 1

29 pages, 12645 KB  
Article
The IoRT-in-Hand: Tele-Robotic Echography and Digital Twins on Mobile Devices
by Juan Bravo-Arrabal, Zhuoqi Cheng, J. J. Fernández-Lozano, Jose Antonio Gomez-Ruiz, Christian Schlette, Thiusius Rajeeth Savarimuthu, Anthony Mandow and Alfonso García-Cerezo
Sensors 2025, 25(16), 4972; https://doi.org/10.3390/s25164972 - 11 Aug 2025
Viewed by 538
Abstract
The integration of robotics and mobile networks (5G/6G) through the Internet of Robotic Things (IoRT) is revolutionizing telemedicine, enabling remote physician participation in scenarios where specialists are scarce, where there is a high risk to them, such as in conflicts or natural disasters, [...] Read more.
The integration of robotics and mobile networks (5G/6G) through the Internet of Robotic Things (IoRT) is revolutionizing telemedicine, enabling remote physician participation in scenarios where specialists are scarce, where there is a high risk to them, such as in conflicts or natural disasters, or where access to a medical facility is not possible. Nevertheless, touching a human safely with a robotic arm in non-engineered or even out-of-hospital environments presents substantial challenges. This article presents a novel IoRT approach for healthcare in or from remote areas, enabling interaction between a specialist’s hand and a robotic hand. We introduce the IoRT-in-hand: a smart, lightweight end-effector that extends the specialist’s hand, integrating a medical instrument, an RGB camera with servos, a force/torque sensor, and a mini-PC with Internet connectivity. Additionally, we propose an open-source Android app combining MQTT and ROS for real-time remote manipulation, alongside an Edge–Cloud architecture that links the physical robot with its Digital Twin (DT), enabling precise control and 3D visual feedback of the robot’s environment. A proof of concept is presented for the proposed tele-robotic system, using a 6-DOF manipulator with the IoRT-in-hand to perform an ultrasound scan. Teleoperation was conducted over 2300 km via a 5G NSA network on the operator side and a wired network in a laboratory on the robot side. Performance was assessed through human subject feedback, sensory data, and latency measurements, demonstrating the system’s potential for remote healthcare and emergency applications. The source code and CAD models of the IoRT-in-hand prototype are publicly available in an open-access repository to encourage reproducibility and facilitate further developments in robotic telemedicine. Full article
Show Figures

Figure 1

26 pages, 2752 KB  
Article
Intelligent Impedance Strategy for Force–Motion Control of Robotic Manipulators in Unknown Environments via Expert-Guided Deep Reinforcement Learning
by Hui Shao, Weishi Hu, Li Yang, Wei Wang, Satoshi Suzuki and Zhiwei Gao
Processes 2025, 13(8), 2526; https://doi.org/10.3390/pr13082526 - 11 Aug 2025
Viewed by 555
Abstract
In robotic force–motion interaction tasks, ensuring stable and accurate force tracking in environments with unknown impedance and time-varying contact dynamics remains a key challenge. Addressing this, the study presents an intelligent impedance control (IIC) strategy that integrates model-based insights with deep reinforcement learning [...] Read more.
In robotic force–motion interaction tasks, ensuring stable and accurate force tracking in environments with unknown impedance and time-varying contact dynamics remains a key challenge. Addressing this, the study presents an intelligent impedance control (IIC) strategy that integrates model-based insights with deep reinforcement learning (DRL) to improve adaptability and robustness in complex manipulation scenarios. The control problem is formulated as a Markov Decision Process (MDP), and the Deep Deterministic Policy Gradient (DDPG) algorithm is employed to learn continuous impedance policies. To accelerate training and improve convergence stability, an expert-guided initialization strategy is introduced based on iterative error feedback, providing a weak-model-based demonstration to guide early exploration. To rigorously assess the impact of contact uncertainties on system behavior, a comprehensive performance analysis is conducted by utilizing a time- and frequency-domain approach, offering deep insights into how impedance modulation shapes both transient dynamics and steady-state accuracy across varying environmental conditions. A high-fidelity simulation platform based on MATLAB (version 2021b) multi-toolbox co-simulation is developed to emulate realistic robotic contact conditions. Quantitative results show that the IIC framework significantly reduces settling time, overshoot, and undershoot under dynamic contact conditions, while maintaining stability and generalization across a broad range of environments. Full article
Show Figures

