Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition
2.2. Fatty Acids Composition
2.3. Amino Acid Composition
2.4. Mineral Composition
2.5. Vitamin E
2.6. Total Vitamin C
2.7. Antioxidant Activity
2.8. Total Phenolics Compounds
2.9. Sustainable Utilization of Melon By-Products
3. Materials and Methods
3.1. Standards and Reagents
3.2. Samples
3.3. Proximate Analysis
3.4. Fatty Acids Analysis
3.5. Amino Acid Analysis
3.6. Mineral and Trace Elements Analysis
3.7. Vitamin E Analysis
3.8. Total Vitamin C Analysis
3.9. Antioxidant Activity and Total Phenolic Compounds
3.9.1. Sample Extraction
3.9.2. Radical DPPH Scavenging Activity
3.9.3. Ferric Reducing Antioxidant Power Assay
3.10. Total Phenolics
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2019—Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/11f9288f-dc78-4171-8d02-92235b8d7dc7/content (accessed on 15 November 2024).
- FUSIONS, Estimates of European Food Waste Levels. 2016. Available online: http://www.eu-fusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf (accessed on 15 November 2024).
- Toledo, N.M.V.; Mondoni, J.; Harada-Padermo, S.S.; Vela-Paredes, R.S.; Berni, P.R.A.; Selani, M.M.; Canniatti-Brazaca, S.G. Characterization of Apple, Pineapple, and Melon by-Products and Their Application in Cookie Formulations as an Alternative to Enhance the Antioxidant Capacity. J. Food Process. Preserv. 2019, 43, e14100. [Google Scholar] [CrossRef]
- Šporin, M.; Avbelj, M.; Kovač, B.; Možina, S.S. Quality Characteristics of Wheat Flour Dough and Bread Containing Grape Pomace Flour. Food Sci. Technol. Int. 2018, 24, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Casarotti, S.N.; Borgonovi, T.F.; Batista, C.L.F.M.; Penna, A.L.B. Guava, Orange and Passion Fruit by-Products: Characterization and Its Impacts on Kinetics of Acidification and Properties of Probiotic Fermented Products. LWT 2018, 98, 69–76. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Teshome, E.; Teka, T.A.; Nandasiri, R.; Rout, J.R.; Harouna, D.V.; Astatkie, T.; Urugo, M.M. Fruit By-Products and Their Industrial Applications for Nutritional Benefits and Health Promotion: A Comprehensive Review. Sustainability 2023, 15, 7840. [Google Scholar] [CrossRef]
- Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ayala-Zavala, J.F.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Agro-Industrial Fruit Byproducts as Health-Promoting Ingredients Used to Supplement Baked Food Products. Foods 2022, 11, 3181. [Google Scholar] [CrossRef]
- Raczkowska, E.; Serek, P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review. Nutrients 2024, 16, 2757. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Population Prospects 2022—Summary of Results; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2022; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 15 November 2024).
- Al-Marazeeq, K.; Saleh, M.; Angor, M.; Lee, Y. Cookie Dough Functional Properties of Partially Replaced All-Purpose Wheat Flour with Powdered Fruit Skins and the Hedonic Perception of the Resulting Cookies. Front. Sustain. Food Syst. 2024, 8, 1445206. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Sacristán, I.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Valorization of Citrus reticulata Blanco Peels to Produce Enriched Wheat Bread: Phenolic Bioaccessibility and Antioxidant Potential. Antioxidants 2023, 12, 1742. [Google Scholar] [CrossRef]
- De Santis, D.; Ferri, S.; Rossi, A.; Frisoni, R.; Modesti, M. Shortbread Cookies Reformulation by Raspberry Powder Enrichment: Functional and Sensory Aspects. Int. J. Food Sci. Technol. 2024, 59, 7560–7569. [Google Scholar] [CrossRef]
- Nuzzo, D.; Picone, P.; Lozano Sanchez, J.; Borras-Linares, I.; Guiducci, A.; Muscolino, E.; Giacomazza, D.; Sanfilippo, T.; Guggino, R.; Bulone, D.; et al. Recovery from Food Waste—Biscuit Doughs Enriched with Pomegranate Peel Powder as a Model of Fortified Aliment. Biology 2022, 11, 416. [Google Scholar] [CrossRef]
- Maynard, D.; Maynard, D. Cucumbers, Melons, and Watermelons. In The Cambridge World History of Food; In Kiple, K.F., Ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lija, M.; Beevy, S.S. A Review on the Diversity of Melon. Plant Sci. Today 2021, 8, 995–1003. [Google Scholar] [CrossRef]
- Silva, M.A.; Albuquerque, T.G.; Alves, R.C.; Oliveira, M.B.P.P.; Costa, H.S. Melon (Cucumis melo L.) by-Products: Potential Food Ingredients for Novel Functional Foods? Trends Food Sci. Technol. 2020, 98, 181–189. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations; FAO: Roma, Italy, 2025; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 6 February 2025).
