Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,087)

Search Parameters:
Keywords = fluid viscosity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1351 KB  
Article
Rheological Evaluation of Acerola Pulp In Natura and Reconstituted Powders Obtained by Foam-Mat Drying
by Leandro Fagundes Mançano and Gabriel Henrique Horta de Oliveira
AgriEngineering 2026, 8(2), 44; https://doi.org/10.3390/agriengineering8020044 (registering DOI) - 2 Feb 2026
Abstract
Acerola is a fruit rich in vitamin C and antioxidants, but it has a short shelf life. Foam-mat dehydration is a promising method for extending the shelf life, but it can change the rheological properties of the powder. Therefore, the present study aimed [...] Read more.
Acerola is a fruit rich in vitamin C and antioxidants, but it has a short shelf life. Foam-mat dehydration is a promising method for extending the shelf life, but it can change the rheological properties of the powder. Therefore, the present study aimed to evaluate the rheology of acerola fresh pulp and the reconstituted powder, obtained by drying at 60 °C using the foam-mat method with the additive Emustab (4%), to indicate which powder concentration possesses similar rheological properties to the fresh pulp. The experiment was performed with different concentrations of reconstituted powder in deionized water (2, 4, 6, 8 and 10%, w/v). The Herschel–Bulkley model was the one that adequately adjusted to the experimental rheological data, showing that the reconstituted powder and fresh pulp are non-Newtonian fluids with pseudoplastic behavior and initial shear stress. Shear stress rose and apparent viscosity decreased with increasing shear rate, regardless of the concentration. Emustab did not modify the rheological characteristics of the acerola pulp, which maintained the non-Newtonian fluid characteristic. The 2% concentration provides a reconstituted product more like the fresh pulp. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Graphical abstract

17 pages, 2934 KB  
Article
A Microfluidic Platform for Viscosity Testing of Non-Newtonian Fluids in Engineering and Biomedical Applications
by Yii-Nuoh Chang and Da-Jeng Yao
Micromachines 2026, 17(2), 201; https://doi.org/10.3390/mi17020201 (registering DOI) - 1 Feb 2026
Abstract
This study presents a microfluidic platform for non-Newtonian fluid viscosity sensing, integrating a high-flow-rate flow field stabilizer to mitigate flow uniformity limitations under elevated flow rate conditions. Building upon an established dual-phase laminar flow principle that determines relative viscosity via channel occupancy, this [...] Read more.
This study presents a microfluidic platform for non-Newtonian fluid viscosity sensing, integrating a high-flow-rate flow field stabilizer to mitigate flow uniformity limitations under elevated flow rate conditions. Building upon an established dual-phase laminar flow principle that determines relative viscosity via channel occupancy, this research aimed to extend the measurable viscosity range from 1–10 cP to 1–50 cP, which covers viscosity regimes relevant to biomedical fluids, dairy products during gelation, and low-to-moderate viscosity industrial liquids. A flow stabilizer was developed through computational fluid dynamics simulations, optimizing three key design parameters: blocker position, porosity, and the number of outlet paths. The N5 design proved most effective, providing over 50% reduction in standard deviation for asymmetric velocity distribution in high-flow simulations. The system was validated using simulated blood and dairy samples, achieving over 95% viscosity accuracy with less than 5% sample volume error compared to conventional viscometers. The chip successfully captured viscosity transitions during milk acidification and gelation, demonstrating excellent agreement with standard measurements. This low-volume, high-precision platform offers promising potential for applications in food engineering, biomedical diagnostics, and industrial fluid monitoring, enhancing microfluidic rheometry capabilities. Full article
(This article belongs to the Special Issue Microfluidics in Biomedical Research)
Show Figures