Figure 1

25 pages, 3724 KB  
Article
Research on Trajectory Tracking Control Method for Wheeled Robots Based on Seabed Soft Slopes on GPSO-MPC
by Dewei Li, Zizhong Zheng, Zhongjun Ding, Jichao Yang and Lei Yang
Sensors 2025, 25(16), 4882; https://doi.org/10.3390/s25164882 - 8 Aug 2025
Viewed by 320
Abstract
With advances in underwater exploration and intelligent ocean technologies, wheeled underwater mobile robots are increasingly used for seabed surveying, engineering, and environmental monitoring. However, complex terrains centered on seabed soft slopes—characterized by wheel slippage due to soil deformability and force imbalance arising from [...] Read more.
With advances in underwater exploration and intelligent ocean technologies, wheeled underwater mobile robots are increasingly used for seabed surveying, engineering, and environmental monitoring. However, complex terrains centered on seabed soft slopes—characterized by wheel slippage due to soil deformability and force imbalance arising from slope variations—pose challenges to the accuracy and robustness of trajectory tracking control systems. Model predictive control (MPC), known for predictive optimization and constraint handling, is commonly used in such tasks. Yet, its performance relies on manually tuned parameters and lacks adaptability to dynamic changes. This study introduces a hybrid grey wolf-particle swarm optimization (GPSO) algorithm, combining the exploratory ability of a grey wolf optimizer with the rapid convergence of particle swarm optimization. The GPSO algorithm adaptively tunes MPC parameters online to improve control. A kinematic model of a four-wheeled differential-drive robot is developed, and an MPC controller using error-state linearization is implemented. GPSO integrates hierarchical leadership and chaotic disturbance strategies to enhance global search and local convergence. Simulation experiments on circular and double-lane-change trajectories show that GPSO-MPC outperforms standard MPC and PSO-MPC in tracking accuracy, heading stability, and control smoothness. The results confirm the improved adaptability and robustness of the proposed method, supporting its effectiveness in dynamic underwater environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

25 pages, 11507 KB  
Article
Accurate EDM Calibration of a Digital Twin for a Seven-Axis Robotic EDM System and 3D Offline Cutting Path
by Sergio Tadeu de Almeida, John P. T. Mo, Cees Bil, Songlin Ding and Chi-Tsun Cheng
Micromachines 2025, 16(8), 892; https://doi.org/10.3390/mi16080892 - 31 Jul 2025
Viewed by 345
Abstract
The increasing utilization of hard-to-cut materials in high-performance sectors such as aerospace and defense has pushed manufacturing systems to be flexible in processing large workpieces with a wide range of materials while also delivering high precision. Recent studies have highlighted the potential of [...] Read more.
The increasing utilization of hard-to-cut materials in high-performance sectors such as aerospace and defense has pushed manufacturing systems to be flexible in processing large workpieces with a wide range of materials while also delivering high precision. Recent studies have highlighted the potential of integrating industrial robots (IRs) with electric discharge machining (EDM) to create a non-contact, low-force manufacturing platform, particularly suited for the accurate machining of hard-to-cut materials into complex and large-scale monolithic components. In response to this potential, a novel robotic EDM system has been developed. However, the manual programming and control of such a convoluted system present a significant challenge, often leading to inefficiencies and increased error rates, creating a scenario where the EDM process becomes unfeasible. To enhance the industrial applicability of this robotic EDM technology, this study focuses on a novel methodology to develop and validate a digital twin (DT) of the physical robotic EDM system. The digital twin functions as a virtual experimental environment for tool motion, effectively addressing the challenges posed by collisions and kinematic singularities inherent in the physical system, yet with proven 20-micron EDM gap accuracy. Furthermore, it facilitates a CNC-like, user-friendly offline programming framework for robotic EDM cutting path generation. Full article
Show Figures

