Antioxidant Maillard Reaction Products from Milk Whey: A Food By-Product Valorisation
Abstract
:1. Introduction
1.1. Milk Whey
1.2. Food Preservation
Antioxidants
1.3. Food Waste Valorisation
1.4. Maillard Reaction
1.4.1. Antioxidant Activity of MRPs
1.4.2. Influence of Variables on MRP Production
1.5. Research Gap and Aim of the Work
2. Materials and Methods
2.1. Sample Collection
2.2. Samples Characterisation
2.2.1. Amino Acid Content
2.2.2. Sugar Content
2.3. Maillard Reaction
2.4. Isolation, and Peptides’ and Proteins’ Role Evaluation
2.5. HRMS Antioxidant MRP Analyses
2.5.1. HPLC and MS Method
2.5.2. Study of High-Molecular-Weight Antioxidant MRPs
2.6. Statistical Analyses
3. Results
3.1. pH Control
3.2. Reactants’ Consumption
3.2.1. Amino Acid Consumption
3.2.2. Sugar Consumption
3.3. Antioxidant MRPs’ Evaluation
3.3.1. Samples Analyses from LAM
3.3.2. Proteins’ Reactivity
3.3.3. Bigger Molecules’ Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaminarides, S.; Zagari, H.; Zoidou, E. Effect of whey fat content on the properties and yields of whey cheese and serum. J. Hell. Vet. Med. Soc. 2020, 71, 2149–2156. [Google Scholar] [CrossRef]
- Soumati, B.; Atmani, M.; Benabderrahmane, A.; Benjelloun, M. Whey Valorization—Innovative Strategies for Sustainable Development and Value-Added Product Creation. J. Ecol. Eng. 2023, 24, 86–104. [Google Scholar] [CrossRef]
- Guo, M.; Wang, G. History of whey production and whey protein manufacturing. In Whey Protein Production, Chemistry, Functionality, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Limnaios, A.; Tsevdou, M.; Zafeiri, E.; Topakas, E.; Taoukis, P. Cheese and Yogurt By-Products as Valuable Ingredients for the Production of Prebiotic Oligosaccharides. Dairy 2024, 5, 78–92. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, M.; Varidi, M. Antioxidant and antibrowning properties of Maillard reaction products in food and biological systems. Vitam. Horm. 2024, 125, 367–399. [Google Scholar] [PubMed]
- Chen, Y.; Han, P.; Ma, B.; Wang, X.; Ma, M.; Qiu, N.; Fu, X. Effect of thermal treatment on the antioxidant activity of egg white hydrolysate and the preparation of novel antioxidant peptides. Int. J. Food Sci. Technol. 2022, 57, 2590–2599. [Google Scholar] [CrossRef]
- Ye, X.; Yang, R.; Riaz, T.; Chen, J. Stability and antioxidant function of Porphyra haitanensis proteins during simulated gastrointestinal digestion: Effects on stress resistance and lifespan extension in Caenorhabditis elegans. Int. J. Biol. Macromol. 2025, 293, 139291. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, food processing and health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski, A.; Królak, M.; Kalisz, S. Polyphenols, l-ascorbic acid, and antioxidant activity in wines from rose fruits (Rosa rugosa). Molecules 2021, 26, 2561. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Tropea, A. Food Waste Valorization. Fermentation 2022, 8, 168. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Charalambous, P.; Vyrides, I. Dairy wastewater management in EU: Produced amounts, existing legislation, applied treatment processes and future challenges. J. Environ. Manag. 2022, 303, 114152. [Google Scholar] [CrossRef]
