Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = fluid and solute transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 198 KiB  
Opinion
Relation Between Diffusion Equations and Boundary Conditions in Bounded Systems
by Fabio Sattin and Dominique Franck Escande
Foundations 2025, 5(3), 26; https://doi.org/10.3390/foundations5030026 - 31 Jul 2025
Viewed by 76
Abstract
Differential equations need boundary conditions (BCs) for their solution. It is widely acknowledged that differential equations and BCs are representative of independent physical processes, and no correlations between them are required. Two recent studies by Hilhorst, Chung et al. argue instead that, in [...] Read more.
Differential equations need boundary conditions (BCs) for their solution. It is widely acknowledged that differential equations and BCs are representative of independent physical processes, and no correlations between them are required. Two recent studies by Hilhorst, Chung et al. argue instead that, in the specific case of diffusion equations (DEs) in bounded systems, BCs are uniquely constrained by the form of transport coefficients. In this paper, we revisit how DEs emerge as fluid limits out of a picture of stochastic transport. We point out their limits of validity and argue that, in most physical systems, BCs and DEs are actually uncorrelated by virtue of the failure of diffusive approximation near the system’s boundaries. When, instead, the diffusive approximation holds everywhere, we show that the correct chain of reasoning goes in the direction opposite to that conjectured by Hilhorst and Chung: it is the choice of the BCs that determines the form of the DE in the surroundings of the boundary. Full article
(This article belongs to the Section Physical Sciences)
16 pages, 1636 KiB  
Article
Controlled Fission and Superposition of Vector Solitons in an Integrable Model of Two-Component Bose–Einstein Condensates
by Ramesh Kumar Vaduganathan, Rajadurai Vijayan and Boris A. Malomed
Symmetry 2025, 17(8), 1189; https://doi.org/10.3390/sym17081189 - 25 Jul 2025
Viewed by 181
Abstract
We investigate the dynamics of vector solitons in a two-component Bose–Einstein condensates governed by the system of Gross–Pitaevskii equations. Using a gauge-transformation approach, we construct a four-soliton solution and analyze their interactions, including superposition states, fission, and shape-preserving collisions. We explore the ability [...] Read more.
We investigate the dynamics of vector solitons in a two-component Bose–Einstein condensates governed by the system of Gross–Pitaevskii equations. Using a gauge-transformation approach, we construct a four-soliton solution and analyze their interactions, including superposition states, fission, and shape-preserving collisions. We explore the ability of time-dependent parameters, such as the intra- and intercomponent interaction coefficients and trapping potential, to control the soliton properties. In particular, we demonstrate controlled four-soliton fission, highlighting its potential applications to quantum data processing and coherent matter-wave transport. The results suggest experimental realization in BEC systems and provide insights into nonlinear wave interactions in multicomponent quantum fluids. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

23 pages, 8212 KiB  
Review
Recent Developments in the Nonlinear Hydroelastic Modeling of Sea Ice Interaction with Marine Structures
by Sarat Chandra Mohapatra, Pouria Amouzadrad and C. Guedes Soares
J. Mar. Sci. Eng. 2025, 13(8), 1410; https://doi.org/10.3390/jmse13081410 - 24 Jul 2025
Viewed by 347
Abstract
This review provides the recent advancements in nonlinear sea ice modeling for hydroelastic analysis of ice-covered channels and their interaction with floating structures. It surveys theoretical, experimental, and numerical methodologies used to analyze complex coupled sea ice–structure interactions. The paper discusses governing fluid [...] Read more.
This review provides the recent advancements in nonlinear sea ice modeling for hydroelastic analysis of ice-covered channels and their interaction with floating structures. It surveys theoretical, experimental, and numerical methodologies used to analyze complex coupled sea ice–structure interactions. The paper discusses governing fluid domain solutions, fluid–ice interaction mechanisms, and ice–structure (ship) contact models, alongside experimental techniques and various numerical models. While significant progress has been made, particularly with coupled approaches validated by experimental data, challenges remain in full-scale validation and accurately representing ice properties and dynamic interactions. Findings highlight the increasing importance of understanding sea ice interactions, particularly in the context of climate change, Arctic transportation, and the development of very large floating structures. This review serves as a crucial resource for advancing safe and sustainable Arctic and offshore engineering. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Viewed by 272
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

