Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = forage allowance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 5235 KB  
Review
Colletotrichum Species Associated with Alfalfa Anthracnose: An Overview and Historical Perspective
by Vojislav Trkulja, Tanja Vasić, Ranka Milašin, Nenad Trkulja, Slavica Matić, Milan Stević, Sanja Živković and Tatjana Popović Milovanović
Microorganisms 2026, 14(1), 261; https://doi.org/10.3390/microorganisms14010261 - 22 Jan 2026
Viewed by 65
Abstract
Alfalfa anthracnose is an economically significant disease that leads to substantial biomass losses due to stem rot, reduced stand longevity, and a decline in forage nutritional quality. The disease is caused by multiple species within the genus Colletotrichum, including the 14 described [...] Read more.
Alfalfa anthracnose is an economically significant disease that leads to substantial biomass losses due to stem rot, reduced stand longevity, and a decline in forage nutritional quality. The disease is caused by multiple species within the genus Colletotrichum, including the 14 described species: C. gloeosporioides, C. truncatum, C. lindemuthianum, C. destructivum, C. dematium, C. trifolii, C. medicaginis, C. graminicola, C. coccodes, C. sojae, C. spinaciae, C. lini, C. americae-borealis, and C. tofieldiae. A thorough understanding of key aspects of the pathogen’s biology, along with its epidemiology, infection cycle, and accurate disease diagnosis, is essential for the development of sustainable management strategies. Knowledge of these factors allows us to anticipate disease outbreaks, implement timely interventions, and design integrated control measures that reduce reliance on chemical fungicides while maintaining crop productivity and forage quality. Although anthracnose management has traditionally relied on synthetic fungicides, this review synthesizes alternative control strategies to clarify the current state of knowledge and to provide new insights into the development of effective and sustainable approaches for managing Colletotrichum species. Full article
(This article belongs to the Special Issue Diversity of Plant Pathogens)
Show Figures

Figure 1

14 pages, 5613 KB  
Article
Comprehensive Identification and Male-Biased Expression Analysis of Odorant-Binding Protein Genes in the Hawaiian Flower Thrips, Thrips hawaiiensis (Thysanoptera: Thripidae)
by Qingqing Fan, Yanjun Li and Xiaodi Hu
Biology 2026, 15(2), 170; https://doi.org/10.3390/biology15020170 - 17 Jan 2026
Viewed by 164
Abstract
Olfaction is essential for key insect behaviors, such as host-seeking and mating, and is initiated by odorant-binding proteins (OBPs), which bind and transport hydrophobic odors. Thrips hawaiiensis is a major pest that infests the flowers of numerous horticultural crops, yet its chemosensory mechanisms [...] Read more.
Olfaction is essential for key insect behaviors, such as host-seeking and mating, and is initiated by odorant-binding proteins (OBPs), which bind and transport hydrophobic odors. Thrips hawaiiensis is a major pest that infests the flowers of numerous horticultural crops, yet its chemosensory mechanisms remain poorly understood. Now, the availability of its genome assembly allows us to address this gap. To this end, we performed a comprehensive exploration and comparative analysis of its OBP genes. Our genome-wide analysis identified a total of 12 OBP genes in T. hawaiiensis, whereas the repertoire across other published thrips genomes ranges from 10 to 17, a count significantly lower than that in most other insects. Notably, transcriptomic and RT-qPCR analyses revealed consistent male-biased expression of OBPs in T. hawaiiensis, supporting their role in mate-finding and foraging behaviors. Furthermore, we identified 11 chemosensory proteins (CSPs). Transcriptomic and RT-qPCR analyses revealed that these CSPs exhibit an expression pattern similar to that of the OBPs, with over half of the genes showing significantly higher expression in males. This work provides a foundational framework for future functional studies of olfactory proteins, both in T. hawaiiensis and the wider insect community. Full article
(This article belongs to the Special Issue Studies on Insect Genetics and Genomics)
Show Figures

