Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = food waste valorisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 674 KiB  
Article
Oil Extraction Systems Influence the Techno-Functional and Nutritional Properties of Pistachio Processing By-Products
by Rito J. Mendoza-Pérez, Elena Álvarez-Olmedo, Ainhoa Vicente, Felicidad Ronda and Pedro A. Caballero
Foods 2025, 14(15), 2722; https://doi.org/10.3390/foods14152722 - 4 Aug 2025
Viewed by 186
Abstract
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) [...] Read more.
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) systems, combined with pretreatment at 25 °C and 60 °C. The extraction method significantly influenced flour’s characteristics, underscoring the need to tailor processing conditions to the specific technological requirements of each food application. HP-derived flours presented lighter colour, greater tocopherol content, and higher water absorption capacity (up to 2.75 g/g), suggesting preservation of hydrophilic proteins. SSP-derived flours showed higher concentration of protein (44 g/100 g), fibre (12 g/100 g), and minerals, and improved emulsifying properties, enhancing their suitability for emulsified products. Pretreatment at 25 °C enhanced functional properties such as swelling power (~7.0 g/g) and water absorption index (~5.7 g/g). The SSP system achieved the highest oil extraction yield, with no significant effect of pretreatment temperature. The oils extracted showed high levels of unsaturated fatty acids, particularly oleic acid (~48% of ω-9), highlighting their nutritional and industrial value. The findings support the valorisation of pistachio oil extraction by-products as functional food ingredients, offering a promising strategy for reducing food waste and promoting circular economy approaches in the agri-food sector. Full article
Show Figures

Figure 1

25 pages, 1919 KiB  
Article
Valorisation of Beetroot Peel for the Development of Nutrient-Enriched Dehydrated Apple Snacks
by Ioana Buțerchi, Liliana Ciurlă, Iuliana-Maria Enache, Antoanela Patraș, Gabriel-Ciprian Teliban and Liviu-Mihai Irimia
Foods 2025, 14(15), 2560; https://doi.org/10.3390/foods14152560 - 22 Jul 2025
Viewed by 388
Abstract
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of [...] Read more.
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of dehydrated apple snacks. Five experimental formulations of apple slices were developed: dipped in 5% RBPP in water, dipped in 10% RBPP in water, dipped in 5% RBPP in 50% lemon juice, dipped in 10% RBPP in 50% lemon juice all seasoned with cinnamon powder, and a control formulation. The biochemical analysis showed that the total phenolic content (2780.01 ± 68.38 mg GAE/100 g DM) and antioxidant activity of apple snacks significantly increased (503.96 ± 1.83 µmol TE/g DM). Sensory evaluation indicated that snacks with beetroot peel powder and lemon juice achieved the highest scores in colour, flavour, and acceptability. These results demonstrate that the valorisation of beetroot peel has the potential to reduce agro-industrial waste and also enhance the nutritional and functional quality of apple snacks. It is recommended that beetroot peel be further explored as a cost-effective natural ingredient to develop healthier, value-added snack products within a circular economy framework. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

28 pages, 2403 KiB  
Review
Biowaste Valorisation and Its Possible Perspectives Within Sustainable Food Chain Development
by Simona Gavrilaș, Mirabela Raț and Florentina-Daniela Munteanu
Processes 2025, 13(7), 2085; https://doi.org/10.3390/pr13072085 - 1 Jul 2025
Cited by 1 | Viewed by 514
Abstract
Agri-food waste management poses a growing challenge in the pursuit of sustainable development. This bibliographic review analyses the scientific literature from 2014 to 2025 to examine current methods of agro-waste valorisation and the application of circular-economy principles in the transformation of biological waste [...] Read more.
Agri-food waste management poses a growing challenge in the pursuit of sustainable development. This bibliographic review analyses the scientific literature from 2014 to 2025 to examine current methods of agro-waste valorisation and the application of circular-economy principles in the transformation of biological waste into valuable resources. Special attention is given to nanofibers—particularly nanocellulose—and other high-value biocomponents. The review assesses these recovery practices’ economic, ecological, and health-related impacts and the relevant barriers to implementation. Potential application domains are discussed, and estimations of waste quantities and future trends are provided. The findings highlight the importance of investment in sustainable technologies and increased stakeholder awareness in efforts to optimize agri-food waste valorisation and support the transition to a more sustainable agricultural sector. Full article
(This article belongs to the Special Issue Advances in Waste Management and Treatment of Biodegradable Waste)
Show Figures

