Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,125)

Search Parameters:
Keywords = fluids mixing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 129
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 209
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

22 pages, 5184 KiB  
Article
Evolution Characteristics of Urban Heat Island Circulation for Loess Tableland Valley Towns
by Zhuolei Yu, Yi Wang, Jukun Wang, Xiaoxue Wang and Songheng Wu
Buildings 2025, 15(15), 2649; https://doi.org/10.3390/buildings15152649 - 27 Jul 2025
Viewed by 102
Abstract
Urban heat island circulation (UHIC) determines the wind and thermal environments in urban areas. For Loess Tableland valley towns, the evolution characteristics of the UHIC over this negative terrain are not well understood, and therefore, it is important to investigate the evolution characteristics. [...] Read more.
Urban heat island circulation (UHIC) determines the wind and thermal environments in urban areas. For Loess Tableland valley towns, the evolution characteristics of the UHIC over this negative terrain are not well understood, and therefore, it is important to investigate the evolution characteristics. A city-scale computational fluid dynamics (CSCFD) model is used, and simulation results are validated by the water tank experiment. The evolution process over such negative terrain can be divided into transient and quasi-steady stages, and in the transient stage, the airflow pattern evolves from thermal convection to city-scale closed circulation, while that in the quasi-steady stage is only city-scale closed circulation. In order to further reveal the characteristics of city-scale closed circulation, the sensitivities of different factors influencing the start time, outflow time, mixing height and heat island intensity are analyzed, and the most significant factors influencing these four parameters are urban heat flux, slope height, slope height, and potential temperature lapse rate, respectively. Finally, the dimensionless mixing height and heat island intensity for the valley town increase by 56.80% and 128.68%, respectively, compared to those for the flat city. This study provides guidance for the location and layout of built-up areas in the valley towns. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 4166 KiB  
Article
Power Consumption and Mixing Intensity of Jet Flow Mixer in Industrial Tank
by Julia Wilewska, Wojciech Orciuch, Adam Dudała, Pawel Gierycz and Łukasz Makowski
Energies 2025, 18(15), 3975; https://doi.org/10.3390/en18153975 - 25 Jul 2025
Viewed by 193
Abstract
A jet flow mixer is a novel agitator type widely used in the industry. However, scientific research has yet to be conducted on this impeller type. In this study, six types of fluids with various properties widely used in the paint industry were [...] Read more.
A jet flow mixer is a novel agitator type widely used in the industry. However, scientific research has yet to be conducted on this impeller type. In this study, six types of fluids with various properties widely used in the paint industry were chosen to calculate the positioning of the jet flow mixer in the tank. Calculations were performed using computational fluid dynamics (CFD) software and validated using literature data. Simulations were conducted to consider the inside of the jet flow mixer and the inside of the tank. The initial calculations made for jet flow mixers allowed the determination of volume flow and power numbers for three types of mixers (propeller agitator and Pitched Blade Turbine with three and four blades). Those parameters were then used in subsequent calculations, obtaining the optimal inclination angle of the agitator and power consumption for each considered case. The jet flow mixer with a propeller impeller positioned at an angle of 45° proved to be the choice to achieve the best results. Full article
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Viewed by 223
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