Figure 1

14 pages, 6877 KB  
Article
No Fertilization Is Optimal, but a Low Level of Fertilization Is an Acceptable Compromise for Conserving Lowland Hay Meadows Under Voluntary Agri-Environmental Schemes in Luxembourg
by Julien Piqueray and Arnaud Farinelle
Sustainability 2026, 18(1), 290; https://doi.org/10.3390/su18010290 - 27 Dec 2025
Viewed by 330
Abstract
Temperate grasslands rank among the most diverse ecosystems in the world at small spatial scales. Maintaining species-rich grasslands is therefore essential for biodiversity conservation in Europe. Several EU countries have implemented Agri-Environmental Schemes (AES) designed to preserve grassland biodiversity and support farmers in [...] Read more.
Temperate grasslands rank among the most diverse ecosystems in the world at small spatial scales. Maintaining species-rich grasslands is therefore essential for biodiversity conservation in Europe. Several EU countries have implemented Agri-Environmental Schemes (AES) designed to preserve grassland biodiversity and support farmers in developing their operations in a sustainable manner. While the prohibition of fertilization helps maintain oligotrophic, species-rich grasslands, it remains a stringent requirement that may discourage farmers from enrolling in these schemes. Because hay meadows are mesotrophic habitats, low levels of fertilization could potentially allow the maintenance of satisfactory biodiversity. We compared two AES measures implemented in Luxembourg: P4B (mowing after 15 June, no fertilization) and P3B (mowing after 15 June, fertilization permitted up to 50 kg N ha−1 year−1), the latter aiming to increase forage yield while maintaining acceptable biodiversity levels. Nineteen grassland sites were selected across Luxembourg. Within each site, adjacent delimited experimental plots were managed under P3B (350 kg ha−1 of mineral fertilizer, N14–P9–K24) and P4B (no fertilization). Floristic composition and biomass yield were recorded annually over four years. Fertilization had a negative effect on hay meadow biodiversity and conservation status, resulting in fewer typical species, a reduced dicot-to-grass ratio, and greater cover of nitrophilous species. Nevertheless, most fertilized plots still met the criteria for hay meadows of good to medium conservation status according to Luxembourg’s evaluation framework. Fertilization increased biomass yield by approximately 40% compared with unfertilized plots. We conclude that P4B remains the optimal management option for hay meadows and should be prioritized in areas hosting sensitive species and in the most biodiverse sites. However, P3B represents a pragmatic compromise, maintaining an acceptable level of biodiversity while being more attractive to farmers. Full article
(This article belongs to the Special Issue Sustainable Management: Plant, Biodiversity and Ecosystem)
Show Figures

Figure 1

21 pages, 845 KB  
Review
Adaptation to Stressful Environments in Sheep and Goats: Key Strategies to Provide Food Security to Vulnerable Communities
by Jorge A. Maldonado-Jáquez, Glafiro Torres-Hernández, Gabriela Castillo-Hernández, Lino De La Cruz-Colín, Gerardo Jiménez-Penago, Sandra González-Luna, Liliana Aguilar Marcelino, Pablo Arenas-Báez and Lorenzo Danilo Granados-Rivera
Ruminants 2025, 5(4), 63; https://doi.org/10.3390/ruminants5040063 - 12 Dec 2025
Viewed by 625
Abstract
This narrative review aims to summarize, synthesize, and organize current knowledge on the adaptation of sheep and goats to stressful environments and to discuss how these adaptations contribute to food security in vulnerable communities. A structured search of Web of Science, Scopus, PubMed, [...] Read more.
This narrative review aims to summarize, synthesize, and organize current knowledge on the adaptation of sheep and goats to stressful environments and to discuss how these adaptations contribute to food security in vulnerable communities. A structured search of Web of Science, Scopus, PubMed, and Google Scholar was conducted using combinations of terms related to sheep and goats, harsh environments (e.g., arid and semi-arid regions, heat stress, water restriction, poor-quality forage), and adaptation or resilience, combined with Boolean operators. A total of 1718 research publications were found, of which 86 were retained as the most relevant because they provided direct and detailed evidence on anatomical, physiological, digestive–microbiome, behavioral, and genomic adaptations of sheep and goats to stressful environments. The selected studies describe a wide range of phenotypic and integumentary traits, thermoregulatory and endocrine responses, digestive and microbial adjustments, behavioral strategies, and genomic signatures that, together, allow small ruminants to maintain basic functions, reproduction, and production under conditions of climatic and nutritional stress. Evidence from these studies also highlights how adaptive traits support herd productivity, economic stability of households, and the sustainable use of natural resources in regions where climatic variability and resource scarcity are common. Overall, the synthesis presented here underscores the importance of conserving and strategically using locally adapted sheep and goat breeds, incorporating resilience-related traits into breeding and management programs, and prioritizing further research on genomic, microbiome, and epigenetic mechanisms that underpin adaptation to harsh environments. Full article
(This article belongs to the Special Issue Management of the Impact of Stress on Ruminant Reproduction)
Show Figures