Figure 1

24 pages, 1984 KiB  
Article
Recent Developments, Challenges, and Environmental Benefits of Using Hermetia illucens for Bioenergy Production Within a Circular Economy Approach
by Luana Bataglia, Antonio Conversano, Daniele Di Bona, Davide Sogni, Diego Voccia, Emanuele Mazzoni and Lucrezia Lamastra
Energies 2025, 18(11), 2826; https://doi.org/10.3390/en18112826 - 29 May 2025
Viewed by 754
Abstract
This study proposes a novel integrated biorefinery approach that combines Hermetia illucens (Black Soldier Fly) larvae treatment, anaerobic digestion (AD), and hydrothermal carbonization (HTC) to enhance the valorisation of fat-rich food residues. The process was designed to improve biogas yields while mitigating the [...] Read more.
This study proposes a novel integrated biorefinery approach that combines Hermetia illucens (Black Soldier Fly) larvae treatment, anaerobic digestion (AD), and hydrothermal carbonization (HTC) to enhance the valorisation of fat-rich food residues. The process was designed to improve biogas yields while mitigating the inhibitory effects of lipid accumulation in AD systems. Results from larval bioconversion showed effective fat removal and a promising potential for protein and biomass valorisation. Downstream integration with AD and HTC enabled thermal self-sufficiency, enhanced energy recovery, and improved digestate dewaterability. Additionally, HTC process water recirculation to the AD unit was evaluated, considering its acidic nature and impact on biomethane production. A thermally integrated process flow was proposed, enabling efficient heat exchange and reduced external energy input. The overall system allows for multi-product recovery—including biogas, hydrochar, and larval biomass—offering a sustainable pathway for circular bioeconomy applications. This study illustrates the feasibility of a synergetic process chain that maximises energy recovery and resource efficiency from food industry waste streams. Full article
Show Figures

Figure 1

1 pages, 131 KiB  
Retraction
RETRACTED: Mohammadhosseini et al. Towards Sustainable Concrete Composites through Waste Valorisation of Plastic Food Trays as Low-Cost Fibrous Materials. Sustainability 2021, 13, 2073
by Hossein Mohammadhosseini, Rayed Alyousef and Mahmood Md. Tahir
Sustainability 2025, 17(9), 3964; https://doi.org/10.3390/su17093964 - 28 Apr 2025
Viewed by 317
Abstract
The journal retracts the article “Towards Sustainable Concrete Composites through Waste Valorisation of Plastic Food Trays as Low-Cost Fibrous Materials” [...] Full article
18 pages, 1575 KiB  
Article
Retrieval of Polyphenols Using Aqueous Two-Phase Systems Based on Ethyl Lactate and Organic Salts
by Gonçalo Perestrelo, Pedro Velho and Eugénia A. Macedo
Molecules 2025, 30(7), 1532; https://doi.org/10.3390/molecules30071532 - 30 Mar 2025
Viewed by 610
Abstract
Food waste remains a critical global concern, with approximately one third of all food produced being ultimately discarded. Therefore, it is urgent to develop new techniques for the effective repurpose of waste. Aqueous two-phase systems (ATPSs) stand out as a simple and biocompatible [...] Read more.
Food waste remains a critical global concern, with approximately one third of all food produced being ultimately discarded. Therefore, it is urgent to develop new techniques for the effective repurpose of waste. Aqueous two-phase systems (ATPSs) stand out as a simple and biocompatible liquid–liquid extraction technique for the recovery of bioactive substances from food waste. In ATPSs, the target species partition between two liquid phases, according to affinity, which facilitates its extraction. This work aimed at extracting three polyphenols—chlorogenic acid (CA), ferulic acid (FA), and resveratrol (RV)—through the application of eco-friendly ATPSs composed of water, ethyl lactate (EL), and organic salts, namely disodium succinate (Na2Succinate) and disodium tartrate (Na2Tartrate), for future application in the valorisation of food waste. All partitions presented successful results, with values of partition coefficients (K) higher than 1 and extraction efficiencies (E) higher than 50%, indicating a preferential migration of the polyphenols to the top phase. The extraction of FA using the ATPS based on Na2Tartrate presented the most promising results, with K = 19 ± 6 and E = (94.2 ± 0.9)% for the longest tie-line. Additionally, a comparison with previous works of the research group was drawn, with the extraction of RV exhibiting outstanding performance across all studied ATPSs. Therefore, the assessed ATPSs were shown to hold immense potential for the recovery of polyphenols. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