23 pages, 9064 KiB  
Article
A Computational Thermo-Fluid Dynamics Simulation of Slot Jet Impingement Using a Generalized Two-Equation Turbulence Model
by Antonio Mezzacapo, Rossella D’Addio and Giuliano De Stefano
Energies 2025, 18(14), 3862; https://doi.org/10.3390/en18143862 - 20 Jul 2025
Viewed by 990
Abstract
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional [...] Read more.
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional mean turbulent flow field is numerically predicted by solving Reynolds-averaged Navier–Stokes (RANS) equations, where the two-equation eddy viscosity k-ω model is utilized for turbulence closure. As the commonly used shear stress transport variant overpredicts heat transfer at the plate due to excessive turbulent diffusion, the recently developed generalized k-ω (GEKO) model is considered for the present analysis, where the primary model coefficients are suitably tuned. Through a comparative analysis of the various solutions against one another, in addition to reference experimental and numerical data, the effectiveness of the generalized procedure in predicting both the jet flow characteristics and the heat transfer at the plate is thoroughly evaluated, while determining the optimal set of model parameters. By improving accuracy within the RANS framework, the importance of model adaptability and parameter tuning for this specific fluid engineering application is demonstrated. This study offers valuable insights for improving predictive capability in turbulent jet simulations with broad engineering implications, particularly for industrial heating or cooling systems relying on wide-slot jet impingement. Full article
(This article belongs to the Special Issue Computational Fluids Dynamics in Energy Conversion and Heat Transfer)
Show Figures

Figure 1

14 pages, 8367 KiB  
Article
Anatomical Barriers to Impregnation in Hybrid Poplar: A Comparative Study of Pit Characteristics in Normal and Tension Wood
by Andreas Buschalsky, Holger Militz and Tim Koddenberg
Forests 2025, 16(7), 1151; https://doi.org/10.3390/f16071151 - 12 Jul 2025
Viewed by 261
Abstract
Fast-growing hardwoods like poplar often lack natural durability in outdoor use and require homogeneous impregnation with protective agents, though achieving homogeneity remains a known challenge. Various anatomical structures influence fluid transport in wood. This study compares characteristics of pits in libriform fibres, between [...] Read more.
Fast-growing hardwoods like poplar often lack natural durability in outdoor use and require homogeneous impregnation with protective agents, though achieving homogeneity remains a known challenge. Various anatomical structures influence fluid transport in wood. This study compares characteristics of pits in libriform fibres, between ray–vessel interfaces, and between vessel-to-vessel connections in normal wood and tension wood of a hybrid poplar genotype (Populus × canadensis, ‘Gelrica’), including both impregnated (with an aqueous, dye-containing solution) and non-impregnated regions, to identify anatomical barriers to impregnation. Light and scanning electron microscopy revealed significant differences in pit morphology and frequency in libriform fibres between normal wood and tension wood. In non-impregnated regions, pits were often encrusted. Vessel–ray pits did not differ between normal wood and tension wood but showed distinct differences between impregnated and non-impregnated regions: in the latter, pits were occluded by tylose-forming layers. Intervessel pits differed in border and aperture size between earlywood and latewood in both normal wood and tension wood. Hence, fluid transport is strongly impeded by occluded vessel–ray pits and, to a lesser extent, by encrusted fibre pits. Full article
Show Figures