- Cai, L.; Li, D.; Dong, Z.; Cao, A.; Lin, H.; Li, J. Change regularity of the characteristics of Maillard reaction products derived from xylose and Chinese shrimp waste hydrolysates. LWT 2016, 65, 908–916. [Google Scholar] [CrossRef]
- Chen, P.; Yang, R.; Pei, Y.; Yang, Y.; Cheng, J.; He, D.; Huang, Q.; Zhong, H.; Jin, F. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein. Sci. Total Environ. 2022, 828, 154440. [Google Scholar] [CrossRef]
- Murata, M. Browning and pigmentation in food through the Maillard reaction. Glycoconj. J. 2021, 38, 283–292. [Google Scholar] [CrossRef]
- Sun, A.; Wu, W.; Soladoye, O.P.; Aluko, R.E.; Bak, K.H.; Fu, Y.; Zhang, Y. Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Res. Int. 2022, 151, 110823. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Zieliński, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, M.; Cui, C.; Zhao, Q.; Yang, B. Effect of Maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of Cantonese sausages. Meat Sci. 2010, 86, 276–282. [Google Scholar] [CrossRef]
- Hafsa, J.; Smach, M.A.; Mrid, R.B.; Sobeh, M.; Majdoub, H.; Yasri, A. Functional properties of chitosan derivatives obtained through Maillard reaction: A novel promising food preservative. Food Chem. 2021, 349, 129072. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Qian, H.; Yao, W.R. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 2011, 128, 573–584. [Google Scholar] [CrossRef]
- Feng, J.; Berton-Carabin, C.C.; Fogliano, V.; Schroën, K. Maillard reaction products as functional components in oil-in-water emulsions: A review highlighting interfacial and antioxidant properties. Trends Food Sci. Technol. 2022, 121, 129–141. [Google Scholar] [CrossRef]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yue, X.; Ma, B.; Fu, X.; Ren, H.; Ma, M. Ultrasonic pretreatment enhanced the glycation of ovotransferrin and improved its antibacterial activity. Food Chem. 2021, 346, 128905. [Google Scholar] [CrossRef] [PubMed]
- Echavarría, A.P.; Pagán, J.; Ibarz, A. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Liu, X.; Xia, B.; Hu, L.T.; Ni, Z.J.; Thakur, K.; Wei, Z.J. Maillard conjugates and their potential in food and nutritional industries: A review. Food Front. 2020, 1, 382–397. [Google Scholar] [CrossRef]
- Tamanna, N.; Mahmood, N. Food processing and maillard reaction products: Effect on human health and nutrition. Int. J. Food Sci. 2015, 2015, 526762. [Google Scholar] [CrossRef]
- Wen-qiong, W.; Pei-pei, Y.; Ji-yang, Z.; Zhi-hang, G. Effect of temperature and pH on the gelation, rheology, texture, and structural properties of whey protein and sugar gels based on Maillard reaction. J. Food Sci. 2021, 86, 1228–1242. [Google Scholar] [CrossRef] [PubMed]
- Han, J.R.; Yan, J.N.; Sun, S.G.; Tang, Y.; Shang, W.H.; Li, A.T.; Guo, X.K.; Du, Y.N.; Wu, H.T.; Zhu, B.W.; et al. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products. Food Chem. 2018, 261, 337–347. [Google Scholar] [CrossRef]