19 pages, 329 KiB  
Article
Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy
by Mafalda Alexandra Silva, Tânia Gonçalves Albuquerque, Diana Melo Ferreira, Rita C. Alves, Maria Beatriz P. P. Oliveira and Helena S. Costa
Molecules 2025, 30(6), 1287; https://doi.org/10.3390/molecules30061287 - 13 Mar 2025
Cited by 2 | Viewed by 1187
Abstract
Food waste, due to the high quantities produced, becomes a significant environmental, economic, and social challenge worldwide. Simultaneously, the rising prevalence of chronic diseases has intensified the demand for healthier food options. A promising approach to address these issues involves the valorisation of [...] Read more.
Food waste, due to the high quantities produced, becomes a significant environmental, economic, and social challenge worldwide. Simultaneously, the rising prevalence of chronic diseases has intensified the demand for healthier food options. A promising approach to address these issues involves the valorisation of food by-products for the development of innovative and healthier food products. Cucumis melo L., commonly consumed as a fruit, generates peels and seeds that are typically discarded. In the present study, the nutritional composition and antioxidant potential of pulp, peel, and seeds of C. melo L. (yellow and green melon) were comprehensively evaluated. The seeds were identified as a rich source of dietary fibre (39.0 and 39.7 g/100 g dw; p > 0.05) and protein (21.0 and 21.3 g/100 g dw; p > 0.05), exhibiting an appealing fatty acid profile. The peel contains high levels of dietary fibre (39.7 and 47.1 g/100 g dw; p > 0.05) and total phenolic compounds (1976 and 2212 mg GAE/100 g dw; p > 0.05), suggesting significant bioactive potential. The peels showed a high antioxidant capacity for both methods used, DPPH• (120 and 144 mg TE/100 g dw; p > 0.05) and FRAP (6146 and 7408 mg TE/100 g dw; p > 0.05) assays. Potassium emerged as the predominant mineral in the seeds (799 and 805 mg/100 dw; p > 0.05), while glutamic acid was the most abundant amino acid (4161 and 4327 mg/100 g dw; p > 0.05). These findings emphasise the antioxidant and nutritional properties of C. melo L. by-products, highlighting their potential for inclusion in novel food formulations. This study not only advances the understanding of C. melo L. properties but also supports the reduction of food waste and promotes sustainability within the food supply chain. Full article
12 pages, 1097 KiB  
Article
Comparative Analysis of Horticultural and Animal Waste Compost: Physicochemical Properties and Impact on Plant Growth
by Miguel Ángel Domene, Felipe Gómez, Rocío Soria, Ana B. Villafuerte, Isabel Miralles and Raúl Ortega
Agronomy 2025, 15(3), 516; https://doi.org/10.3390/agronomy15030516 - 20 Feb 2025
Viewed by 937
Abstract
In Europe, food and agricultural waste amount to millions of tonnes annually. Effective management and valorisation of these residues result in environmental benefits and foster opportunities within the circular economy. Composting has emerged as a sustainable method to convert waste into fertiliser, enhancing [...] Read more.
In Europe, food and agricultural waste amount to millions of tonnes annually. Effective management and valorisation of these residues result in environmental benefits and foster opportunities within the circular economy. Composting has emerged as a sustainable method to convert waste into fertiliser, enhancing soil fertility, water retention, and crop resilience against diseases. However, an adequate compost production process is vital to obtain a functional fertiliser. In this study, a controlled conditions self-produced compost from horticultural waste (C1) was compared against two other commercial composts, one of similar vegetable origin (C2) and another from chicken manure (C3). Physicochemical parameters and nutrient contents in the three compost types were analysed, and phytotoxicity and plant development tests were carried out on Lolium multiflorum Lam. seeds and Pistacia lentiscus L. seedlings. C1 presented fertility and germination parameters similar to C3 and showed the best seedling development. In contrast, C2 showed low levels of fertility, germination, and plant development because of impurities and possible substances inhibiting plant growth, suggesting inadequate compost formation processes. Finally, C3, although it presented germination data similar to C1, produced the worst results in the development of seedlings, probably because of high salinity values and low phosphorus content. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