Figure 1

17 pages, 804 KB  
Article
Can We Increase the Drought Tolerance of Perennial Ryegrass (Lolium perenne L.) to Preserve Grassland Ecosystem Services? A Case Study with Three Bulgarian Varieties
by Aneliya Katova, Plamen Marinov-Serafimov, Irena Golubinova, Bogdan Nikolov and Slaveya Petrova
Plants 2025, 14(23), 3704; https://doi.org/10.3390/plants14233704 - 4 Dec 2025
Viewed by 500
Abstract
Lolium perenne L. (perennial ryegrass) has various applications, including as a high-quality forage species for livestock feed; in seed mixtures used for revegetation of eroded or degraded areas as well as for lawns due to its resistance and rapid germination; for erosion control [...] Read more.
Lolium perenne L. (perennial ryegrass) has various applications, including as a high-quality forage species for livestock feed; in seed mixtures used for revegetation of eroded or degraded areas as well as for lawns due to its resistance and rapid germination; for erosion control on slopes and areas with excessive steepness; for phytoremediation of soils contaminated with potentially toxic elements due to its ability to accumulate metals in its tissues; and as a cover crop to improve soil conditions and control erosion. Accordingly, L. perenne provides several ecosystem services, primarily related to soil stability, agriculture, and recreation. Climate change poses challenges for L. perenne, particularly heat and drought stress, which can reduce its yield and alter its geographical distribution. Climate change also impacts the interactions between L. perenne and its environment, affecting aspects like phenology (e.g., flowering time), carbon fixation, and overall resilience. However, the species’ significant genetic and endophyte-related variability may allow for adaptation. The aim of the present study was to assess the drought tolerance of three Bulgarian varieties of L. perenne, namely Harmoniya (diploid), Tetrany, and Tetramis (tetraploids). We performed induced drought stress under laboratory conditions and monitored its effect on plants in the early stages of growth and development. A variety-specific response was found regarding the effect of different concentrations of sucrose on seed germination, primary root and stem elongation (cm), fresh biomass accumulation (g), as well as on seedling vigor index and plant development. Field experiments and yield elements were also used to assess drought susceptibility and sensitivity to stress in a real environment. The tetraploid perennial ryegrass varieties Tetrany and Tetramis showed better germination, growth, and development in laboratory tests and had higher and more stable field productivity under both optimal and stress conditions than the diploid variety Harmoniya. Ploidy was the factor that characterize them as drought-tolerant genotypes under water-limited conditions, and its potential could be used in future breeding programs. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

18 pages, 888 KB  
Article
Nutrient Composition of Autochthonous Beef from Southwest Spain
by Miguel Ángel Cantarero-Aparicio, Manuel García-Infante, Carlos Álvarez, Oliva Polvillo, José Manuel Perea and Alberto Horcada
Foods 2025, 14(22), 3961; https://doi.org/10.3390/foods14223961 - 19 Nov 2025
Viewed by 564
Abstract
The aim of this study was to evaluate the nutritional composition of beef from five autochthonous calving breeds from Southwest Spain (Retinta, Pajuna, Marismeña, Berrenda en Colorado, and Lidia) reared under their traditional production systems. Longissimus dorsi samples were analyzed for pH, fat, [...] Read more.
The aim of this study was to evaluate the nutritional composition of beef from five autochthonous calving breeds from Southwest Spain (Retinta, Pajuna, Marismeña, Berrenda en Colorado, and Lidia) reared under their traditional production systems. Longissimus dorsi samples were analyzed for pH, fat, moisture, ash protein content, mineral composition, fatty acid profile, and volatile compounds. Carcass weights of calves ranged from 108 to 328 kg according to the Spanish market, with significant breed differences in fat (range 2.98–8.41%), moisture (69.47–72.62%), and protein (20.98–23.82%), but not in ash (1.03–1.17%). Sodium levels were below 120 mg/100 g, allowing all breeds to be classified as low-sodium, while phosphorus values supported a high-phosphorus label. The Pajuna, Berrenda en Colorado, and Lidia breeds showed higher levels of beneficial fatty acids such as EPA, DPA, DHA, and CLA, with n-6/n-3 ratios ≤ 4, while Retinta and Marismeña presented higher ratios (6.09 and 5.23, respectively). The breeds from Southwest Spain stand out for their content in ketone, ester, and aromatic hydrocarbon volatile compounds linked to the intake of grass, forage, and food concentrate. These results highlight the favorable nutrient profiles and distinctive traits of Spanish autochthonous cattle breeds, emphasizing their value in sustainable production and conservation programs. Full article
Show Figures