15 pages, 2852 KiB  
Article
Fuel Grain Configuration Adaptation for High-Regression-Rate Hybrid Propulsion Applications
by Lin-Lin Liu, Bo-Biao Li, Ze-Xin Chen and Song-Qi Hu
Aerospace 2025, 12(8), 652; https://doi.org/10.3390/aerospace12080652 - 23 Jul 2025
Viewed by 147
Abstract
Low regression rate is the most critical issue for the development and application of hybrid rocket motors (HRMs). Paraffin-based fuels are potential candidates for HRMs due to their high regression rates but adding polymers to improve strength results in insufficient regression rates for [...] Read more.
Low regression rate is the most critical issue for the development and application of hybrid rocket motors (HRMs). Paraffin-based fuels are potential candidates for HRMs due to their high regression rates but adding polymers to improve strength results in insufficient regression rates for HRMs applications. In this work, Computational Fluid Dynamics (CFD) modeling and analysis were used to investigate the mixing and combustion of gaseous fuels and oxidizers in HRMs for various fuel grains and injector combinations. In addition, the regression rate characteristics and combustion efficiency were evaluated using a ground test. The results showed that the swirling flow with both high mixing intensity and high velocity could be formed by using the swirl injector. The highest mixing degree attained for the star-swirl grain and swirl injector was 86%. The reported combustion efficiency calculated by the CFD model attained a maximum of 93% at the nozzle throat. In addition, a spatially averaged regression rate of 1.40 mm·s−1 was achieved for the star-swirl grain and swirl injector combination when the mass flux of N2O was 89.94 kg·m−2·s−1. This is around 191% higher than the case of non-swirling flow. However, there were obvious local regression rate differences between the root of the star and the slot. The regression rate increase was accompanied by a decrease in the combustion efficiency for the strong swirling flow condition due to the remarkable higher mass flow rate of gasified fuels. It was shown that the nano-sized aluminum was unfavorable for the combustion efficiency, especially under extreme fuel-rich conditions. Full article
Show Figures

Figure 1

24 pages, 13010 KiB  
Article
Dual-Vortex Aerosol Mixing Chamber for Micrometer Aerosols: Parametric CFD Analysis and Experimentally Validated Design Improvements
by Ziran Xu, Junjie Liu, Yue Liu, Jiazhen Lu and Xiao Xu
Processes 2025, 13(8), 2322; https://doi.org/10.3390/pr13082322 - 22 Jul 2025
Viewed by 275
Abstract
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol [...] Read more.
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol sample during evaluation, a portable mixing chamber, where the sample and clean air were dual-vortex turbulent mixed, was designed. By using computational fluid dynamics (CFD), particle motion within the mixing chamber was illustrated or explained. By adjusting critical structure parameters of chamber such as height and diameter, the flow field structure was optimized to improve particle mixing characteristics. Accordingly, a novel portable aerosol mixing chamber with length and inner diameter of 0.7 m and 60 mm was developed. Through a combination of simulations and experiments, the operating conditions, including working flow rate, ratio of carrier/dilution clean air, and mixture duration, were studied. Finally, by using the optimized parameters, a mixing chamber with high spatial uniformity where variation is less than 4% was obtained for aerosol particles ranging from 0.3 μm to 10 μm. Based on this chamber, a standardized testing platform was established to verify the sampling efficiency of aerosol samplers with high flow rate (28.3 L·min−1). The obtained results were consistent with the reference values in the sampler’s manual, confirming the reliability of the evaluation system. The testing platform developed in this study can provide test aerosol particles ranging from sub-micrometers to micrometers and has significant engineering applications, such as atmospheric pollution monitoring and occupational health assessment. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

9 pages, 1276 KiB  
Case Report
“An Unusual Case of Bilateral Sudden Mixed Hearing Loss with Complete Remission”: A Case Report and Pathophysiological Considerations
by Musat Gabriela Cornelia, Codrut Sarafoleanu, Lucia Radu, Ovidiu Musat and Ionut Tanase
Reports 2025, 8(3), 116; https://doi.org/10.3390/reports8030116 - 21 Jul 2025
Viewed by 207
Abstract
Background: Sudden-onset bilateral mixed hearing loss in adults is an extremely rare condition but challenging to diagnose and treat. Conductive hearing loss is associated with otitis media, while the simultaneous presence of a sensorineural component requires supplementary investigation for possible shared pathophysiological mechanisms. [...] Read more.
Background: Sudden-onset bilateral mixed hearing loss in adults is an extremely rare condition but challenging to diagnose and treat. Conductive hearing loss is associated with otitis media, while the simultaneous presence of a sensorineural component requires supplementary investigation for possible shared pathophysiological mechanisms. Case Presentation: We report the case of a 41-year-old male who was admitted to our hospital with a 48 h history of bilateral, fast progressive hearing loss following a viral illness. The audiologic testing revealed bilateral severe mixed hearing loss. Tympanometry indicated the presence of middle-ear effusion, and myringotomy confirmed the existence of pressurized serous fluid. Treatment consisted of systemic and intratympanic corticosteroids, antibiotics, and supportive therapy. The patient had an unexpected full recovery of auditory function within one month. Discussion: Multiple hypotheses were considered. We hypothesized the coexistence of unrelated conductive and sensorineural hearing loss or a unifying pathological process. Theories discussed include a direct viral insult to the cochlear structures or even pressure-mediated damage to the basal cochlea due to the simultaneous inward displacement of the oval and round windows. The complete resolution of hearing loss is the indicator of a reversible etiology, possibly due to transient inner ear dysfunction secondary to middle-ear pathology or viral infection. Conclusions: This case illustrates the complexity of diagnosing acute mixed hearing loss. This report emphasizes a rare case of sudden-onset bilateral mixed hearing loss with a complete recovery, contributing valuable insight into under-reported and diagnostically complex presentations. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