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of High Value-Added Compounds from Pineapple, Melon, Watermelon and Pumpkin Processing by-Products: An Overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef] [PubMed]
- Namet, S.; Khan, M.R.; Aadil, R.M.; Zia, M.A. Development and Stabilization of Value-Added Functional Drink Using Melon By-Product Agricultural Waste. J. Food Process. Preserv. 2023, 2023, 6631784. [Google Scholar] [CrossRef]
- Sahin, E.; Erem, E.; Güzey, M.; Kesen, M.S.; Icyer, N.C.; Ozmen, D.; Toker, O.S.; Cakmak, H. High Potential Food Wastes: Evaluation of Melon Seeds as Spreadable Butter. J. Food Process. Preserv. 2022, 46, e16841. [Google Scholar] [CrossRef]
- Martínez, E.; Pardo, J.E.; Rabadán, A.; Álvarez-Ortí, M. Effects of Animal Fat Replacement by Emulsified Melon and Pumpkin Seed Oils in Deer Burgers. Foods 2023, 12, 279. [Google Scholar] [CrossRef]
- Zhang, G.; Chatzifragkou, A.; Charalampopoulos, D.; Rodriguez-Garcia, J. Effect of Defatted Melon Seed Residue on Dough Development and Bread Quality. LWT 2023, 183, 114892. [Google Scholar] [CrossRef]
- Yadav, J.P.; Singh, A.K.; Grishina, M.; Pathak, P.; Patel, D.K. Cucumis melo var. agrestis Naudin as a Potent Antidiabetic: Investigation via Experimental Methods. Phytomed. Plus 2022, 2, 100340. [Google Scholar] [CrossRef]
- Gómez-García, R.; Sánchez-Gutiérrez, M.; Freitas-Costa, C.; Vilas-Boas, A.A.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Prebiotic Effect, Bioactive Compounds and Antioxidant Capacity of Melon Peel (Cucumis melo L. inodorus) Flour Subjected to in Vitro Gastrointestinal Digestion and Human Faecal Fermentation. Food Res. Int. 2022, 154, 111045. [Google Scholar] [CrossRef] [PubMed]
- Rolim, P.M.; Fidelis, G.P.; Padilha, C.E.A.; Santos, E.S.; Rocha, H.A.O.; Macedo, G.R. Phenolic Profile and Antioxidant Activity from Peels and Seeds of Melon (Cucumis melo L. var. reticulatus) and Their Antipro-liferative Effect in Cancer Cells. Braz. J. Med. Biol. Res. 2018, 51, e6069. [Google Scholar] [CrossRef]
- Raji, O.H.; Orelaja, O.T. Nutritional Composition and Oil Characteristics of Golden Melon (Cucumis melo) Seeds. Food Sci. Qual. Manag. 2014, 27, 18–21. [Google Scholar]
- Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Chemical Composition and Bioactive Compounds of Cucumis melo L. Seeds: Potential Source for New Trends of Plant Oils. Process Saf. Environ. Prot. 2018, 113, 68–77. [Google Scholar] [CrossRef]
- Silva, M.A.; Albuquerque, T.G.; Alves, R.C.; Oliveira, M.B.P.P.; Costa, H.S. Cucumis melo L. Seed Oil Components and Biological Activities. In Multiple Biological Activities of Unconventional Seed Oils; Elsevier Inc.: London, UK, 2022; pp. 125–138. ISBN 1251006011111. [Google Scholar]
- Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Characterization, Phenolic Compounds and Functional Properties of Cucumis melo L. Peels. Food Chem. 2017, 221, 1691–1697. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfei, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef] [PubMed]
- Shahnaz, T.; Fawole, A.O.; Adeyanju, A.A.; Onuh, J.O. Food Proteins as Functional Ingredients in the Management of Chronic Diseases: A Concise Review. Nutrients 2024, 16, 2323. [Google Scholar] [CrossRef]
- Balta, I.; Stef, L.; Pet, I.; Iancu, T.; Stef, D.; Corcionivoschi, N. Essential Fatty Acids as Biomedicines in Cardiac Health. Biomedicines 2021, 9, 1466. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef]
- Petkova, Z.; Antova, G. Proximate Composition of Seeds and Seed Oils from Melon (Cucumis melo L.) Cultivated in Bulgaria. Cogent Food Agric. 2015, 1, 1018779. [Google Scholar] [CrossRef]
- Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Cucumis melo L. Seeds as a Promising Source of Oil Naturally Rich in Biologically Active Substances: Compositional Characteristics, Phenolic Compounds and Thermal Properties. Grasas y Aceites 2019, 70, e284. [Google Scholar] [CrossRef]
- Yamamoto, T.; Inui-Yamamoto, C. The Flavor-Enhancing Action of Glutamate and Its Mechanism Involving the Notion of Kokumi. npj Sci. Food 2023, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- FAO. Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation. In FAO—Food and Nutrition Paper; FAO: Rome, Italy, 2013. [Google Scholar]
- Brestenský, M.; Nitrayová, S.; Patráš, P.; Nitray, J. Dietary Requirements for Proteins and Amino Acids in Human Nutrition. Curr. Nutr. Food Sci. 2019, 15, 638–645. [Google Scholar] [CrossRef]
- Hu, M.-H.; Ao, Y. Characteristics of Some Nutritional Composition of Melon (Cucumis melo Hybrid ‘ChunLi’) Seeds. Int. J. Food Sci. Technol. 2007, 42, 1397–1401. [Google Scholar] [CrossRef]
- Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Phytochemical Profile, Nutraceutical Potential and Functional Properties of Cucumis melo L. Seeds. J. Sci. Food Agric. 2019, 99, 1294–1301. [Google Scholar] [CrossRef]
- De Melo, M.L.S.; Narain, N.; Bora, P.S. Characterisation of Some Nutritional Constituents of Melon (Cucumis melo Hybrid AF-522) Seeds. Food Chem. 2000, 68, 411–414. [Google Scholar] [CrossRef]
- Azhari, S.; Xu, Y.S.; Jiang, Q.X.; Xia, W.S. Physicochemical Properties and Chemical Composition of Seinat (Cucumis melo Var. Tibish) Seed Oil and Its Antioxidant Activity. Grasas y Aceites 2014, 65, e008. [Google Scholar] [CrossRef]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef]
- Ali, A.A.H. Overview of the Vital Roles of Macro Minerals in the Human Body. J. Trace Elem. Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, 157–165. [Google Scholar]
- Rabadán, A.; Antónia Nunes, M.; Bessada, S.M.F.; Pardo, J.E.; Beatriz Oliveira, M.P.P.; Álvarez-Ortí, M. From By-Product to the Food Chain: Melon (Cucumis melo L.) Seeds as Potential Source for Oils. Foods 2020, 9, 1341. [Google Scholar] [CrossRef]