Figure 1

22 pages, 1725 KB  
Article
Whole-Body Vision/Force Control for an Underwater Vehicle–Manipulator System with Smooth Task Transitions
by Jie Liu, Guofang Chen, Fubin Zhang and Jian Gao
J. Mar. Sci. Eng. 2025, 13(8), 1447; https://doi.org/10.3390/jmse13081447 - 29 Jul 2025
Viewed by 223
Abstract
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out [...] Read more.
Robots with multiple degrees of freedom (DOFs), such as underwater vehicle–manipulator systems (UVMSs), are expected to optimize system performance by exploiting redundancy with various basic tasks while still fulfilling the primary objective. Multiple tasks for robots, which are expected to be carried out simultaneously with prescribed priorities, can be referred to as sets of tasks (SOTs). In this work, a hybrid vision/force control method with continuous task transitions is proposed for a UVMS to simultaneously track the reference vision and force trajectory during manipulation. Several tasks with expected objectives and specific priorities are established and combined as SOTs in hybrid vision/force tracking. At different stages, various SOTs are carried out with different emphases. A hierarchical optimization-based whole-body control framework is constructed to obtain the solution in a strictly hierarchical fashion. A continuous transition method is employed to mitigate oscillations during the task switching phase. Finally, comparative simulation experiments are conducted and the results verify the improved convergence of the proposed tracking controller for UVMSs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 13994 KB  
Article
A Semi-Autonomous Aerial Platform Enhancing Non-Destructive Tests
by Simone D’Angelo, Salvatore Marcellini, Alessandro De Crescenzo, Michele Marolla, Vincenzo Lippiello and Bruno Siciliano
Drones 2025, 9(8), 516; https://doi.org/10.3390/drones9080516 - 23 Jul 2025
Viewed by 692
Abstract
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, [...] Read more.
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, designed to perform non-destructive in-contact inspections of iron structures. The system is intended to operate in complex and potentially hazardous environments, where autonomous execution is supported by shared-control strategies that include human supervision. A parallel force–impedance control framework is implemented to enable smooth and repeatable contact between a sensor for ultrasonic testing (UT) and the inspected surface. During interaction, the arm applies a controlled push to create a vacuum seal, allowing accurate thickness measurements. The control strategy is validated through repeated trials in both indoor and outdoor scenarios, demonstrating consistency and robustness. The paper also addresses the mechanical and control integration of the complex robotic system, highlighting the challenges and solutions in achieving a responsive and reliable aerial platform. The combination of semi-autonomous control and human-in-the-loop operation significantly improves the effectiveness of inspection tasks in hard-to-reach environments, enhancing both human safety and task performance. Full article
(This article belongs to the Special Issue Unmanned Aerial Manipulation with Physical Interaction)
Show Figures

Figure 1

18 pages, 1696 KB  
Article
Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
by Ming Pi
Appl. Sci. 2025, 15(15), 8126; https://doi.org/10.3390/app15158126 - 22 Jul 2025
Viewed by 329
Abstract
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape [...] Read more.
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape gait trajectory. To eliminate the use of sensors for torque measurement, a disturbance observer was established to estimate the interaction force between the human residual limb and the prosthetic receptacle. The cost function was combined with the interaction force and tracking errors of the joints. We aim to reduce the cost function by minimally changing the control weight of the gait trajectory generated by the Central Pattern Generator (CPG). The control scheme was primarily based on human-in-the-loop optimization to search for a suitable control weight to regenerate the appropriate gait trajectory. To handle the uncertainties and unknown coupling of the motors, an adaptive law was designed to estimate the unknown parameters of the system. Through a stability analysis, the control framework was verified by semi-globally uniformly ultimately bounded stability. Experimental results are discussed, and the effectiveness of the adaptive control framework is demonstrated. In Case 1, the mean error (MEAN) of the tracking performance was 3.6° and 3.3°, respectively. And the minimized mean square errors (MSEs) of the tracking performance were 2.3° and 2.8°, respectively. In Case 2, the mean error (MEAN) of the tracking performance is 2.7° and 3.1°, respectively. And the minimized mean square errors (MSEs) of the tracking performance are 1.8° and 2.4°, respectively. In Case 3, the mean errors (MEANs) of the tracking performance for subject1 and 2 are 2.4°, 2.9°, 3.4°, and 2.2°, 2.8°, 3.1°, respectively. The minimized mean square errors (MSEs) of the tracking performance for subject1 and 2 were 1.6°, 2.3°, 2.6°, and 1.3°, 1.7°, 2.2°, respectively. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