23 pages, 2903 KiB  
Article
Casson Fluid Saturated Non-Darcy Mixed Bio-Convective Flow over Inclined Surface with Heat Generation and Convective Effects
by Nayema Islam Nima, Mohammed Abdul Hannan, Jahangir Alam and Rifat Ara Rouf
Processes 2025, 13(7), 2295; https://doi.org/10.3390/pr13072295 - 18 Jul 2025
Viewed by 310
Abstract
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant [...] Read more.
This paper explores the complex dynamics of mixed convective flow in a Casson fluid saturated in a non-Darcy porous medium, focusing on the influence of gyrotactic microorganisms, internal heat generation, and multiple convective mechanisms. Casson fluids, known for their non-Newtonian behavior, are relevant in various industrial and biological contexts where traditional fluid models are insufficient. This study addresses the limitations of the standard Darcy’s law by examining non-Darcy flow, which accounts for nonlinear inertial effects in porous media. The governing equations, derived from conservation laws, are transformed into a system of no linear ordinary differential equations (ODEs) using similarity transformations. These ODEs are solved numerically using a finite differencing method that incorporates central differencing, tridiagonal matrix manipulation, and iterative procedures to ensure accuracy across various convective regimes. The reliability of this method is confirmed through validation with the MATLAB (R2024b) bvp4c scheme. The investigation analyzes the impact of key parameters (such as the Casson fluid parameter, Darcy number, Biot numbers, and heat generation) on velocity, temperature, and microorganism concentration profiles. This study reveals that the Casson fluid parameter significantly improves the velocity, concentration, and motile microorganism profiles while decreasing the temperature profile. Additionally, the Biot number is shown to considerably increase the concentration and dispersion of motile microorganisms, as well as the heat transfer rate. The findings provide valuable insights into non-Newtonian fluid behavior in porous environments, with applications in bioengineering, environmental remediation, and energy systems, such as bioreactor design and geothermal energy extraction. Full article
Show Figures