Figure 1

27 pages, 5961 KB  
Article
Experimental Study of the Effect of Surface Texture in Sliding Contacts Using Infrared Thermography
by Milan Omasta, Tomáš Knoth, Petr Šperka, Michal Hajžman, Ivan Křupka, Pavel Polach and Martin Hartl
Lubricants 2026, 14(2), 64; https://doi.org/10.3390/lubricants14020064 (registering DOI) - 31 Jan 2026
Viewed by 73
Abstract
This study investigates the influence of surface texturing on temperature distribution in lubricated sliding contacts using infrared thermography. The work addresses the broader challenge of understanding thermal effects in conformal hydrodynamic contacts, where localized heating and viscosity variations can significantly affect tribological performance. [...] Read more.
This study investigates the influence of surface texturing on temperature distribution in lubricated sliding contacts using infrared thermography. The work addresses the broader challenge of understanding thermal effects in conformal hydrodynamic contacts, where localized heating and viscosity variations can significantly affect tribological performance. A pin-on-disc configuration was employed, featuring steel pins with laser-etched micro-dimples that slid against a sapphire disc, allowing for thermal imaging of the contact zone. A dual-bandpass filter infrared thermography technique was developed and rigorously calibrated to distinguish between the temperatures of the steel surface and the lubricant film. Friction measurements and laser-induced fluorescence were used in parallel to assess contact conditions and the behavior of the lubricant film. The results show that surface textures can alter local frictional heating and contribute to non-uniform temperature distributions, particularly in parallel contact geometries. Lubricant temperature was consistently higher than the surface temperature, highlighting the role of shear heating within the fluid film. However, within the tested parameter range, no unambiguous viscosity-wedge signature was identified beyond the dominant temperature-driven viscosity reduction captured by the in situ correction. The method provides a novel means of experimentally resolving temperature fields in sliding textured contacts, offering a valuable foundation for validating thermo-hydrodynamic models in lubricated tribological systems. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology, 2nd Edition)
Show Figures

Figure 1

13 pages, 1821 KB  
Article
Particles in Band Saw Coolant: Size Distributions and Implications for Guide Clearances and Friction
by Matthias Schmid, Tobias Tandler, Hans-Christian Möhring and Katharina Schmitz
Materials 2026, 19(3), 555; https://doi.org/10.3390/ma19030555 - 30 Jan 2026
Viewed by 135
Abstract
In metal band sawing, higher cutting speeds increase frictional heat at sliding guide blocks. Recirculating water-miscible metalworking fluids (MWFs) often lack fine filtration and accumulate debris that can enter the guide–band interface. A 1 L coolant sample collected after 22.5 m2 of [...] Read more.
In metal band sawing, higher cutting speeds increase frictional heat at sliding guide blocks. Recirculating water-miscible metalworking fluids (MWFs) often lack fine filtration and accumulate debris that can enter the guide–band interface. A 1 L coolant sample collected after 22.5 m2 of cutting contained a particle load of 0.438 g/L; optical sizing yielded a number-median maximum Feret diameter of 345 µm, with particles up to 1.5 mm. Compared with typical guide clearances (~0.1 mm), these sizes imply frequent ingress/bridging and three-body interactions. The coolant viscosity follows an Andrade relation and decreases by ~2% K−1 around 40 °C. HFRR tribometry indicates low steady-state friction (µ ≈ 0.12), comparable to cutting oil. Together, these results provide quantitative design inputs for next-generation guide clearances and targeted filtration/coolant-delivery concepts in high-speed band sawing. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing—Second Edition)
Show Figures

Figure 1

24 pages, 11871 KB  
Article
MCV-Driven Effective Viscosity Modulation and Its Hemodynamic Impact in an Idealized Carotid Bifurcation: A Computational Fluid Dynamics Study
by Arif Çutay, Hakan Bayrakcı, Özdeş Çermik and Muharrem İmal
Fluids 2026, 11(2), 40; https://doi.org/10.3390/fluids11020040 - 29 Jan 2026
Viewed by 151
Abstract
Mean corpuscular volume (MCV) is a routinely measured hematological parameter that influences blood viscosity by altering red blood cell volume and packing density. Although MCV is physiologically linked to hemorheological behavior, to the authors’ knowledge, its direct [...] Read more.
Mean corpuscular volume (MCV) is a routinely measured hematological parameter that influences blood viscosity by altering red blood cell volume and packing density. Although MCV is physiologically linked to hemorheological behavior, to the authors’ knowledge, its direct role in modulating large-artery hemodynamics has not been systematically quantified. This study introduces an MCV-driven effective Newtonian viscosity mode to evaluate the first-order impact of MCV variation on carotid bifurcation flow. Rather than employing shear-dependent constitutive laws, blood viscosity was scaled through an MCV-based formulation, yielding three Newtonian fluids corresponding to clinically relevant MCV levels of 70, 90, and 110 fL. Pulsatile CFD simulations were performed in four idealized carotid bifurcation geometries (40°, 50°, 65°, and 100°) to assess the combined influence of vascular geometry and MCV-dependent viscosity variation. Hemodynamic indices including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were quantified, and a two-way analysis of variance (ANOVA) was employed to distinguish the relative contributions of geometric configuration and MCV. Across the investigated MCV range, increasing MCV produced a geometry-dependent modulation of shear-based indices, with TAWSS increasing by up to approximately 11%, while OSI and RRT decreased by about 20–25% and 10%, respectively, particularly in geometries exhibiting pronounced flow separation. Although vascular geometry remained the dominant determinant of overall hemodynamic patterns, MCV-induced viscosity scaling significantly modulated low-shear and recirculation regions. These findings suggest that MCV-dependent viscosity scaling can complement patient-specific hemodynamic assessments and provide a rational baseline for future shear-dependent and personalized rheological modeling frameworks. Full article
Show Figures