Figure 1

29 pages, 4726 KiB  
Article
Adaptive Pendulum-Tuned Mass Damper Based on Adjustable-Length Cable for Skyscraper Vibration Control
by Krzysztof Twardoch, Kacper Górski, Rafał Kwiatkowski, Kamil Jaśkielewicz and Bogumił Chiliński
Sustainability 2025, 17(14), 6301; https://doi.org/10.3390/su17146301 - 9 Jul 2025
Viewed by 468
Abstract
The dynamic control of vibrations in skyscrapers is a critical consideration in sustainable building design, particularly in response to environmental excitations such as wind impact or seismic activity. Effective vibration neutralisation plays a crucial role in providing the safety of high-rise buildings. This [...] Read more.
The dynamic control of vibrations in skyscrapers is a critical consideration in sustainable building design, particularly in response to environmental excitations such as wind impact or seismic activity. Effective vibration neutralisation plays a crucial role in providing the safety of high-rise buildings. This research introduces an innovative concept for an active vibration damper that operates based on fluid dynamic transport to adaptively alter a skyscraper’s natural frequency, thereby counteracting resonant vibrations. A distinctive feature of this system is an adjustable-length cable mechanism, allowing for the dynamic modification of the pendulum’s effective length in real time. The structure, based on cable length adjustment, enables the PTMD to precisely tune its natural frequency to variable excitation conditions, thereby improving damping during transient or resonance phenomena of the building’s dynamic behaviour. A comprehensive mathematical model based on Lagrangian mechanics outlines the governing equations for this system, capturing the interactions between pendulum motion, fluid flow, and the damping forces necessary to maintain stability. Simulation analyses examine the role of initial excitation frequency and variable damping coefficients, revealing critical insights into optimal damper performance under varied structural conditions. The findings indicate that the proposed pendulum damper effectively mitigates resonance risks, paving the way for sustainable skyscraper design through enhanced structural adaptability and resilience. This adaptive PTMD, featuring an adjustable-length cable, provides a solution for creating safe and energy-efficient skyscraper designs, aligning with sustainable architectural practices and advancing future trends in vibration management technology. The study presented in this article supports the development of modern skyscraper design, with a focus on dynamic vibration control for sustainability and structural safety. It combines advanced numerical modelling, data-driven control algorithms, and experimental validation. From a sustainability perspective, the proposed PTMD system reduces the need for oversized structural components by providing adaptive, efficient damping, thereby lowering material consumption and embedded carbon. Through dynamically retuning structural stiffness and mass, the proposed PTMD enhances resilience and energy efficiency in skyscrapers, lowers lifetime energy use associated with passive damping devices, and enhances occupant comfort. This aligns with global sustainability objectives and new-generation building standards. Full article
Show Figures

Figure 1

37 pages, 6674 KiB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 268
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

48 pages, 1963 KiB  
Review
Thick or Thin? Implications of Cartilage Architecture for Osteoarthritis Risk in Sedentary Lifestyles
by Eloy del Río
Biomedicines 2025, 13(7), 1650; https://doi.org/10.3390/biomedicines13071650 - 6 Jul 2025
Viewed by 854
Abstract
Osteoarthritis (OA) is a leading cause of disability worldwide and is characterized by the gradual degradation of articular cartilage in weight-bearing joints, notably the knees and hips. However, the primary morphological and anatomical determinants of the disease onset and progression remain unclear. This [...] Read more.
Osteoarthritis (OA) is a leading cause of disability worldwide and is characterized by the gradual degradation of articular cartilage in weight-bearing joints, notably the knees and hips. However, the primary morphological and anatomical determinants of the disease onset and progression remain unclear. This narrative overview examines how variations in cartilage thickness—traditionally viewed as a biomechanical protective feature—can paradoxically compromise metabolic homeostasis during prolonged sedentary behavior. Intriguingly, compelling evidence suggests that despite its superior load-bearing capacity, thicker cartilage faces greater challenges in solute transport, a limitation further exacerbated by the formation of diffusion-resistant boundary layers at the cartilage–fluid interface during immobilization. This phenomenon restricts nutrient influx and impedes waste clearance, leading to the accumulation of catabolic byproducts in deep cartilage zones and accelerated extracellular matrix breakdown, potentially influencing OA pathogenesis. By critically synthesizing current debates on mechanical loading with emerging data on metabolic dysregulation, particularly nutrient diffusion limitations, this analysis underscores the urgent need for targeted investigation of synovial–cartilage interface dynamics and chondrocyte metabolism under low-motion conditions. This study further advocates for strategic research focusing on often-overlooked, silent metabolic imbalances among sedentary populations and recommends early-intervention strategies, such as periodic joint mobilization, ergonomic adaptations, and public-health campaigns, to reduce prolonged sitting, preserve joint function, and guide more effective prevention and management approaches for non-traumatic OA in contemporary contexts. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatments on Musculoskeletal Disorders)
Show Figures