Figure 1

16 pages, 2273 KB  
Article
Can Environmental Conditions Alter the Physiological and Photochemical Plasticity of Cacti (Opuntia and Nopalea) in Semiarid Environments?
by Lady Daiane Costa de Sousa Martins, Alexandre Maniçoba da Rosa Ferraz Jardim, Luciana Sandra Bastos de Souza, Lara Rosa de Lima e Silva, Wagner Martins dos Santos, Márcia Bruna Marim de Moura, Wilma Roberta dos Santos, Adriano Nascimento Simões, Sérgio Luiz Ferreira-Silva, Hugo Rafael Bentzen Santos, João L. M. P. de Lima and Thieres George Freire da Silva
Environments 2025, 12(11), 418; https://doi.org/10.3390/environments12110418 - 4 Nov 2025
Cited by 1 | Viewed by 924
Abstract
Cacti of the genera Opuntia and Nopalea exhibit morphophysiological and biochemical characteristics that favor their adaptation to semiarid environments, such as crassulacean acid metabolism (CAM) and cladode succulence. These strategies reduce water loss and allow the maintenance of photosynthesis under stress conditions. In [...] Read more.
Cacti of the genera Opuntia and Nopalea exhibit morphophysiological and biochemical characteristics that favor their adaptation to semiarid environments, such as crassulacean acid metabolism (CAM) and cladode succulence. These strategies reduce water loss and allow the maintenance of photosynthesis under stress conditions. In this study, we evaluated the seasonal variation in the physiological and photochemical responses of forage cactus clones grown in semiarid environments, considering the rainy, dry, and transition seasons. The net photosynthetic rate (Pn) and chlorophyll fluorescence parameters varied significantly as a function of water availability and microclimatic conditions. We found higher CO2 assimilation rates during the rainy season, while the dry season resulted in a strong impairment of photosynthetic activity, with reductions of 65% in stomatal conductance, 37% in transpiration, 20% in maximum quantum efficiency of photosystem II, and 19% in the electron transport rate. Furthermore, during these periods, we observed an increase in initial fluorescence and non-photochemical dissipation, demonstrating the activation of photoprotective mechanisms against excess light energy. During the transition seasons, the cacti exhibited rapid adjustments in gas exchange and energy dissipation, indicating the adaptive plasticity of CAM pathway. The MIU (Nopalea cochenillifera (L.) Salm-Dyck), OEM (Opuntia stricta (Haw.) Haw.), and IPA (Nopalea cochenillifera (L.) Salm-Dyck) clones demonstrated greater resilience, maintaining greater stability in Pn, instantaneous water use efficiency, and photochemical parameters during the drought. In contrast, the OEA (Opuntia undulata Griffiths) clone showed high sensitivity to water and heat stress, with marked reductions in physiological and photochemical performance. In summary, the photosynthetic efficiency and chlorophyll fluorescence of CAM plants result from the interaction between water availability, air temperature, radiation, and genotypic traits. This study provides a new scientific basis for exploring the effects of environmental conditions on the carbon and biochemical metabolism of cacti grown in a semiarid environment. Full article
Show Figures