Figure 1

11 pages, 5975 KB  
Article
Rheological Characterization of Cerebrospinal Fluid Under Different Temperature Conditions
by Thessa-Carina Bauer, Elke Bradt, Sabine Hild, Andreas Gruber, Tobias Rossmann, Francisco Ruiz-Navarro, Johannes Oberndorfer, Harald Stefanits and Milan Kracalik
Fluids 2026, 11(2), 38; https://doi.org/10.3390/fluids11020038 - 28 Jan 2026
Viewed by 136
Abstract
The flow behavior of fluids can be characterized by rheology and is especially used in the field of polymeric materials. This study focused on characterizing cerebrospinal fluid (CSF) of patients who developed hydrocephalus after subarachnoid hemorrhage (SAH) with rheology. Samples were drawn from [...] Read more.
The flow behavior of fluids can be characterized by rheology and is especially used in the field of polymeric materials. This study focused on characterizing cerebrospinal fluid (CSF) of patients who developed hydrocephalus after subarachnoid hemorrhage (SAH) with rheology. Samples were drawn from an external ventricular drainage (EVD) at four pre-defined time points after the initial hemorrhage. The CSF samples were analyzed using a rotational rheometer with a double gap geometry. In addition to the characterization of viscoelastic parameters, the cumulative storage factor was calculated to determine the interactions in the fluid. In order to investigate the temperature dependence of the CSF properties, the oscillatory measurements were implemented at certain temperatures that simulated specific conditions, such as 5 °C, at which temperature the CSF samples were stored; 35 °C for hypothermic conditions; 37 °C for physiologic conditions; and 40 °C for elevated body temperature. The overall goal was to evaluate whether rheology-based parameters may help in the prediction of shunt dependence for post-hemorrhagic hydrocephalus patients. For this aim, rheological parameters were correlated to certain laboratory parameters, such as erythrocyte and leukocyte count, glucose, lactate, and total protein concentration. Full article
(This article belongs to the Section Non-Newtonian and Complex Fluids)
Show Figures