19 pages, 1583 KB  
Article
Modeling, Validation, and Controllability Degradation Analysis of a 2(P-(2PRU–PRPR)-2R) Hybrid Parallel Mechanism Using Co-Simulation
by Qing Gu, Zeqi Wu, Yongquan Li, Huo Tao, Boyu Li and Wen Li
Dynamics 2025, 5(3), 30; https://doi.org/10.3390/dynamics5030030 - 11 Jul 2025
Viewed by 281
Abstract
This work systematically addresses the dual challenges of non-inertial dynamic coupling and kinematic constraint redundancy encountered in dynamic modeling of serial–parallel–serial hybrid robotic mechanisms, and proposes an improved Newton–Euler modeling method with constraint compensation. Taking the Skiing Simulation Platform with 6-DOF as the [...] Read more.
This work systematically addresses the dual challenges of non-inertial dynamic coupling and kinematic constraint redundancy encountered in dynamic modeling of serial–parallel–serial hybrid robotic mechanisms, and proposes an improved Newton–Euler modeling method with constraint compensation. Taking the Skiing Simulation Platform with 6-DOF as the research mechanism, the inverse kinematic model of the closed-chain mechanism is established through GF set theory, with explicit analytical expressions derived for the motion parameters of limb mass centers. Introducing a principal inertial coordinate system into the dynamics equations, a recursive algorithm incorporating force/moment coupling terms is developed. Numerical simulations reveal a 9.25% periodic deviation in joint moments using conventional methods. Through analysis of the mechanism’s intrinsic properties, it is identified that the lack of angular momentum conservation constraints on the end-effector in non-inertial frames leads to system controllability degradation. Accordingly, a constraint compensation strategy is proposed: establishing linearly independent differential algebraic equations supplemented with momentum/angular momentum balance equations for the end platform. Co-Simulation results demonstrate that the optimized model reduces the maximum relative error of actuator joint moments to 0.98%, and maintains numerical stability across the entire configuration space. The constraint compensation framework provides a universal solution for dynamics modeling of complex closed-chain mechanisms, validated through applications in flight simulators and automotive driving simulators. Full article
Show Figures

Figure 1

40 pages, 2250 KB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 1247
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

25 pages, 15912 KB  
Article
Disturbance-Resilient Flatness-Based Control for End-Effector Rehabilitation Robotics
by Soraya Bououden, Brahim Brahmi, Naveed Iqbal, Raouf Fareh and Mohammad Habibur Rahman
Actuators 2025, 14(7), 341; https://doi.org/10.3390/act14070341 - 8 Jul 2025
Viewed by 284
Abstract
Robotic-assisted therapy is an increasingly vital approach for upper-limb rehabilitation, offering consistent, high-intensity training critical to neuroplastic recovery. However, current control strategies often lack robustness against uncertainties and external disturbances, limiting their efficacy in dynamic, real-world settings. Addressing this gap, this study proposes [...] Read more.
Robotic-assisted therapy is an increasingly vital approach for upper-limb rehabilitation, offering consistent, high-intensity training critical to neuroplastic recovery. However, current control strategies often lack robustness against uncertainties and external disturbances, limiting their efficacy in dynamic, real-world settings. Addressing this gap, this study proposes a novel control framework for the iTbot—a 2-DoF end-effector rehabilitation robot—by integrating differential flatness theory with a derivative-free Kalman filter (DFK). The objective is to achieve accurate and adaptive trajectory tracking in the presence of unmeasured dynamics and human–robot interaction forces. The control design reformulates the nonlinear joint-space dynamics into a 0-flat canonical form, enabling real-time computation of feedforward control laws based solely on flat outputs and their derivatives. Simultaneously, the DFK-based observer estimates external perturbations and unmeasured states without requiring derivative calculations, allowing for online disturbance compensation. Extensive simulations across nominal and disturbed conditions demonstrate that the proposed controller significantly outperforms conventional flatness-based control in tracking accuracy and robustness, as measured by reduced mean absolute error and standard deviation. Experimental validation under both simple and repetitive physiotherapy tasks confirms the system’s ability to maintain sub-millimeter Cartesian accuracy and sub-degree joint errors even amid dynamic perturbations. These results underscore the controller’s effectiveness in enabling compliant, safe, and disturbance-resilient rehabilitation, paving the way for broader deployment of robotic therapy in clinical and home-based environments. Full article
Show Figures

Figure 1

Back to TopTop