- Sir Elkhatim, K.A.; Elagib, R.A.A.; Hassan, A.B. Content of Phenolic Compounds and Vitamin C and Antioxidant Activity in Wasted Parts of Sudanese Citrus Fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Vinha, A.F.; Costa, A.S.G.; Espírito Santo, L.; Ferreira, D.M.; Sousa, C.; Pinto, E.; Almeida, A.; Oliveira, M.B.P.P. High-Value Compounds in Papaya By-Products (Carica papaya L. var. Formosa and Aliança): Potential Sustainable Use and Exploitation. Plants 2024, 13, 1009. [Google Scholar] [CrossRef]
- Reiter, E.; Jiang, Q.; Christen, S. Anti-Inflammatory Properties of α- and γ-Tocopherol. Mol. Asp. Med. 2007, 28, 668–691. [Google Scholar] [CrossRef]
- Vasanthi, H.R.; Parameswari, R.P.; Das, D.K. Multifaceted Role of Tocotrienols in Cardioprotection Supports Their Structure: Function Relation. Genes Nutr. 2012, 7, 19–28. [Google Scholar] [CrossRef]
- Iqbal, K.; Khan, A.; Khattak, M.M.A.K. Biological Significance of Ascorbic Acid (Vitamin C) in Human Health—A Review. Pak. J. Nutr. 2004, 3, 5–13. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Şelale, H.; Sgva, H.O.; Celik, I.; Doganlar, S.; Frary, A. Water-Soluble Antioxidant Potential of Melon Lines Grown in Turkey. Int. J. Food Prop. 2012, 15, 145–156. [Google Scholar] [CrossRef]
- Lemmens, E.; Alós, E.; Rymenants, M.; De Storme, N.; Keulemans, W.J. Dynamics of Ascorbic Acid Content in Apple (Malus x Domestica) during Fruit Development and Storage. Plant Physiol. Biochem. 2020, 151, 47–59. [Google Scholar] [CrossRef]
- Silva, M.A.; Albuquerque, T.G.; Alves, R.C.; Oliveira, M.B.P.P.; Costa, H.S. Melon peel flour: Utilization as a functional ingredient in bakery products. Food Funct. 2024, 15, 1899–1908. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Schmidt, E.M.; Bonafe, E.G.; Eberlin, M.N.; Sawaya, A.C.H.F.; Visentainer, J.V. Antioxidant Activity, Phenolics and UPLC-ESI(-)-MS of Extracts from Different Tropical Fruits Parts and Processed Peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Campos, D.A.; Oliveira, A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. A Chemical Valorisation of Melon Peels towards Functional Food Ingredients: Bioactives Profile and Antioxidant Properties. Food Chem. 2021, 335, 127579. [Google Scholar] [CrossRef] [PubMed]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data: Production, Management and Use, 2nd ed.; FAO Publishing Management Service: Rome, Italy, 2003. [Google Scholar]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, L 304, 18–62.