Figure 1

30 pages, 393 KB  
Review
Alpaca (Vicugna pacos) Husbandry and Their Welfare
by Renata Pilarczyk, Małgorzata Bąkowska, Bogumiła Pilarczyk, Agnieszka Tomza-Marciniak, Beata Seremak, Jan Udała, Paulius Matusevičius and Ramutė Mišeikienė
Animals 2025, 15(21), 3092; https://doi.org/10.3390/ani15213092 - 24 Oct 2025
Viewed by 1293
Abstract
A key diagnostic tool in breeding practice is systematic observation: by identifying abnormalities in natural behaviour, it can highlight early signs of reduced welfare or physical and mental health issues in livestock and other animals. The aim of this paper is to review [...] Read more.
A key diagnostic tool in breeding practice is systematic observation: by identifying abnormalities in natural behaviour, it can highlight early signs of reduced welfare or physical and mental health issues in livestock and other animals. The aim of this paper is to review current literature to provide a detailed analysis of the factors affecting the physical and mental health of alpacas (Vicugna pacos) with regard to their husbandry method. It analyses various behavioural patterns such as stress reactions to strangers, isolation and grooming, as well as social interactions (hierarchy, bonding, affiliative and aggressive behaviour), reproductive activity (courtship, copulation, partner rejection), and resting and foraging rhythms. It also discusses the influence of socialisation on human–animal relationships and the role of the environment, and its enrichment, in proper behavioural functioning. It also examines the significant role played by nutrition and the environment in ensuring alpaca welfare, and how it can be maintained during grooming and training. It pays special attention to the use of behavioural tests to assess the level of trust and tameness in alpacas. Systematic behaviour observation allows a quick response to deteriorating welfare, thus facilitating more efficient herd management and reducing the risk of more serious health and behavioural problems. Full article
(This article belongs to the Section Animal Welfare)
21 pages, 2281 KB  
Article
Path Optimization for Cluster Order Picking in Warehouse Robotics Using Hybrid Symbolic Control and Bio-Inspired Metaheuristic Approaches
by Mete Özbaltan, Serkan Çaşka, Merve Yıldırım, Cihat Şeker, Faruk Emre Aysal, Hazal Su Bıçakcı Yeşilkaya, Murat Demir and Emrah Kuzu
Biomimetics 2025, 10(10), 657; https://doi.org/10.3390/biomimetics10100657 - 1 Oct 2025
Viewed by 938
Abstract
In this study, we propose an architectural model for path optimization in cluster order picking within warehouse robotics, utilizing a hybrid approach that combines symbolic control and metaheuristic techniques. Among the optimization strategies, we incorporate bio-inspired metaheuristic algorithms such as the Walrus Optimization [...] Read more.
In this study, we propose an architectural model for path optimization in cluster order picking within warehouse robotics, utilizing a hybrid approach that combines symbolic control and metaheuristic techniques. Among the optimization strategies, we incorporate bio-inspired metaheuristic algorithms such as the Walrus Optimization Algorithm (WOA), Puma Optimization Algorithm (POA), and Flying Foxes Algorithm (FFA), which are grounded in behavioral models observed in nature. We consider large-scale warehouse robotic systems, partitioned into clusters. To manage shared resources between clusters, the set of clusters is first formulated as a symbolic control design task within a discrete synthesis framework. Subsequently, the desired control goals are integrated into the model, encoded using parallel synchronous dataflow languages; the resulting controller, derived using our safety-focused and optimization-based synthesis approach, serves as the manager for the cluster. Safety objectives address the rigid system behaviors, while optimization objectives focus on minimizing the traveled path of the warehouse robots through the constructed cost function. The metaheuristic algorithms contribute at this stage, drawing inspiration from real-world animal behaviors, such as walruses’ cooperative movement and foraging, pumas’ territorial hunting strategies, and flying foxes’ echolocation-based navigation. These nature-inspired processes allow for effective solution space exploration and contribute to improving the quality of cluster-level path optimization. Our hybrid approach, integrating symbolic control and metaheuristic techniques, demonstrates significantly higher performance advantage over existing solutions, with experimental data verifying the practical effectiveness of our approach. Our proposed algorithm achieves up to 3.01% shorter intra-cluster paths compared to the metaheuristic algorithms, with an average improvement of 1.2%. For the entire warehouse, it provides up to 2.05% shorter paths on average, and even in the worst case, outperforms competing metaheuristic methods by 0.28%, demonstrating its consistent effectiveness in path optimization. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications 2025)
Show Figures