25 pages, 6040 KiB  
Article
Spray-Drying Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings and Bioaccessibility of Phenolic Compounds
by Josipa Martinović, Rita Ambrus, Mirela Planinić, Gabriela Perković, Gordana Šelo, Ana-Marija Klarić and Ana Bucić-Kojić
Gels 2025, 11(2), 130; https://doi.org/10.3390/gels11020130 - 11 Feb 2025
Viewed by 1483
Abstract
Spray-drying is a common technique for the microencapsulation of bioactive compounds, which is crucial for improving their stability and bioavailability. In this study, the encapsulation efficiency (EE), physicochemical properties and in vitro bioaccessibility of phenolic compounds from spray-dried encapsulated phenol-rich extracts [...] Read more.
Spray-drying is a common technique for the microencapsulation of bioactive compounds, which is crucial for improving their stability and bioavailability. In this study, the encapsulation efficiency (EE), physicochemical properties and in vitro bioaccessibility of phenolic compounds from spray-dried encapsulated phenol-rich extracts of grape pomace, a winery waste, were evaluated. Sodium alginate alone (SA) or in a mixture with gum Arabic (SA-GA) or gelatin (SA-GEL) was used as a coating. SA-GEL achieved the highest EE (95.90–98.01%) and outperformed the intestinal release of phenolics by achieving a bioaccessibility index (BI) for total phenolic compounds of 37.8–96.2%. The release mechanism of phenolics from the microcapsules adhered to Fickian diffusion. Encapsulation significantly improved the BI of individual phenolics, with the highest BI values for gallocatechin gallate (2028.7%), epicatechin gallate (476.4%) and o-coumaric acid (464.2%) obtained from the SA-GEL microcapsules. Structural analysis confirmed amorphous matrices in all systems, which improved solubility and stability. These results suggest that encapsulation by spray-drying effectively protects phenolics during digestion and ensures efficient release in the intestine, which improves bioaccessibility. This study contributes to the understanding of biopolymer-based encapsulation systems, but also to the valorisation of grape pomace as a high-value functional ingredient in sustainable food processing. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Graphical abstract

17 pages, 1592 KiB  
Article
Antioxidant Maillard Reaction Products from Milk Whey: A Food By-Product Valorisation
by Sara Bolchini, Tiziana Nardin, Ksenia Morozova, Matteo Scampicchio and Roberto Larcher
Foods 2025, 14(3), 450; https://doi.org/10.3390/foods14030450 - 30 Jan 2025
Cited by 2 | Viewed by 2026
Abstract
The Maillard reaction (MR) is a key process in food science, producing bioactive compounds with antioxidant properties. This study evaluates the antioxidant potential of MR products (MRPs) from different dairy byproducts—cow cheese whey, goat cheese whey, and cow yoghurt whey—highlighting their applicability in [...] Read more.
The Maillard reaction (MR) is a key process in food science, producing bioactive compounds with antioxidant properties. This study evaluates the antioxidant potential of MR products (MRPs) from different dairy byproducts—cow cheese whey, goat cheese whey, and cow yoghurt whey—highlighting their applicability in food preservation and waste valorisation. Whey samples were subjected to the MR at 140 °C for 90 min, showing significant amino acid and sugar consumption, particularly arginine, histidine, and lactose. Using a library of potential antioxidant MRPs (molecular weight < 250 Da), 28 key compounds, including 2-pyrrolecarboxaldehyde and maltol isomer, were identified, primarily in cow cheese whey. A complementary high-molecular-weight MRP library (≥250 Da) identified 72 additional antioxidant compounds, with distinct production patterns linked to whey type. Multivariate analyses confirmed that whey type strongly influences MRP profiles. These results highlight the potential of MR to transform whey by-products into valuable sources of natural antioxidants. This approach offers sustainable strategies for enhancing food preservation, reducing food waste, and supporting the targeted use of MRPs in the food industry. Full article
Show Figures