- AOAC. Official Methods of Analysis of AOAC International, 22nd ed.; AOAC International: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Santos, F.; Sanches-Silva, A.; Oliveira, M.B.; Bento, A.C.; Costa, H.S. Nutritional and Phytochemical Composition of Annona Cherimola Mill. Fruits and by-Products: Potential Health Benefits. Food Chem. 2016, 193, 187–195. [Google Scholar] [CrossRef]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein Content and Amino Acids Profile of Pseudocereals. Food Chem. 2016, 193, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, T.G.; Costa, H.S.; Sanches-Silva, A.; Santos, M.; Trichopoulou, A.; D’Antuono, F.; Alexieva, I.; Boyko, N.; Costea, C.; Fedosova, K.; et al. Traditional Foods from the Black Sea Region as a Potential Source of Minerals. J. Sci. Food Agric. 2013, 93, 3535–3544. [Google Scholar] [CrossRef]
- Alves, R.C.; Casal, S.; Oliveira, M.B.P.P. Determination of Vitamin E in Coffee Beans by HPLC Using a Micro-Extraction Method. Food Sci. Technol. Int. 2009, 15, 57–63. [Google Scholar] [CrossRef]
- Valente, A.; Sanches-Silva, A.; Albuquerque, T.G.; Costa, H.S. Development of an Orange Juice In-House Reference Material and Its Application to Guarantee the Quality of Vitamin C Determination in Fruits, Juices and Fruit Pulps. Food Chem. 2014, 154, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Song, F.L.; Gan, R.Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H. Bin Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef] [PubMed]
Components | Pulp | Peel | Seeds | |||
---|---|---|---|---|---|---|
Green Melon | Yellow Melon | Green Melon | Yellow Melon | Green Melon | Yellow Melon | |
Energy (kJ) | 1374 (1358–1394) aA | 1371 (1355–1402) aA | 1022 (927–1081) aB | 957 (934–978) aB | 1707 (1556–1851) aC | 1744 (1553–1949) aC |
Energy (kcal) | 324 (321–329) aA | 323 (320–330) aA | 245 (224–259) aB | 231 (226–235) aB | 414 (378–449) aC | 423 (378–472) aC |
Moisture (g) | 8.89 (7.60–10.4) aA | 9.95 (8.49–11.5) aA | 8.51 (5.85–10.1) aA | 8.75 (7.80–10.6) aA | 7.97 (5.14–9.18) aA | 8.08 (6.03–12.0) aA |
Ash (g) | 7.71 (4.52–9.32) aAB | 6.66 (6.42–6.97) aAC | 11.6 (9.64–14.9) aD | 11.0 (10.1–11.9) aBD | 3.62 (3.24–3.77) aC | 3.58 (3.31–3.88) aC |
Total protein (g) (NCF = 6.25) | 8.21 (4.79–10.3) aA | 7.00 (5.86–8.31) aA | 10.2 (9.16–11.8) aA | 9.42 (8.41–10.1) aA | 21.3 (20.0–22.6) aB | 21.0 (19.6–23.0) aB |
Total fat (g) | 0.653 (0.486–0.866) aA | 0.467 (0.357–0.662) aA | 1.09 (0.348–1.44) aA | 0.768 (0.506–1.05) aA | 27.5 (23.1–31.5) aB | 28.5 (22.9–34.9) aB |
Available Carbohydrates (g) | 68.2 (63.5–71.7) aA | 69.7 (66.6–72.0) aA | 28.9 (18.4–35.0) aB | 23.0 (19.7–25.5) aB | 0.469 (0–1.48) aC | 1.31 (0–2.76) aC |
Total dietary fibre (g) | 6.38 (3.38–8.98) aA | 6.21 (2.80–10.5) aA | 39.7 (32.4–51.4) aB | 47.1 (44.1–52.2) aB | 39.7 (35.7–44.2) aB | 39.0 (31.1–46.3) aB |
Fatty Acid | Abbreviation | Green Melon Seeds | Yellow Melon Seeds |
---|---|---|---|
Myristic acid | C14:0 | 0.0106 (0.00859–0.0118) a | 0.0128 (0.0109–0.0157) a |
Pentadecanoic acid | C15:0 | 0.0076 (0.00476–0.00878) a | 0.0077 (0.00695–0.00824) a |