Figure 1

10 pages, 458 KB  
Article
Preliminary Investigation of Nitrogen Rate Influence on Irrigated Bermudagrass Forage Production
by Bronc Finch and Lance Blythe
Nitrogen 2025, 6(4), 88; https://doi.org/10.3390/nitrogen6040088 - 1 Oct 2025
Viewed by 495
Abstract
Bermudagrass (Cynodon dactylon) forage production recommendations are often developed in natural environments with available water limitations, often resulting in highly variable responses and lower average responses. As farmland ownership changes and agriculture and irrigation technologies become more affordable the amount of [...] Read more.
Bermudagrass (Cynodon dactylon) forage production recommendations are often developed in natural environments with available water limitations, often resulting in highly variable responses and lower average responses. As farmland ownership changes and agriculture and irrigation technologies become more affordable the amount of irrigated hay production has increased. While much of the agronomic management does not differ between rain-fed and irrigated environments, nutrient use and uptake dynamics may. This requires a reevaluation and potential adjustment of current recommendations to allow for increased yield potential of irrigated production systems without detrimental impacts on the system. The objective of this study was to identify the need for further investigation of nitrogen application rates for forage bermudagrass production under irrigated conditions. Nitrogen applications of 0 to 280 kg N ha−1, in 56 kg increments, were applied at spring green-up and following the first and second harvests. Dry matter biomass, crude protein, and total digestible nutrients increased with increasing nitrogen application rate, while yield and profit maximizing rates both exceeded the typical recommended rate for bermudagrass hay production. The responses noted for increased nitrogen application rates indicate the need for further investigation of N requirements of non-moisture-limited hay production. Full article
Show Figures

Figure 1

46 pages, 2758 KB  
Article
Swallow Search Algorithm (SWSO): A Swarm Intelligence Optimization Approach Inspired by Swallow Bird Behavior
by Farah Sami Khoshaba, Shahab Wahhab Kareem and Roojwan Sc Hawezi
Computers 2025, 14(9), 345; https://doi.org/10.3390/computers14090345 - 22 Aug 2025
Viewed by 1392
Abstract
Swarm Intelligence (SI) algorithms were applied widely in solving complex optimization problems because they are simple, flexible, and efficient. The current paper proposes a new SI algorithm, which is based on the bird-like actions of swallows, which have highly synchronized behaviors of foraging [...] Read more.
Swarm Intelligence (SI) algorithms were applied widely in solving complex optimization problems because they are simple, flexible, and efficient. The current paper proposes a new SI algorithm, which is based on the bird-like actions of swallows, which have highly synchronized behaviors of foraging and migration. The optimization algorithm (SWSO) makes use of these behaviors to boost the ability of exploration and exploitation in the optimization process. Unlike other birds, swallows are known to be so precise when performing fast directional alterations and making intricate aerial acrobatics during foraging. Moreover, the flight patterns of swallows are very efficient; they have extensive capabilities to transition between flapping and gliding with ease to save energy over long distances during migration. This allows instantaneous changes of wing shape variations to optimize performance in any number of flying conditions. The model used by the SWSO algorithm combines these biologically inspired flight dynamics into a new computational model that is aimed at enhancing search performance in rugged terrain. The design of the algorithm simulates the swallow’s social behavior and energy-saving behavior, converting it into exploration, exploitation, control mechanisms, and convergence control. In order to verify its effectiveness, (SWSO) is applied to many benchmark problems, such as unimodal, multimodal, fixed-dimension functions, and a benchmark CEC2019, which consists of some of the most widely used benchmark functions. Comparative tests are conducted against more than 30 metaheuristic algorithms that are regarded as state-of-the-art, developed so far, including PSO, MFO, WOA, GWO, and GA, among others. The measures of performance included best fitness, rate of convergence, robustness, and statistical significance. Moreover, the use of (SWSO) in solving real-life engineering design problems is used to prove (SWSO)’s practicality and generality. The results confirm that the proposed algorithm offers a competitive and reliable solution methodology, making it a valuable addition to the field of swarm-based optimization. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Graphical abstract