Figure 1

33 pages, 6970 KiB  
Article
Wake Characteristics and Thermal Properties of Underwater Vehicle Based on DDES Numerical Simulation
by Yu Lu, Jiacheng Cui, Bing Liu, Shuai Shi and Wu Shao
J. Mar. Sci. Eng. 2025, 13(7), 1371; https://doi.org/10.3390/jmse13071371 - 18 Jul 2025
Viewed by 230
Abstract
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; [...] Read more.
Investigating the coupled hydrodynamic and thermal wakes induced by underwater vehicles is vital for non-acoustic detection and environmental monitoring. Here, the standard SUBOFF model is simulated under eight operating conditions—speeds of 10, 15, and 20 kn; depths of 10, 20, and 30 m; and both with and without thermal discharge—using Delayed Detached Eddy Simulation (DDES) coupled with the Volume of Fluid (VOF) method. Results indicate that, under heat emission conditions, higher speeds accelerate wake temperature decay, making the thermal wake difficult to detect downstream; without heat emission, turbulent mixing dominates the temperature field, and speed effects are minor. With increased speed, wake vorticity at a fixed location grows by about 30%, free-surface wave height rises from 0.05 to 0.15 m, and wavelength remains around 1.8 m, all positively correlated with speed. Dive depth is negatively correlated with wave height, decreasing from 0.15 to 0.04 m as depth increases from 5 to 20 m, while wavelength remains largely unchanged. At a 10 m submergence depth, the thermal wake is clearly detectable on the surface but becomes hard to detect beyond 20 m, indicating a pronounced depth effect on its visibility. These results not only confirm the positive correlation between vessel speed and wake vorticity reported in earlier studies but also extend those findings by providing the first quantitative evaluation of how submergence depth critically limits thermal wake visibility beyond 20 m. This research provides quantitative evaluations of wake characteristics under varying speeds, depths, and heat emissions, offering valuable insights for stealth navigation and detection technologies. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

37 pages, 3624 KiB  
Article
Modelling a Lab-Scale Continuous Flow Aerobic Granular Sludge Reactor: Optimisation Pathways for Scale-Up
by Melissa Siney, Reza Salehi, Mohamed G. Hassan, Rania Hamza and Ihab M. T. A. Shigidi
Water 2025, 17(14), 2131; https://doi.org/10.3390/w17142131 - 17 Jul 2025
Viewed by 617
Abstract
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, [...] Read more.
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, lowering the land footprint and improving efficiency. This research investigates the optimisation of a lab-scale sequencing batch reactor (SBR) into a continuous flow reactor through mathematical modelling, sensitivity analysis, and a computational fluid dynamic model. This is all applied for the future goal of scaling up the model designed to a full-scale continuous flow reactor. The mathematical model developed analyses microbial kinetics, COD degradation, and mixing flows using Reynolds and Froude numbers. To perform a sensitivity analysis, a Python code was developed to investigate the stability when influent concentrations and flow rates vary. Finally, CFD simulations on ANSYS Fluent evaluated the mixing within the reactor. An 82% COD removal efficiency was derived from the model and validated against the SBR data and other configurations. The sensitivity analysis highlighted the reactor’s inefficiency in handling high-concentration influents and fast flow rates. CFD simulations revealed good mixing within the reactor; however, they did show issues where biomass washout would be highly likely if applied in continuous flow operation. All of these results were taken under deep consideration to provide a new reactor configuration to be studied that may resolve all these downfalls. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

21 pages, 5158 KiB  
Article
Genesis of the Erentaolegai Silver Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusion and H-O-S Isotopes
by Yushan Zuo, Xintong Dong, Zhengxi Gao, Liwen Wu, Zhao Liu, Jiaqi Xu, Shanming Zhang and Wentian Mi
Minerals 2025, 15(7), 748; https://doi.org/10.3390/min15070748 - 17 Jul 2025
Viewed by 265
Abstract
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization [...] Read more.
The Erentaolegai silver deposit is located within the Derbugan metallogenic belt in the eastern segment of the Central Asia–Mongolia giant orogenic belt. The ore bodies are primarily hosted in the volcanic rocks of the Middle Jurassic Tamulangou Formation of the Mesozoic. The mineralization process of the deposit is divided into three stages: Stage I: Pyrite–Quartz Stage; Stage II: Sulfide–Quartz Stage; Stage III: Quartz–Manganese Carbonate Stage. This paper discusses the ore-forming fluids, ore-forming materials, and deposit genesis of the Erentaolegai silver deposits using fluid inclusions microthermometry, laser Raman spectroscopy, and H-O-S isotope analyses. Fluid inclusion microthermometry and laser Raman spectroscopy analyses indicate that the Erentaolegai silver deposit contains exclusively fluid-rich two-phase fluid inclusions, all of which belong to the H2O-NaCl system. Homogenization temperatures of fluid inclusions in the three stages (from early to late) ranged from 257 to 311 °C, 228 to 280 °C, and 194 to 238 °C, corresponding to salinities of 1.91 to 7.86 wt%, 2.07 to 5.41 wt%, and 0.70–3.55 wt% NaCl equivalent, densities of 0.75 to 0.83 g/cm−3, 0.80 to 0.86 g/cm−3 and 0.85 to 0.89 g/cm−3. The mineralization pressure ranged from 12.2 to 29.5 MPa, and the mineralization depth was 0.41 to 0.98 km, indicating low-pressure and shallow-depth mineralization conditions. H-O isotope results indicate that the ore-forming fluid is a mixture of magmatic fluids and meteoric water, with meteoric contribution dominating in the late stage. The δ34S values of metallic sulfides ranged from −1.8 to +4.0‰, indicating that the metallogenic material of the Erentaolegai silver deposit was dominated by a deep magmatic source. This study concludes that meteoric water mixing and subsequent fluid cooling served as the primary mechanism for silver mineral precipitation. The Erentaolegai silver deposit is classified as a low-sulfidation epithermal silver deposit. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