- Liu, Q.; Kong, B.; Han, J.; Sun, C.; Li, P. Structure and antioxidant activity of whey protein isolate conjugated with glucose via the Maillard reaction under dry-heating conditions. Food Struct. 2014, 1, 145–154. [Google Scholar] [CrossRef]
- Scalone, G.L.L.; Cucu, T.; De Kimpe, N.; De Meulenaer, B. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems. J. Agric. Food Chem. 2015, 63, 5364–5372. [Google Scholar] [CrossRef]
- Bolchini, S.; Larcher, R.; Morozova, K.; Scampicchio, M.; Nardin, T. Screening of antioxidant Maillard reaction products using HPLC-HRMS and study of reaction conditions for their production as food preservatives. Molecules 2024, 29, 4820. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.I.F.S.; Van Boekel, M.A.J.S. Kinetics of the glucose/glycine Maillard reaction pathways: Influences of pH and reactant initial concentrations. Food Chem. 2005, 92, 437–448. [Google Scholar] [CrossRef]
- Gallo, A.; Guzzon, R.; Paolini, M.; Malacarne, M.; Nardin, T.; Ongaro, M.; Roman, T. Biological acidification of “Vino Santo di Gambellara” by mixed fermentation of L. thermotolerans and S. cerevisiae. Role of nitrogen in the evolution of fermentation and aroma profile. Oeno One 2023, 57, 205–217. [Google Scholar] [CrossRef]
- Di Lella, S.; Tognetti, R.; La Porta, N.; Lombardi, F.; Nardin, T.; Larcher, R. Characterization of Silver fir Wood Decay Classes Using Sugar Metabolites Detected with Ion Chromatography. J. Wood Chem. Technol. 2019, 39, 90–110. [Google Scholar] [CrossRef]
- Van Boekel, M.A.J.S. Kinetic aspects of the Maillard reaction: A critical review. Nahrung-Food 2001, 45, 150–159. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Van Boekel, M.A.J.S. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem. 2005, 90, 257–269. [Google Scholar] [CrossRef]
- Horvat, Š.; Jakas, A. Peptide and amino acid glycation: New insights into the maillard reaction. J. Pept. Sci. 2004, 10, 119–137. [Google Scholar] [CrossRef]
- Amaya-farfan, J.; Rodriguez-amaya, D.B. The Maillard Reactions; Academic Press: Cambridge, MA, USA, 2021; ISBN 9780128173800. [Google Scholar]
- Zhodu, Y.Y.; Li, Y.; Yu, A.N. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system. Food Sci. Technol. 2016, 36, 268–274. [Google Scholar] [CrossRef]
- Hickey, M.W.; Hillier, A.J.; Jago, G.R. Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Appl. Environ. Microbiol. 1986, 51, 825–831. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; Van Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Yanagimoto, K.; Lee, K.G.; Ochi, H.; Shibamoto, T. Antioxidative activity of heterocyclic compounds formed in Maillard reaction products. Int. Congr. Ser. 2002, 1245, 335–340. [Google Scholar] [CrossRef]
- Kanzler, C.; Haase, P.T.; Schestkowa, H.; Kroh, L.W. Antioxidant Properties of Heterocyclic Intermediates of the Maillard Reaction and Structurally Related Compounds. J. Agric. Food Chem. 2016, 64, 7829–7837. [Google Scholar] [CrossRef] [PubMed]
Time (s) | Potential (V vs. Ag/AgCl) | Integration |
---|---|---|
0.00 | 1.35 | Off |