19 pages, 673 KB  
Article
Real-Time Dry Matter Prediction in Whole-Plant Corn Forage and Silage Using Portable Near-Infrared Spectroscopy
by Matheus Rebouças Pupo, Evan Cole Diepersloot, Eduardo Marostegan de Paula, João Ricardo Rebouças Dórea, Lucas Ghedin Ghizzi and Luiz Felipe Ferraretto
Animals 2025, 15(16), 2349; https://doi.org/10.3390/ani15162349 - 11 Aug 2025
Cited by 1 | Viewed by 1005
Abstract
Portable near-infrared reflectance spectroscopy (NIRS) offers the opportunity of a rapid measurement of forage dry matter concentration, allowing producers to make faster adjustments in real time. This study compared dry matter (DM) concentration predictions of three units of a portable near-infrared reflectance spectrometer [...] Read more.
Portable near-infrared reflectance spectroscopy (NIRS) offers the opportunity of a rapid measurement of forage dry matter concentration, allowing producers to make faster adjustments in real time. This study compared dry matter (DM) concentration predictions of three units of a portable near-infrared reflectance spectrometer (pNIRS) with conventional forced-air oven drying (48 h at 60 °C) using corn forage and silage samples. Moreover, a common on-farm method (Koster tester) was also compared. The reflectance curve used by pNIRS to predict DM was obtained by scanning WPCS samples and developed by SciO. A total of 113 whole-plant corn forage (WPCF) and 27 whole-plant corn silage (WPCS) samples from 66 corn hybrids were obtained from three separate experiments conducted between 2018 and 2019. These three experiments were completely independent of each other, with sample collections over different periods. In Experiment 1, all treatments were tested in WPCF, and the DM concentration of the forced-air oven differed from Koster testers (35.4 vs. 34.3% DM, on average, respectively) and all three pNIRS units (35.4 vs. 30.7% DM, on average, respectively), with no differences among pNIRS. All treatments were positively correlated with the forced-air oven treatment DM values. Experiment 2 evaluated the Koster tester and pNIRS in WPCF on farms, and the Koster tester differed from pNIRS (37.2 vs. 33.3% DM, on average, respectively) treatments. All pNIRS were positively correlated with Koster tester treatment. In Experiment 3, all treatments were tested in WPCS, and the DM concentration of the forced-air oven was greater than other treatments (35.3 vs. 32.8% DM, on average, respectively). Overall, Koster tester predictions for both Experiments 1 and 3 were better correlated with the forced-air oven than pNIRS. Additionally, pNIRS showed a lower mean bias, although low coefficients of determination and concordance correlation were observed in Experiment 3 compared to Experiments 1 and 2, which might be related to the prediction curve. Further calibrations of the predictive curve with forage samples would be needed to reasonably estimate the DM concentration of WPCF, whereas a greater number of samples could account for the variations in WPCS due to large heterogeneity in particle composition (e.g., leaves, stem, and kernel), size, and distribution. Full article
(This article belongs to the Special Issue Advances in Nutrition and Feeding Strategies for Dairy Cows)
Show Figures