Figure 1

24 pages, 7770 KB  
Article
Multi-Response Optimization of Thermal Conductivity and Rheological Behavior in Nanoparticle-Enhanced Vegetable Oil Emulsions
by Vishal Shenoy P, Vijay Kini M, Raghuvir Pai B, Srinivas Shenoy Heckadka, Raviraj Shetty, Supriya J. P and Adithya Hegde
J. Compos. Sci. 2026, 10(2), 63; https://doi.org/10.3390/jcs10020063 - 25 Jan 2026
Viewed by 215
Abstract
In metal cutting industries, optimizing the thermal conductivity and viscosity of vegetable oil-based cutting fluids is critical for ensuring efficient heat dissipation, effective lubrication, and sustainability, directly influencing tool life and machining performance. This study presents a comprehensive experimental analysis employing statistical methods, [...] Read more.
In metal cutting industries, optimizing the thermal conductivity and viscosity of vegetable oil-based cutting fluids is critical for ensuring efficient heat dissipation, effective lubrication, and sustainability, directly influencing tool life and machining performance. This study presents a comprehensive experimental analysis employing statistical methods, particularly Taguchi’s Design of Experiments, to evaluate the thermal conductivity and viscosity of Pongamia pinnata, sunflower, and coconut oil incorporated with Silicon Dioxide (SiO2), Hexagonal Boron Nitride (hBN), and Cupric Oxide (CuO) nanoparticles across different emulsion ratios and nanoparticle volume fractions. The results revealed that Pongamia pinnata oil containing 0.5 (Vol.%) SiO2 nanoparticles at an emulsion ratio of 1:7 achieved the maximum thermal conductivity, measured at 0.637 W/mK. Additionally, the results revealed that Pongamia pinnata oil at an emulsion ratio of 1:13 exhibited the highest viscosity of 1.33 mPa·S, confirming that both the type of cutting oil and the emulsion ratio are the primary factors influencing viscosity. Further, the ANOVA analysis for thermal conductivity and viscosity highlights that the type of cutting fluid is the dominant factor, accounting for 90.58% of the total variance in thermal conductivity and 70.47% in viscosity, each with a highly significant p-value of 0.00, underscoring its decisive impact on the stability of both properties. Overall, this research offers important guidance for the selection and formulation of vegetable oil-based emulsions with nanoparticle additives. The results support the development of advanced nano lubricants with enhanced performance, catering to the increasing requirements of diverse industrial applications. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

23 pages, 4376 KB  
Article
A Study on Paste Flow and Pipe Wear in Cemented Paste Backfill Pipelines
by Xiangyu Xie, Scott Cheevers, Y. X. Zhang, Kejun Dong, Zhongpu (Leo) Zhang, Dean Harty, Andrew Stonier-Gibson and Richard (Chunhui) Yang
Appl. Sci. 2026, 16(3), 1217; https://doi.org/10.3390/app16031217 - 24 Jan 2026
Viewed by 202
Abstract
Cemented paste backfill (CPB) is widely used in mining operations to enhance underground stope stability, production, and safety. Accurately predicting paste flow behaviours in backfill reticulation circuits is crucial for efficient delivery control and asset longevity. However, the predictions remain challenging due to [...] Read more.
Cemented paste backfill (CPB) is widely used in mining operations to enhance underground stope stability, production, and safety. Accurately predicting paste flow behaviours in backfill reticulation circuits is crucial for efficient delivery control and asset longevity. However, the predictions remain challenging due to complex rheology and flow-induced particle heterogeneities of CPB. This study develops a computational fluid dynamics (CFD)-based analysis framework to investigate flow dynamics of the CPB and the wear conditions of the pipes, considering slip layer and shear-induced particle migration. Experimental loop tests are conducted to measure pressure drops of CPB at different velocities, providing data for validating the developed CFD model. Simulation results are in good agreement with the measured pressure drops and wear rates of the internal pipeline wall. Furthermore, comparisons with existing models indicate that the developed model provides more accurate predictions. Microscopical analyses reveal that shear-induced particle migration leads to the formation of a distinct plug flow region, with particles accumulating near the unyielded boundary. Meanwhile, a low particle concentration near the pipe wall reduces local viscosity and pressure drop. Parametric studies reveal that increased flow velocity and reduced pipe diameter significantly elevate both pressure drop and wear rate, while higher solid concentrations induce nonlinear rheological effects. Full article
Show Figures