17 pages, 2902 KiB  
Article
Analysis of Sand Production Mechanisms in Tight Gas Reservoirs: A Case Study from the Wenxing Gas Area, Northwestern Sichuan Basin
by Qilin Liu, Xinyao Zhang, Cheng Du, Kaixiang Di, Shiyi Xie, Huiying Tang, Jing Luo and Run Shu
Processes 2025, 13(7), 2278; https://doi.org/10.3390/pr13072278 - 17 Jul 2025
Viewed by 287
Abstract
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing [...] Read more.
In tight sandstone gas reservoirs, proppant flowback severely limits stable gas production. This study uses laboratory flowback experiments and field analyses of the ShaXimiao tight sandstone in the Wenxing gas area to investigate the mechanisms controlling sand production. The experiments show that displacing fluid viscosity significantly affects the critical sand-flow velocity: with high-viscous slickwater (5 mPa·s), the critical velocity is 66% lower than with low-viscous formation water (1.15 mPa·s). The critical velocity for coated proppant is three times that of the mixed quartz sand and coated proppant. If the confining pressure is maintained, but the flow rate is further increased after the proppant flowback, a second instance of sand production can be observed. X-ray diffraction (XRD) tests were conducted for sand produced from practical wells to help find the sand production reasons. Based on experimental and field data analysis, sand production in Well X-1 primarily results from proppant detachment during rapid shut-in/open cycling operations, while in Well X-2, it originates from proppant crushing. The risk of formation sand production is low for both wells (the volumetric fraction of calcite tested from the produced sands is smaller than 0.5%). These findings highlight the importance of fluid viscosity, proppant consolidation, and pressure management in controlling sand production. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

5 pages, 958 KiB  
Proceeding Paper
Modification of Ornamental Stone Wastes with Terephthalic Acid for Use as an Additive in Drilling Fluids
by Kelly C. C. S. R. Moreira, Cleocir J. Dalmaschio and Andreas Nascimento
Proceedings 2025, 121(1), 6; https://doi.org/10.3390/proceedings2025121006 - 16 Jul 2025
Viewed by 133
Abstract
This study explores the reuse of Ornamental Stone Waste (OSW) in water-based drilling fluids, investigating its potential as a substitute for bentonite. To enhance stability and rheology, OSW particles were functionalized with terephthalic acid (TPA) and combined with xanthan gum (XG). Characterization confirmed [...] Read more.
This study explores the reuse of Ornamental Stone Waste (OSW) in water-based drilling fluids, investigating its potential as a substitute for bentonite. To enhance stability and rheology, OSW particles were functionalized with terephthalic acid (TPA) and combined with xanthan gum (XG). Characterization confirmed successful surface modification, with increased stability at a basic pH. However, rheological analysis showed that the physical mixing of OSW-TPA with XG resulted in low viscosity and poor yield stress, indicating weak interactions. All formulations exhibited shear-thinning behavior. Future work will focus on promoting chemical interactions to form nanocomposite structures and improve fluid performance. Full article
Show Figures