0.20 | 1.35 | On |
0.40 | 1.35 | Off |
0.41 | −1.15 | Off |
0.42 | −1.15 | Off |
0.43 | 1.45 | Off |
0.44 | 1.15 | Off |
0.50 | 1.15 | Off |
Most Reactive | Medium Reactive | Less Reactive | ||||||
---|---|---|---|---|---|---|---|---|
Amino Acid | % deg | RSD | Amino Acid | % deg | RSD | Amino Acid | % deg | RSD |
arg | 97.74 | 2.53 | MEA | 71.81 | 21.25 | ala | 47.60 | 4.54 |
tyr | 88.81 | 12.38 | gln | 66.03 | 13.92 | asn | 37.15 | 9.35 |
glu | 89.47 | 2.00 | ile | 72.68 | 11.40 | asp | ~0 | ~0 |
gly | 88.38 | 5.01 | leu | 71.81 | 4.21 | cit | ~0 | 20.25 |
hys | 87.50 | 8.81 | lys | 70.77 | 3.79 | gaba | ~0 | ~0 |
orn | 75.94 | 5.05 | val | 63.97 | 6.16 | phe | 10.17 | 1.96 |
trp + met | 76.70 | 10.19 | ser | 38.07 | 9.49 | |||
thr | 32.04 | 2.89 |
N° | m/z | RT [min] | Reference Ion |
---|---|---|---|
1 * | 96.04440 | 3.315 | [M+H]+1 |
2 | 110.02464 | 4.805 | [M−H]−1 |
3 * | 110.06008 | 5.773 | [M+H]+1 |
4 * | 115.03889 | 7.352 | [M+H]+1 |
5 | 119.03481 | 4.141 | [M−H] −1 |
6 | 124.07577 | 4.501 | [M+H]+1 |
7 | 127.03893 | 3.564 | [M+H]+1 |
8 | 127.03899 | 7.592 | [M+H]+1 |
9 * | 127.03901 | 9.546 | [M+H]+1 |
10 | 127.03902 | 4.825 | [M+H]+1 |
11 | 135.05531 | 6.354 | [M+H]+1 |
12 | 140.07065 | 3.668 | [M+H]+1 |
13 | 143.03479 | 4.822 | [M−H]−1 |
14 * | 145.04956 | 6.968 | [M+H]+1 |
15 | 145.04957 | 5.683 | [M+H]+1 |
16 | 154.04997 | 3.802 | [M+H]+1 |
17 | 164.07064 | 4.228 | [M+H]+1 |
18 | 164.07066 | 4.733 | [M+H]+1 |
19 | 166.08632 | 7.866 | [M+H]+1 |
20 | 169.09724 | 8.41 | [M+H]+1 |
21 | 170.08117 | 3.381 | [M+H]+1 |
22 | 184.09694 | 5.415 | [M+H]+1 |
23 | 196.09695 | 4.183 | [M+H]+1 |
24 | 212.10303 | 3.173 | [M+H]+1 |
25 | 212.10311 | 6.052 | [M+H]+1 |
26 | 230.10246 | 5.419 | [M+H]+1 |
27 | 230.11343 | 3.486 | [M+H]+1 |
28 | 230.11356 | 3.787 | [M+H]+1 |
N° | m/z | RT [min] | Reference Ion |
---|---|---|---|
1 | 119.0338 | 3.997 | [M-H]−1 |
2 | 127.0389 | 3.424 | [M+H]+1 |
3 | 129.0546 | 11.096 | [M+H]+1 |
4 | 140.0705 | 3.066 | [M+H]+1 |
5 | 143.034 | 3.411 | [M-H]−1 |
6 | 143.034 | 3.89 | [M-H]−1 |
7 | 145.0493 | 6.758 | [M+H]+1 |
8 | 167.0342 | 12.694 | [M-H]−1 |
9 | 212.1028 | 3.055 | [M+H]+1 |
Name | m/z | RT [min] | Reference Ion |
---|---|---|---|
Unknown 1 | 250.1075 | 5.795 | [M+H]+1 |
Unknown 2 | 252.0866 | 5.041 | [M+H]+1 |
Unknown 3 | 252.0868 | 5.877 | [M+H]+1 |
Unknown 4 | 254.1024 | 6.468 | [M+H]+1 |
Unknown 5 | 258.1082 | 3.053 | [M+H]+1 |
Unknown 6 | 258.1092 | 3.413 | [M+H]+1 |
Unknown 7 | 259.0791 | 4.524 | [M+H]+1 |
Unknown 8 | 264.1071 | 3.786 | [M+H]+1 |
Unknown 9 | 264.1081 | 4.516 | [M+H]+1 |
Unknown 10 | 266.1021 | 5.363 | [M+H]+1 |
Unknown 11 | 270.0969 | 4.186 | [M+H]+1 |
Unknown 12 | 271.081 | 5.197 | [M+H]+1 |
Unknown 13 | 276.1181 | 3.448 | [M+H]+1 |
Unknown 14 | 282.1541 | 4.132 | [M+H]+1 |
Unknown 15 | 282.1547 | 4.547 | [M+H]+1 |
Unknown 16 | 284.1129 | 5.305 | [M+H]+1 |
Unknown 17 | 286.09 | 4.504 | [M+H]+1 |
Unknown 18 | 286.1393 | 3.108 | [M+H]+1 |
Unknown 19 | 287.889 | 4.518 | [M+H]+1 |
Unknown 20 | 289.0908 | 3.496 | [M+H]+1 |
Unknown 21 | 293.1129 | 4.341 | [M+H]+1 |