Palmitic acid | C16:0 | 2.48 (1.93–2.71) a | 2.45 (1.98–3.13) a |
Palmitoleic acid | C16:1c | 0.0468 (0.0276–0.0682) a | 0.0526 (0.0475–0.0554) a |
Heptadecanoic acid | C17:0 | 0.0200 (0.0174–0.0217) a | 0.0222 (0.0188–0.0261) a |
cis-10-Heptadecanoic acid | C17:1c | 0.0113 (0.00849–0.0128) a | 0.0093 (0.00671–0.0129) a |
Stearic acid | C18:0 | 1.33 (1.02–1.51) a | 1.43 (1.38–1.49) a |
Oleic acid | C18:1c | 6.05 (3.21–7.53) a | 4.47 (3.66–5.49) a |
Linoleic acid | C18:2c (n6) | 16.1 (14.0–19.2) a | 18.5 (13.9–24.7) a |
Linolenic acid | C18:3c (n3) | 0.0541 (0.0443–0.0684) a | 0.0536 (0.0440–0.0722) a |
Arachidic acid | C20:0 | 0.0520 (0.0371–0.0577) a | 0.0479 (0.0458–0.0511) a |
cis-11-Eicosenoic acid | C20:1 | 0.0333 (0.0246–0.0393) a | 0.0327 (0.0267–0.0359) a |
Behenic acid | C22:0 | 0.0129 (0.0108–0.0139) a | 0.0102 (0.00914–0.0114) b |
Lignoceric acid | C24:0 | 0.0153 (0.0109–0.0181) a | 0.0149 (0.0108–0.0176) a |
Nervonic acid | C24:1 | 0.0144 (0.00348–0.0352) a | 0.0145 (0.00768–0.0263) a |
∑SFA | 3.92 (3.05–4.33) | 4.00 (3.47–4.74) | |
∑MUFA | 6.16 (3.27–7.67) | 4.58 (3.77–5.61) | |
∑PUFA | 16.2 (14.1–19.2) | 18.5 (14.0–24.7) |
Amino Acid | Green Melon Seeds | Yellow Melon Seeds |
---|---|---|
Essential | ||
Histidine | 147 (51.8–284) a | 247 (109–348) a |
Isoleucine | 280 (174–399) a | 398 (296–495) a |
Leucine | 967 (842–1254) a | 1034 (906–1104) a |
Lysine | 144 (0–331) a | 301 (71.8–452) a |
Methionine | 89 (0–273) a | 184 (0–294) a |
Phenylalanine | 608 (500–730) a | 706 (638–809) a |
Threonine | 296 (196–403) a | 403 (306–496) a |
Valine | 443 (347–570) a | 521 (477–597) a |
Non-essential | ||
Alanine | 762 (709–888) a | 798 (740–829) a |
Arginine | 1673 (1439–2238) a | 1799 (1548–1957) a |
Aspartic acid | 1896 (1480–2403) a | 1847 (1526–2186) a |
Cysteine | n.d. | n.d. |
Glutamic acid | 4327 (3191–5603) a | 4161 (3385–5269) a |
Glycine | 996 (869–1266) a | 1026 (888–1103) a |
Proline | 471 (368–578) a | 594 (532–669) a |
Serine | 689 (585–856) a | 777 (703–866) a |
Tyrosine | 303 (208–459) a | 423 (266–532) a |
Amino Acid | Requirement Pattern (mg/g Protein) 1 | Amino Acid Score (%) 2 | |
---|---|---|---|
Green Melon Seeds | Yellow Melon Seeds | ||
Histidine | 15 | 45 (17–86) a | 78 (36–101) a |
Isoleucine | 30 | 43 (28–61) a | 63 (49–72) a |
Leucine | 59 | 77 (70–94) a | 84 (78–91) a |
Lysine | 45 | 20 (10–33) a | 32 (8–44) a |
Threonine | 23 | 60 (41–80) a | 83 (66–94) a |
Valine | 39 | 53 (43–65) a | 64 (60–67) a |
Total sulfur amino acids (Met + Cys) | 22 | 38 (19–56) a | 59 (58–60) a |
Total aromatic amino acids (Phe + Tyr) | 38 | 112 (90–137) a | 141 (117–153) a |
Minerals | Green Melon Seeds | Yellow Melon Seeds |
---|---|---|
Phosphorus | 624 (485–747) a | 669 (514–781) a |
Magnesium | 292 (259–354) a | 299 (247–339) a |
Calcium | 42.4 (28.2–60.8) a | 36.6 (30.5–45.0) a |