Graphical abstract

24 pages, 8040 KiB  
Article
Development of Modified Drug Delivery Systems with Metformin Loaded in Mesoporous Silica Matrices: Experimental and Theoretical Designs
by Mousa Sha’at, Maria Ignat, Florica Doroftei, Vlad Ghizdovat, Maricel Agop, Alexandra Barsan (Bujor), Monica Stamate Cretan, Fawzia Sha’at, Ramona-Daniela Pavaloiu, Adrian Florin Spac, Lacramioara Ochiuz, Carmen Nicoleta Filip and Ovidiu Popa
Pharmaceutics 2025, 17(7), 882; https://doi.org/10.3390/pharmaceutics17070882 - 4 Jul 2025
Viewed by 682
Abstract
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for [...] Read more.
Background/Objectives: Mesoporous silica materials, particularly KIT-6, offer promising features, such as large surface area, tunable pore structures, and biocompatibility, making them ideal candidates for advanced drug delivery systems. The aims of this study were to develop and evaluate an innovative modified-release platform for metformin hydrochloride (MTF), using KIT-6 mesoporous silica as a matrix, to enhance oral antidiabetic therapy. Methods: KIT-6 was synthesized using an ultrasound-assisted sol-gel method and subsequently loaded with MTF via adsorption from alkaline aqueous solutions at two concentrations (1 and 3 mg/mL). The structural and morphological characteristics of the matrices—before and after drug loading—were assessed using SEM-EDX, TEM, and nitrogen adsorption–desorption isotherms (the BET method). In vitro drug release profiles were recorded in simulated gastric and intestinal fluids over 12 h. Kinetic modeling was performed using seven classical models, and a multifractal theoretical framework was used to further interpret the complex release behavior. Results: The loading efficiency increased with increasing drug concentration but nonlinearly, reaching 56.43 mg/g for 1 mg/mL and 131.69 mg/g for 3 mg/mL. BET analysis confirmed significant reductions in the surface area and pore volume upon MTF incorporation. In vitro dissolution showed a biphasic release: a fast initial phase in an acidic medium followed by sustained release at a neutral pH. The Korsmeyer–Peppas and Weibull models best described the release profiles, indicating a predominantly diffusion-controlled mechanism. The multifractal model supported the experimental findings, capturing nonlinear dynamics, memory effects, and soliton-like transport behavior across resolution scales. Conclusions: The study confirms the potential of KIT-6 as a reliable and efficient carrier for the modified oral delivery of metformin. The combination of experimental and multifractal modeling provides a deeper understanding of drug release mechanisms in mesoporous systems and offers a predictive tool for future drug delivery design. This integrated approach can be extended to other active pharmaceutical ingredients with complex release requirements. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment
by Mario Alamilla-Sanchez, Miguel Angel Alcalá Salgado, Victor Manuel Ulloa Galván, Valeria Yanez Salguero, Martín Benjamin Yamá Estrella, Enrique Fleuvier Morales López, Nicte Alaide Ramos García, Martín Omar Carbajal Zárate, Jorge David Salazar Hurtado, Daniel Alberto Delgado Pineda, Leticia López González and Julio Manuel Flores Garnica
Pathophysiology 2025, 32(3), 33; https://doi.org/10.3390/pathophysiology32030033 - 3 Jul 2025
Viewed by 1848
Abstract
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms [...] Read more.
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms of secretion and reabsorption of solutes and proteins using specific transporters in the epithelial cells. The assessment of renal function usually focuses on glomerular function, so the tubular function is often underestimated as a fundamental part of daily clinical practice. Therefore, it is essential to properly understand the tubular physiological mechanisms and their clinical association with prevalent human pathologies. This review discusses the primary solutes handled by the kidneys, including glucose, amino acids, sodium, potassium, calcium, phosphate, citrate, magnesium and uric acid. Additionally, it emphasizes the significance of physicochemical characteristics of urine, such as pH and osmolarity. The use of a concise methodology for the comprehensive assessment of urine should be strengthened in the basic training of nephrologists when dealing with problems such as water and electrolyte balance disorders, acid-base disorders, and harmful effects of commonly used drugs such as chemotherapy, antibiotics, or diuretics to avoid isolated replacement of the solute without carrying out comprehensive approaches, which can lead to potentially severe complications. Full article
Show Figures