Unknown 22 | 293.1134 | 17.208 | [M+H]+1 |
Unknown 23 | 299.9129 | 0.077 | [M+H]+1 |
Unknown 24 | 301.0896 | 4.475 | [M+H]+1 |
Unknown 25 | 304.8916 | 0.055 | [M+H]+1 |
Unknown 26 | 305.9672 | 5.339 | [M+H]+1 |
Unknown 27 | 306.1545 | 5.351 | [M+H]+1 |
Unknown 28 | 324.128 | 2.777 | [M+H]+1 |
Unknown 29 | 324.1283 | 3.17 | [M+H]+1 |
Unknown 30 | 324.1291 | 5.116 | [M+H]+1 |
Unknown 31 | 328.9158 | 4.727 | [M+H]+1 |
Unknown 32 | 329.0065 | 5.357 | [M+H]+1 |
Unknown 33 | 329.0841 | 5.232 | [M+H]+1 |
Unknown 34 | 329.0841 | 4.463 | [M+H]+1 |
Unknown 35 | 329.0843 | 5.95 | [M+H]+1 |
Unknown 36 | 332.933 | 4.168 | [M+H]+1 |
Unknown 37 | 332.9335 | 4.788 | [M+H]+1 |
Unknown 38 | 337.9725 | 4.707 | [M+H]+1 |
Unknown 39 | 340.15 | 4.117 | [M+H]+1 |
Unknown 40 | 342.1385 | 3.509 | [M+H]+1 |
Unknown 41 | 342.1386 | 2.777 | [M+H]+1 |
Unknown 42 | 345.0583 | 5.248 | [M+H]+1 |
Unknown 43 | 345.0585 | 4.861 | [M+H]+1 |
Unknown 44 | 347.0938 | 3.655 | [M+H]+1 |
Unknown 45 | 347.0942 | 4.076 | [M+H]+1 |
Unknown 46 | 352.16 | 5.138 | [M+H]+1 |
Unknown 47 | 352.1602 | 4.614 | [M+H]+1 |
Unknown 48 | 360.1492 | 3.497 | [M+H]+1 |
Unknown 49 | 360.1494 | 3.695 | [M+H]+1 |
Unknown 50 | 364.1202 | 2.777 | [M+H]+1 |
Unknown 51 | 375.8627 | 0.081 | [M+H]+1 |
Unknown 52 | 380.0941 | 2.791 | [M+H]+1 |
Unknown 53 | 380.887 | 0.091 | [M+H]+1 |
Unknown 54 | 380.8871 | 4.735 | [M+H]+1 |
Unknown 55 | 381.078 | 3.322 | [M+H]+1 |
Unknown 56 | 385.9573 | 5.33 | [M+H]+1 |
Unknown 57 | 386.1647 | 2.792 | [M+H]+1 |
Unknown 58 | 388.1798 | 3.469 | [M+H]+1 |
Unknown 59 | 389.8831 | 4.194 | [M+H]+1 |
Unknown 60 | 403.1216 | 4.566 | [M+H]+1 |
Unknown 61 | 404.8163 | 0.062 | [M+H]+1 |
Unknown 62 | 417.8467 | 2.555 | [M+H]+1 |
Unknown 63 | 438.1713 | 2.856 | [M+H]+1 |
Unknown 64 | 443.047 | 3.28 | [M+H]+1 |
Unknown 65 | 476.16 | 3.323 | [M+H]+1 |
Unknown 66 | 476.1606 | 3.749 | [M+H]+1 |
Unknown 67 | 487.1645 | 3.449 | [M+H]+1 |
Unknown 68 | 601.1938 | 3.898 | [M+H]+1 |
Unknown 69 | 649.2166 | 3.453 | [M+H]+1 |
Unknown 70 | 689.209 | 3.427 | [M+H]+1 |
Unknown 71 | 702.2646 | 3.49 | [M+H]+1 |
Unknown 72 | 707.2195 | 3.392 | [M+H]+1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolchini, S.; Nardin, T.; Morozova, K.; Scampicchio, M.; Larcher, R. Antioxidant Maillard Reaction Products from Milk Whey: A Food By-Product Valorisation. Foods 2025, 14, 450. https://doi.org/10.3390/foods14030450
Bolchini S, Nardin T, Morozova K, Scampicchio M, Larcher R. Antioxidant Maillard Reaction Products from Milk Whey: A Food By-Product Valorisation. Foods. 2025; 14(3):450. https://doi.org/10.3390/foods14030450
Chicago/Turabian StyleBolchini, Sara, Tiziana Nardin, Ksenia Morozova, Matteo Scampicchio, and Roberto Larcher. 2025. "Antioxidant Maillard Reaction Products from Milk Whey: A Food By-Product Valorisation" Foods 14, no. 3: 450. https://doi.org/10.3390/foods14030450
APA StyleBolchini, S., Nardin, T., Morozova, K., Scampicchio, M., & Larcher, R. (2025). Antioxidant Maillard Reaction Products from Milk Whey: A Food By-Product Valorisation. Foods, 14(3), 450. https://doi.org/10.3390/foods14030450