Potassium | 805 (754–854) a | 799 (733–851) a |
Sodium | 12.2 (7.77–19.8) a | 8.23 (6.71–9.63) a |
Manganese | 1.96 (1.29–2.41) a | 2.12 (1.77–2.49) a |
Iron | 5.49 (4.57–6.60) a | 5.81 (4.57–6.69) a |
Zinc | 4.56 (3.56–5.97) a | 5.81 (4.55–7.20) a |
Pulp | Peel | Seeds | ||||
---|---|---|---|---|---|---|
Green Melon | Yellow Melon | Green Melon | Yellow Melon | Green Melon | Yellow Melon | |
α-tocopherol | 0.43 (0.084–0.80) aA | 0.37 (0.11–0.57) aA | 4.0 (1.2–6.2) aB | 1.3 (0.99–1.5) aAB | 1.6 (1.3–1.9) aAB | 2.2 (1.1–4.0) aAB |
β-tocopherol | 0.028 (0.018–0.036) aA | 0.021 (0.019–0.024) aA | 0.13 (0.048–0.19) aB | 0.051 (0.042–0.057) aA | n.d. | n.d. |
γ-tocopherol | 0.14 (0.032–0.32) aA | 0.17 (0.092–0.24) aA | 13 (6.8–19) aC | 2.9 (1.9–3.7) bA | 5.8 (4.7–7.0) aAB | 12 (8.8–14) aBC |
γ-tocotrienol | 0.10 (0.036–0.17) aA | 0.10 (0.088–0.12) aA | 0.73 (0.65–0.92) aB | 0.73 (0.52–0.87) aB | 0.39 (0.20–0.60) aAB | 0.32 (0.20–0.51) aA |
δ-tocopherol | 0.033 (0.024–0.040) aA | 0.029 (0.026–0.035) aA | 2.3 (1.7–2.9) aB | 0.25 (0.16–0.33) bA | 0.27 (0.16–0.40) aA | 0.31 (0.18–0.43) aA |
Pulp | Peel | Seeds | ||||
---|---|---|---|---|---|---|
Green Melon | Yellow Melon | Green Melon | Yellow Melon | Green Melon | Yellow Melon | |
DPPH (mg TE/100 g dw) | 88.1 (9.98–204) aA | 52.3 (8.99–135) aA | 144 (25.3–281) aA | 120 (25.1–305) aA | 4.59 (3.91–5.39) aA | 5.57 (2.88–8.35) aA |
FRAP (mg TE/100 g dw) | 2919 (288–7216) aA | 1851 (283–4943) aA | 7408 (2586–13,597) aA | 6146 (1361–15,504) aA | 3338 (2803–4131) aA | 3269 (1557–4953) aA |
Total phenolics (mg GAE/100 g dw) | 1150 (74.2–2208) aA | 604 (86.8–1614) aA | 2212 (693–3887) aA | 1976 (466–4911) aA | 201 (77.1–288) aA | 195 (18.7–340) aA |
Total vitamin C (mg/100 g dw) | 56.7 (0–116) aA | 26.2 (0–78.7) aA | 70.3 (0–182) aA | 31.2 (0–93.5) aA | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.A.; Albuquerque, T.G.; Ferreira, D.M.; Alves, R.C.; Oliveira, M.B.P.P.; Costa, H.S. Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy. Molecules 2025, 30, 1287. https://doi.org/10.3390/molecules30061287
Silva MA, Albuquerque TG, Ferreira DM, Alves RC, Oliveira MBPP, Costa HS. Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy. Molecules. 2025; 30(6):1287. https://doi.org/10.3390/molecules30061287
Chicago/Turabian StyleSilva, Mafalda Alexandra, Tânia Gonçalves Albuquerque, Diana Melo Ferreira, Rita C. Alves, Maria Beatriz P. P. Oliveira, and Helena S. Costa. 2025. "Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy" Molecules 30, no. 6: 1287. https://doi.org/10.3390/molecules30061287
APA StyleSilva, M. A., Albuquerque, T. G., Ferreira, D. M., Alves, R. C., Oliveira, M. B. P. P., & Costa, H. S. (2025). Nutritional and Bioactive Profiling of Cucumis melo L. By-Products: Towards a Circular Food Economy. Molecules, 30(6), 1287. https://doi.org/10.3390/molecules30061287