Figure 1

19 pages, 3623 KiB  
Article
Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing
by Andreja Škorjanc, Sven Gruber, Klemen Rola, Darko Goričanec and Danijela Urbancl
Processes 2025, 13(1), 208; https://doi.org/10.3390/pr13010208 - 13 Jan 2025
Cited by 2 | Viewed by 980
Abstract
Most organic waste from food production is still not used for energy production. From the perspective of energy production, one option is to valorise the properties of organic waste. The fruit juice industry is growing rapidly and generates large amounts of waste. One [...] Read more.
Most organic waste from food production is still not used for energy production. From the perspective of energy production, one option is to valorise the properties of organic waste. The fruit juice industry is growing rapidly and generates large amounts of waste. One of the main wastes in food and fruit juice processing is peach pits and apple peels. The aim of this study was to analyse the influence of torrefaction temperature on the properties of food waste, namely apple peels, peach pits and pea shells, in order to improve their energy value and determine their potential for further use and valorisation as a renewable energy source. The aim was to analyse the influence of different torrefaction temperatures on the heating value (HHV), mass yield (MY) and energy yield (EY) in order to better understand the behavior of the thermal properties of individual selected samples. The torrefaction process was carried out at temperatures of 250 °C, 350 °C and 450 °C. The obtained biomass was compared with dried biomass. For apple peels, HHV after torrefaction was (28 kJ/kg), MY decreased by (66–34%), while EY fell by (97–83%). Peach pits, despite a higher HHV after torrefaction (18 kJ/kg), achieved low MY (38–89%) and EY (59–99%), which reduces their efficiency in biochar production. Pea peels had EY (82–97%) and a lower HHV after torrefaction (11 kJ/kg), but their high ash content limits their wider use. The results confirm that, with increasing temperature, MY and EY for all selected biomasses decrease, which is a consequence of the degradation of hemicellulose and cellulose and the loss of volatile compounds. In most cases, increasing the torrefaction temperature improved the resistance to moisture adsorption, as this is related to the thermal process that causes structural changes. The results showed that the torrefaction process improved the hydrophobic properties of the biomass samples. Temperature was seen to have a great impact on mass energy efficiency. Apple peels generally had the highest mass and energy yield. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

15 pages, 2836 KiB  
Article
Utilisation of Rosehip Waste Powder as a Functional Ingredient to Enrich Waffle Cones with Fibres, Polyphenols, and Carotenoids
by Alexandra Raluca Borşa (Bogdan), Adriana Păucean, Melinda Fogarasi, Floricuța Ranga, Andrei Borșa, Anda Elena Tanislav, Vlad Mureșan and Cristina Anamaria Semeniuc
Foods 2025, 14(1), 90; https://doi.org/10.3390/foods14010090 - 1 Jan 2025
Cited by 2 | Viewed by 1793
Abstract
The solid waste generated from processing rosehip fruits into jam is valuable due to its rich content in fibres, polyphenols, and carotenoids; it could be valorised as a functional ingredient in a powder form to enrich food products. This study aimed to test [...] Read more.
The solid waste generated from processing rosehip fruits into jam is valuable due to its rich content in fibres, polyphenols, and carotenoids; it could be valorised as a functional ingredient in a powder form to enrich food products. This study aimed to test its potential as a value-added ingredient, especially to enrich waffle cones with fibres, polyphenols, and carotenoids. In this regard, four formulations of waffle cones were prepared by partially substituting wheat flour with rosehip waste powder at 0%, 10%, 15%, and 20%, reaching concentrations of 0%, 3.7%, 5.7%, and 7.5% of the total batter, respectively. These were assessed for their sensory, textural, and techno-functional properties; proximate composition (including crude fibre); energy value; pH; and colour, as well as the content of carotenoids and polyphenols. The contribution of rosehip powder to the production cost of these waffle cone formulations was also determined. The results showed that using rosehip waste powder as an ingredient reduced the waffle cones powder’s capacity to hold water (from 3.11 g/g to 2.64–3.08 g/g) and to swell (from 4.98 mL/g to 4.23–4.48 mL/g), while it increased their oil-holding capacity (from 0.93 g/g to 0.96–1.19 g/g) and the content in fibre (from 1.58% to 3.41–4.83%), polyphenols (from 400.70 µg/g to 1732.26–2715.69 µg/g), and carotenoids (from n.d. to 6.86–14.28 µg/g); however, the solubility (72.65–75.33%), hardness (2.31–2.83 N), and fracturability (6–8) were not significantly influenced. The sensory acceptability of enriched waffle cones (92–93%) was higher than that of control waffle cones (90%). The production cost of a waffle cone increased by EUR 0.004–0.009 when wheat flour was substituted by rosehip powder in concentrations of 10–20%. In conclusion, to enrich waffle cones with fibres, polyphenols, and carotenoids, at least 10% of wheat flour must be substituted with rosehip waste powder in their manufacturing recipe. Full article
Show Figures