Figure 1

20 pages, 4247 KB  
Article
Effects of Milling-Medium Physicochemical Properties on Particle-Size Reduction and Surface Properties of Illite During Wet Ball Milling
by Nayeon Lee, Hyerin Lee, Yujin Jeong and Jin Hyun Lee
Minerals 2026, 16(1), 116; https://doi.org/10.3390/min16010116 - 22 Jan 2026
Viewed by 88
Abstract
Illite, a clay mineral, is used in diverse fields such as agriculture, cosmetics, and the food-related industry due to its many advantages, including biocompatibility, UV protection, antibacterial activity, high adsorption capacity for hazardous substances, and cost-effectiveness. However, its relatively large size, broad size [...] Read more.
Illite, a clay mineral, is used in diverse fields such as agriculture, cosmetics, and the food-related industry due to its many advantages, including biocompatibility, UV protection, antibacterial activity, high adsorption capacity for hazardous substances, and cost-effectiveness. However, its relatively large size, broad size distribution, and irregular morphology limit its broader applications. This study investigated the control of particle size and distribution during wet ball milling (WBM) using five media—acetone, ethanol, water, aqueous NaCl solution, and aqueous phosphoric acid solution—over milling times of 2–10 h. Prolonged milling progressively reduced particle size and narrowed the size distribution. Acetone and ethanol exhibited notably superior size-reduction performance compared with the aqueous systems, among which phosphoric acid solution showed the least effectiveness, likely attributed to variations in their physicochemical properties, including viscosity (η) and surface tension (σ), and in their interfacial interactions with illite. Optimal milling in acetone for 10 h resulted in the smallest particles (~700 nm), the narrowest distribution, the largest specific surface area, and the highest moisture retention. Overall, these findings demonstrate that the physicochemical properties of the milling medium, which govern WBM efficiency through fluid dynamics and particle–medium interactions, thereby determine the size and distribution of milled particles. Full article
(This article belongs to the Collection Clays and Other Industrial Mineral Materials)
Show Figures

Figure 1

23 pages, 7133 KB  
Article
Energy Transfer Characteristics of Surface Vortex Heat Flow Under Non-Isothermal Conditions Based on the Lattice Boltzmann Method
by Qing Yan, Lin Li and Yunfeng Tan
Processes 2026, 14(2), 378; https://doi.org/10.3390/pr14020378 - 21 Jan 2026
Viewed by 158
Abstract
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to [...] Read more.
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to deterioration of downstream product quality and abnormal equipment operation. The vortex evolution process exhibits notable three-dimensional unsteadiness, multi-scale turbulence, and dynamic gas–liquid interfacial changes, accompanied by strong coupling effects between temperature gradients and flow field structures. Traditional macroscopic numerical models show clear limitations in accurately capturing these complex physical mechanisms. To address these challenges, this study developed a mesoscopic numerical model for gas-liquid two-phase vortex flow based on the lattice Boltzmann method. The model systematically reveals the dynamic behavior during vortex evolution and the multi-field coupling mechanism with the temperature field while providing an in-depth analysis of how initial perturbation velocity regulates vortex intensity and stability. The results indicate that vortex evolution begins near the bottom drain outlet, with the tangential velocity distribution conforming to the theoretical Rankine vortex model. The vortex core velocity during the critical penetration stage is significantly higher than that during the initial depression stage. An increase in the initial perturbation velocity not only enhances vortex intensity and induces low-frequency oscillations of the vortex core but also markedly promotes the global convective heat transfer process. With regard to the temperature field, an increase in fluid temperature reduces the viscosity coefficient, thereby weakening viscous dissipation effects, which accelerates vortex development and prolongs drainage time. Meanwhile, the vortex structure—through the induction of Taylor vortices and a spiral pumping effect—drives shear mixing and radial thermal diffusion between fluid regions at different temperatures, leading to dynamic reconstruction and homogenization of the temperature field. The outcomes of this study not only provide a solid theoretical foundation for understanding the generation, evolution, and heat transfer mechanisms of vortices under industrial thermal conditions, but also offer clear engineering guidance for practical production-enabling optimized operational parameters to suppress vortices and enhance drainage efficiency. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 3943 KB  
Article
Capture Radius of Rod-Shaped Matrix: Characteristics and Influencing Factors in Low-Intensity Gradient Magnetic Fields
by Hongliang Shang, Tiange Wang, Zhengchang Shen and Guoping Li
Minerals 2026, 16(1), 109; https://doi.org/10.3390/min16010109 - 21 Jan 2026
Viewed by 79
Abstract
In magnetic separation processes, the capture radius Rc of magnetic particles achieved by the magnetic matrix constitutes a critical parameter governing the separation efficiency and operational performance of magnetic separation equipment. Through a systematic study of the characteristics of Rc and [...] Read more.
In magnetic separation processes, the capture radius Rc of magnetic particles achieved by the magnetic matrix constitutes a critical parameter governing the separation efficiency and operational performance of magnetic separation equipment. Through a systematic study of the characteristics of Rc and the factors influencing it, the application capability of separation systems can be notably improved. To address the lack of systematic research on Rc under low magnetic field intensities (<0.6 T), a key gap compared to conventional high gradient magnetic separation (HGMS) operating at ≥0.6 T, the motion trajectories of magnetic particles adjacent to a rod-shaped matrix, as well as their final capture or repulsion behaviors, were observed via a high-speed camera. Concurrently, these processes were accurately reproduced using the finite element method (FEM). This study innovatively integrates experimental validation and FEM simulation, achieving mutual verification that single-method studies cannot provide. Based on the experimentally validated FEM model, the effects of magnetic field intensity H, rod-shaped matrix diameter Φ, magnetic particle diameter d, and fluid viscosity η on the motion of magnetic particles were methodically investigated. The velocity characteristics of particles at critical positions between the capture and repulsion zones were analyzed to determine the capture radius of the rod-shaped matrix under specified conditions. Drawing on the identified parametric effects, the developed capture radius prediction model fills the research gap in low-intensity HGMS and serves as a theoretical reference for optimizing both the spacing design of industrial-scale rod-shaped matrix arrays and their matching with relevant operating parameters, and the development of energy-efficient magnetic separation equipment. Full article
Show Figures