Figure 1

10 pages, 246 KB  
Article
Milk Production and Enteric Methane Emissions in Dairy Cows Grazing Annual Ryegrass Alone or Intercropped with Forage Legumes
by Larissa Godeski Moreira, Tiago Celso Baldissera, Chrystian Jassanã Cazarotto, Maria Isabel Martini, Renata da Rosa Dornelles and Henrique M. N. Ribeiro-Filho
Animals 2025, 15(16), 2329; https://doi.org/10.3390/ani15162329 - 8 Aug 2025
Viewed by 786
Abstract
This study evaluated the effects of reduced nitrogen fertilization and the intercropping of annual ryegrass (Lolium multiflorum Lam.) with forage legumes—common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.)—on milk production and enteric methane emissions in grazing dairy [...] Read more.
This study evaluated the effects of reduced nitrogen fertilization and the intercropping of annual ryegrass (Lolium multiflorum Lam.) with forage legumes—common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.)—on milk production and enteric methane emissions in grazing dairy cows. Twelve Holstein × Jersey cows were assigned to a crossover design involving two treatments: ryegrass monoculture (RG) or ryegrass—legume mixture (RG + Leg). Methane emissions were measured using GreenFeed systems; grazing behavior, milk yield and composition, and organic matter digestibility were also assessed. Legume inclusion contributed ~9% of the pre-grazing biomass, and cows grazing RG + Leg pastures had lower herbage mass (−214 kg DM/ha) and lower herbage allowance (−6 kg DM/cow/day) than cows on monoculture ryegrass. Energy-corrected milk (ECM), methane emissions (g/day and g/kg ECM), and grazing behavior were not significantly affected by treatment. These results suggest that, under subtropical grazing conditions, reducing nitrogen fertilization combined with the modest inclusion of vetch and red clover does not mitigate enteric methane emissions nor enhance animal performance. Enhanced strategies to increase legume proportion in mixed swards are needed to unlock their potential for sustainable intensification of pasture-based dairy systems. Full article
(This article belongs to the Section Animal System and Management)
22 pages, 2898 KB  
Article
Genetic Variability and Trait Correlations in Lotus corniculatus L. as a Basis for Sustainable Forage Breeding
by Cristian Bostan, Nicolae Marinel Horablaga, Marius Boldea, Emilian Onișan, Christianna Istrate-Schiller, Dorin Rechitean, Luminita Cojocariu, Alina Laura Agapie, Adina Horablaga, Ioan Sarac, Sorina Popescu, Petru Rain and Ionel Samfira
Sustainability 2025, 17(15), 7007; https://doi.org/10.3390/su17157007 - 1 Aug 2025
Viewed by 1035
Abstract
Lotus corniculatus L. is a valuable fodder legume, recognized for its ecological adaptability and high potential for production and fodder quality. In this study, 18 genotypes collected from wild flora were analyzed to highlight genetic variability and facilitate the selection of genotypes with [...] Read more.
Lotus corniculatus L. is a valuable fodder legume, recognized for its ecological adaptability and high potential for production and fodder quality. In this study, 18 genotypes collected from wild flora were analyzed to highlight genetic variability and facilitate the selection of genotypes with superior potential. The collection area was in the western part of Romania and featured a diverse topography, including parts of the Banat Plain, the Banat Hills, and the Southern and Western Carpathians. The genotypes selected from the wild flora were cultivated and evaluated for morpho-productive and forage quality traits, including pod weight, average number of seeds/pods, green mass production, and protein percentage. PCA highlighted the main components explaining the variability, and K-means clustering allowed for the identification of groups of genotypes with similar performances. ANOVA showed statistically significant differences (p < 0.001) for all traits analyzed. According to the results, genotypes LV-LC-3, LV-LC-4, LV-LC-6, and LV-LC-16 showed high productive potential and were highlighted as the most valuable for advancing in the breeding program. The moderate relationships between traits confirm the importance of integrated selection. The identified genetic variability and selected genotypes support the implementation of effective breeding strategies to obtain high-performance Lotus corniculatus L., adapted to local soil and climate conditions and with a superior forage yield. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 253 KB  
Perspective
Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA
by Liliane Severino da Silva
Crops 2025, 5(4), 42; https://doi.org/10.3390/crops5040042 - 11 Jul 2025
Cited by 1 | Viewed by 1799
Abstract
Forages are the primary feed source for livestock production systems due to their diversity of adapted species and lower production costs. Forage-based livestock operations are complex systems across climates, soil types, genetics, and production systems. Therefore, increasing the resilience of forage ecosystems requires [...] Read more.
Forages are the primary feed source for livestock production systems due to their diversity of adapted species and lower production costs. Forage-based livestock operations are complex systems across climates, soil types, genetics, and production systems. Therefore, increasing the resilience of forage ecosystems requires a comprehensive approach to assess and understand the conditions of each system while considering its needs, goals, and resources. In the southeastern USA, favorable climatic conditions allow for the incorporation of annual forage species into perennial stands to extend the grazing season. Adopting management strategies that support forage biodiversity and nutrients, and land use efficiency are ways to improve sustainable production intensification of forage ecosystems. Additionally, providing proper access to education and knowledge transfer for current and future generations is essential to guarantee the success and longevity of the livestock industry. This review provides an overview of key issues related to the climate and economic resilience of forage–livestock ecosystems and the role of agricultural education and knowledge transfer in shaping sustainable ecosystems. Full article
Back to TopTop