Graphical abstract

13 pages, 2402 KiB  
Conference Report
Rethinking Food Waste: Insights from the 2021 and 2022 RETASTE Conferences
by Thrassyvoulos Manios, Katia Lasaridi, Ioannis N. Daliakopoulos, Konstadinos Abeliotis and Christina Chroni
Sustainability 2024, 16(24), 11254; https://doi.org/10.3390/su162411254 - 22 Dec 2024
Cited by 1 | Viewed by 1441
Abstract
The RETASTE Conference has established itself as a critical platform for advancing science and innovation on food waste management within the framework of circular economy practices. This editorial summarises the key themes and research presented at the first two RETASTE meetings, which focused [...] Read more.
The RETASTE Conference has established itself as a critical platform for advancing science and innovation on food waste management within the framework of circular economy practices. This editorial summarises the key themes and research presented at the first two RETASTE meetings, which focused on strategies such as the valorisation of food processing by-products, utilization of food waste for bioplastics, and development of waste-to-energy technologies. These studies demonstrate the potential to transform food waste from an environmental burden into valuable resources, thereby supporting both local and global sustainability objectives. The conference also highlighted the importance of integrating technology with policy and social aspects to drive transformation across the entire food system, while acknowledging the challenges that remain, including cultural, political, and administrative barriers that must be addressed for these innovations to be successfully scaled. The rebranding of the conference to “RETASTE: Rethink Food Resources, Losses, and Waste” signals a broader focus on the interconnectedness of food systems, emphasizing the need for continuous innovation and collaboration across all sectors. This editorial concludes that a holistic approach—combining technological advancements, social practices, and robust policy frameworks—is essential for effectively managing food waste and promoting sustainable food systems globally. Full article
(This article belongs to the Special Issue RETASTE: Rethink Food Resources, Losses and Waste)
Show Figures

Figure 1

3 pages, 164 KiB  
Editorial
Green Extraction and Valorisation of Bioactive Compounds from Food and Food Waste
by Gregorio Peron
Appl. Sci. 2024, 14(24), 11619; https://doi.org/10.3390/app142411619 (registering DOI) - 12 Dec 2024
Cited by 2 | Viewed by 1149
Abstract
It has been estimated that more than 1 billion tons of food is wasted or lost globally every year, which is roughly one-third of the available food in the world [...] Full article
20 pages, 3636 KiB  
Article
Multi-Analytical Approach for the Acid-Base, Thermal and Surface Properties Assessment of Waste Biomasses
by Salvatore Giovanni Michele Raccuia, Emanuele Zanda, Clemente Bretti, Mauro Formica, Eleonora Macedi, Andrea Melchior, Marilena Tolazzi, Martina Sanadar, Davide Lascari, Giovanna De Luca, Anna Irto, Concetta De Stefano, Paola Cardiano and Gabriele Lando
Molecules 2024, 29(23), 5735; https://doi.org/10.3390/molecules29235735 - 5 Dec 2024
Viewed by 1051
Abstract
A multi-analytical approach was used to comprehensively characterize the acid-base, thermal, and surface properties of agri-food processing wastes (i.e., original and pre-treated bergamot, grape and olive pomaces). These biomasses, often underutilised and inadequately studied in terms of their physicochemical properties, were investigated under [...] Read more.
A multi-analytical approach was used to comprehensively characterize the acid-base, thermal, and surface properties of agri-food processing wastes (i.e., original and pre-treated bergamot, grape and olive pomaces). These biomasses, often underutilised and inadequately studied in terms of their physicochemical properties, were investigated under varying ionic strength conditions at t = 25 °C. This investigation uniquely integrates multiple advanced techniques: Brunauer–Emmett–Teller porosimetry, Scanning Electron Microscopy, Thermogravimetric Analysis coupled with Fourier Transform Infrared Spectroscopy, Differential Scanning Calorimetry, Attenuated Total Reflectance Fourier-Transform Infrared, and potentiometry to provide a holistic understanding of these biomasses potential for environmental remediation. The modelling of ionic strength-dependent acid-base behaviour, established using an extended Debye–Hückel-type equation, revealed the dominant role of carboxylic groups as active sites across all pomace types, although with variations in abundances across the different samples. Additionally, morphological analysis highlighted the presence of irregularly shaped particles, heterogeneous size distributions, and distinct thermal stability trends, with grape pomace exhibiting the highest mass loss. These findings underscore the significant potential of these biomasses for the remediation of cationic pollutants from natural waters. Moreover, this comprehensive characterisation not only advances the understanding of agri-food waste valorisation but also provides a robust framework for designing targeted strategies in environmental applications. Full article
Show Figures

Figure 1

Back to TopTop