Graphical abstract

15 pages, 9324 KB  
Article
Melt Pool Dynamics and Quantitative Prediction of Surface Topography in Laser Selective Forming of Optical Glass
by Lianshuang Ning, Weijie Fu and Xinming Zhang
Machines 2026, 14(1), 122; https://doi.org/10.3390/machines14010122 - 21 Jan 2026
Viewed by 138
Abstract
Laser local forming is an effective method for reshaping optical glass, yet the deformation of the material during the cooling phase remains poorly understood. This study investigates the dynamic evolution of the molten pool, specifically focusing on the transition from an initial convex [...] Read more.
Laser local forming is an effective method for reshaping optical glass, yet the deformation of the material during the cooling phase remains poorly understood. This study investigates the dynamic evolution of the molten pool, specifically focusing on the transition from an initial convex shape to a final “M-shaped” profile. A combined approach using thermal-fluid simulation and high-speed imaging experiments was employed to track the surface changes throughout the heating and cooling cycles. The results show that while the surface bulges outward during laser irradiation, the material redistributes after the laser is switched off due to non-uniform cooling and volumetric shrinkage. The specific roles of viscosity and surface tension in driving this reverse flow were identified. Furthermore, the study established a quantitative model linking laser parameters to the final surface dimensions, providing a reliable tool for predicting and controlling the precision of glass forming. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

14 pages, 1711 KB  
Article
Viscoelastic Properties of Organosilicon Fluid Interlayer at Low-Frequency Shear Deformations
by Tuyana Dembelova, Badma Badmaev, Aleksandr Mashanov, Dari Dembelova, Michael I. Ojovan and Migmar Darmaev
Fluids 2026, 11(1), 25; https://doi.org/10.3390/fluids11010025 - 19 Jan 2026
Viewed by 121
Abstract
The present work explores the viscoelastic properties of a homologous series of organosilicon fluids (polymethylsiloxane fluids) using the acoustic resonant method at a frequency of shear vibrations of approximately 100 kHz. The resonant method is based on investigating the influence of additional binding [...] Read more.
The present work explores the viscoelastic properties of a homologous series of organosilicon fluids (polymethylsiloxane fluids) using the acoustic resonant method at a frequency of shear vibrations of approximately 100 kHz. The resonant method is based on investigating the influence of additional binding forces on the resonant characteristics of the oscillatory system. The fluid under study was placed between a piezoelectric quartz crystal that performs tangential oscillations and a solid cover plate. Standing shear waves were established in the fluid. The thickness of the liquid layer was much smaller than the length of the shear wavelength, and low-amplitude deformations allowed for the determination of the complex shear modulus G* in the linear region, where the shear modulus has a constant value. The studies demonstrated the presence of a viscoelastic relaxation process at the experimental frequency, which is several orders of magnitude lower than the known high-frequency relaxation in liquids. In this work, the relaxation frequency of the viscoelastic process in the studied fluids and the effective viscosity were calculated, and the lengths of the shear wave and the attenuation coefficients were determined. Full article
Show Figures