Figure 1

16 pages, 2247 KiB  
Article
Feasibility of Hypotension Prediction Index-Guided Monitoring for Epidural Labor Analgesia: A Randomized Controlled Trial
by Okechukwu Aloziem, Hsing-Hua Sylvia Lin, Kourtney Kelly, Alexandra Nicholas, Ryan C. Romeo, C. Tyler Smith, Ximiao Yu and Grace Lim
J. Clin. Med. 2025, 14(14), 5037; https://doi.org/10.3390/jcm14145037 - 16 Jul 2025
Viewed by 392
Abstract
Background: Hypotension following epidural labor analgesia (ELA) is its most common complication, affecting approximately 20% of patients and posing risks to both maternal and fetal health. As digital tools and predictive analytics increasingly shape perioperative and obstetric anesthesia practices, real-world implementation data are [...] Read more.
Background: Hypotension following epidural labor analgesia (ELA) is its most common complication, affecting approximately 20% of patients and posing risks to both maternal and fetal health. As digital tools and predictive analytics increasingly shape perioperative and obstetric anesthesia practices, real-world implementation data are needed to guide their integration into clinical care. Current monitoring practices rely on intermittent non-invasive blood pressure (NIBP) measurements, which may delay recognition and treatment of hypotension. The Hypotension Prediction Index (HPI) algorithm uses continuous arterial waveform monitoring to predict hypotension for potentially earlier intervention. This clinical trial evaluated the feasibility, acceptability, and efficacy of continuous HPI-guided treatment in reducing time-to-treatment for ELA-associated hypotension and improving maternal hemodynamics. Methods: This was a prospective randomized controlled trial design involving healthy pregnant individuals receiving ELA. Participants were randomized into two groups: Group CM (conventional monitoring with NIBP) and Group HPI (continuous noninvasive blood pressure monitoring). In Group HPI, hypotension treatment was guided by HPI output; in Group CM, treatment was based on NIBP readings. Feasibility, appropriateness, and acceptability outcomes were assessed among subjects and their bedside nurse using the Acceptability of Intervention Measure (AIM), Intervention Appropriateness Measure (IAM), and Feasibility of Intervention Measure (FIM) instruments. The primary efficacy outcome was time-to-treatment of hypotension, defined as the duration between onset of hypotension and administration of a vasopressor or fluid therapy. This outcome was chosen to evaluate the clinical responsiveness enabled by HPI monitoring. Hypotension is defined as a mean arterial pressure (MAP) < 65 mmHg for more than 1 min in Group CM and an HPI threshold < 75 for more than 1 min in Group HPI. Secondary outcomes included total time in hypotension, vasopressor doses, and hemodynamic parameters. Results: There were 30 patients (Group HPI, n = 16; Group CM, n = 14) included in the final analysis. Subjects and clinicians alike rated the acceptability, appropriateness, and feasibility of the continuous monitoring device highly, with median scores ≥ 4 across all domains, indicating favorable perceptions of the intervention. The cumulative probability of time-to-treatment of hypotension was lower by 75 min after ELA initiation in Group HPI (65%) than Group CM (71%), although this difference was not statistically significant (log-rank p = 0.66). Mixed models indicated trends that Group HPI had higher cardiac output (β = 0.58, 95% confidence interval −0.18 to 1.34, p = 0.13) and lower systemic vascular resistance (β = −97.22, 95% confidence interval −200.84 to 6.40, p = 0.07) throughout the monitoring period. No differences were found in total vasopressor use or intravenous fluid administration. Conclusions: Continuous monitoring and precision hypotension treatment is feasible, appropriate, and acceptable to both patients and clinicians in a labor and delivery setting. These hypothesis-generating results support that HPI-guided treatment may be associated with hemodynamic trends that warrant further investigation to determine definitive efficacy in labor analgesia contexts. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Graphical abstract

Back to TopTop