Figure 1

16 pages, 4487 KB  
Article
Mechanisms and Mitigation of Viscous Fingering in Immiscible Displacement: Insights from Flow Channeling and Capillary Effects in Porous Media
by Xin Yang, Bo Kang, Qi Deng, Zhongrong Mi, Ce Duan, Weiguang Wang and Yanbing Tang
Processes 2026, 14(2), 348; https://doi.org/10.3390/pr14020348 - 19 Jan 2026
Viewed by 180
Abstract
The investigation of fluid flow channeling and viscous fingering during immiscible two-phase displacement in subsurface porous media is crucial for optimizing CO2 geological sequestration and improving hydrocarbon recovery. In this study, we develop a pore-scale numerical framework for unsteady state immiscible displacement [...] Read more.
The investigation of fluid flow channeling and viscous fingering during immiscible two-phase displacement in subsurface porous media is crucial for optimizing CO2 geological sequestration and improving hydrocarbon recovery. In this study, we develop a pore-scale numerical framework for unsteady state immiscible displacement based on a body-centered cubic percolation network, which explicitly captures the coupled effects of pore-scale heterogeneity, capillary number, and unfavorable viscosity ratio on flow channeling and viscous fingering. The simulations reveal that viscous fingering and flow channeling preferentially occur along overlapping high conductivity pathways that conform to the minimum energy dissipation principle. Along these preferential routes, the local balance between viscous and capillary forces governs the stability of the two-phase interface and gives rise to distinct patterns and intensities of viscous fingering in the invading phase. Building on these insights, we establish a theoretical framework that quantifies how the critical pore radius and capillary number control the onset and growth of interfacial instabilities during immiscible displacement. The model demonstrates that lowering the injection rate, and hence, the effective capillary number, suppresses viscous fingering, leading to more stable displacement fronts. These findings provide practical guidance for the design of injection schemes, helping to enhance oil and gas recovery and improve the storage efficiency and security of CO2 geological sequestration projects. Full article
Show Figures

Figure 1

12 pages, 1419 KB  
Article
Experimental Investigation of Injection Pressure and Permeability Effect on CO2 EOR for Light Oil Reservoirs
by Khaled Enab
Gases 2026, 6(1), 5; https://doi.org/10.3390/gases6010005 - 17 Jan 2026
Viewed by 161
Abstract
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction [...] Read more.
Gas injection is a well-established method for enhancing oil recovery by improving oil mobility, primarily through viscosity reduction. While its application in heavy oil reservoirs is extensively studied, the specific impact of carbon dioxide (CO2) injection pressure on fluid viscosity reduction and the ultimate recovery factor from light oil reservoirs has not been fully investigated. To address this gap, this experimental study systematically explores the effects of CO2 injection pressure and reservoir permeability on light oil recovery. This study conducted miscible, near-miscible, and immiscible gas injection experiments on two core samples with distinct permeabilities (13.4 md and 28 md), each saturated with light oil. CO2 was injected at five different pressures, including conditions ranging from immiscible to initial reservoir pressure. The primary metrics for evaluation were the recovery factor (measured at gas breakthrough, end of injection, and abandonment pressure) and the viscosity reduction of the produced oil. The results conclusively demonstrate that CO2 injection significantly enhances light oil production. A direct proportional relationship was established between both the injection pressure and the recovery factor and between permeability and overall oil production at the gas breakthrough. However, a key finding was the inverse relationship observed between permeability and viscosity reduction: the lower-permeability sample (13.4 md) consistently exhibited a greater percentage of viscosity reduction across all injection pressures than the higher-permeability sample (28 md). This unexpected trend is aligned with the inverse relationship between the permeability and the recovery factor after the gas breakthrough. This outcome suggests that enhanced CO2 solubility, driven by higher confinement pressures within the nanopores of the lower-permeability rock, promotes a localized, near-miscible state. This effect was even evident during immiscible injection, where the low-permeability sample showed a noticeable viscosity reduction and superior long-term production. These findings highlight the critical role of pore-scale confinement in governing CO2 miscibility and its associated viscosity reduction, which should be incorporated into enhanced oil recovery design for unconventional reservoirs. Full article
Show Figures

Figure 1

Back to TopTop