Figure 1

18 pages, 1902 KiB  
Article
A Discrete Fracture Network Model for Coupled Variable-Density Flow and Dissolution with Dynamic Fracture Aperture Evolution
by Anis Younes, Husam Musa Baalousha, Lamia Guellouz and Marwan Fahs
Water 2025, 17(13), 1904; https://doi.org/10.3390/w17131904 - 26 Jun 2025
Viewed by 320
Abstract
Fluid flow and mass transfer processes in some fractured aquifers are negligible in the low-permeability rock matrix and occur mainly in the fracture network. In this work, we consider coupled variable-density flow (VDF) and mass transport with dissolution in discrete fracture networks (DFNs). [...] Read more.
Fluid flow and mass transfer processes in some fractured aquifers are negligible in the low-permeability rock matrix and occur mainly in the fracture network. In this work, we consider coupled variable-density flow (VDF) and mass transport with dissolution in discrete fracture networks (DFNs). These three processes are ruled by nonlinear and strongly coupled partial differential equations (PDEs) due to the (i) density variation induced by concentration and (ii) fracture aperture evolution induced by dissolution. In this study, we develop an efficient model to solve the resulting system of nonlinear PDEs. The new model leverages the method of lines (MOL) to combine the robust finite volume (FV) method for spatial discretization with a high-order method for temporal discretization. A suitable upwind scheme is used on the fracture network to eliminate spurious oscillations in the advection-dominated case. The time step size and the order of the time integration are adapted during simulations to reduce the computational burden while preserving accuracy. The developed VDF-DFN model is validated by simulating saltwater intrusion and dissolution in a coastal fractured aquifer. The results of the VDF-DFN model, in the case of a dense fracture network, show excellent agreement with the Henry semi-analytical solution for saltwater intrusion and dissolution in a coastal aquifer. The VDF-DFN model is then employed to investigate coupled flow, mass transfer and dissolution for an injection/extraction well pair problem. This test problem enables an exploration of how dissolution influences the evolution of the fracture aperture, considering both constant and variable dissolution rates. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 705 KiB  
Article
Life Cycle Assessment Based on Whole Industry Chain Assessment of FCEVs
by Renzhi Lyu, Zhenpo Wang and Zhaosheng Zhang
Sustainability 2025, 17(12), 5431; https://doi.org/10.3390/su17125431 - 12 Jun 2025
Viewed by 625
Abstract
Fuel cell electric vehicles (FCEVs) offer a promising solution for energy saving and emission reduction in transportation. However, several challenges must be addressed for their application. This study conducts a full life cycle assessment (LCA) of FCEVs, dividing it into the fuel cycle [...] Read more.
Fuel cell electric vehicles (FCEVs) offer a promising solution for energy saving and emission reduction in transportation. However, several challenges must be addressed for their application. This study conducts a full life cycle assessment (LCA) of FCEVs, dividing it into the fuel cycle and vehicle cycle to separately assess energy consumption (EC) and emissions. The fuel cycle examined 18 hydrogen production–storage–transport pathways, while the vehicle cycle evaluates energy use and emissions associated with vehicle component production, assembly, disposal, battery production, and fluid consumption. Based on the GREET database, total energy consumption and emissions over a lifetime were calculated. Five environmental impact indicators were used for evaluation, and a comprehensive environmental assessment (CEA) indicator was established for different scenarios. Results indicate that nuclear thermochemical water splitting is the best hydrogen production method, and pipeline transportation is the most efficient for hydrogen transport. Additionally, water electrolysis for hydrogen production is only practical when paired with renewable energy. The study also identified that the Hydrogen production method, “Body”, “Proton Exchange Membrane Fuel Cells (PEMFCs) System”, “Chassis”, “Hydrogen Storage System” and lifetime significantly impact energy consumption and emissions. These stages or products represent high-impact leverage points for enhancing the lifecycle sustainability evaluation of FCEVs. Full article
Show Figures

Figure 1

25 pages, 5547 KiB  
Article
Enhanced Aerosol Containment Performance of a Negative Pressure Hood with an Aerodynamic Cap Design: Multi-Method Validation Using CFD, PAO Particles, and Microbial Testing
by Seungcheol Ko, Kisub Sung, Min Jae Oh, Yoonjic Kim, Min Ji Kim, Jung Woo Lee, Yoo Seok Park, Yong Hyun Kim, Ju Young Hong and Joon Sang Lee
Bioengineering 2025, 12(6), 624; https://doi.org/10.3390/bioengineering12060624 - 9 Jun 2025
Viewed by 500
Abstract
Healthcare providers performing aerosol-generating procedures (AGPs) face significant infection risks, emphasizing the critical need for effective aerosol containment systems. In this study, we developed and validated a negative pressure chamber enhanced with an innovative aerodynamic cap structure designed to optimize aerosol containment. Initially, [...] Read more.
Healthcare providers performing aerosol-generating procedures (AGPs) face significant infection risks, emphasizing the critical need for effective aerosol containment systems. In this study, we developed and validated a negative pressure chamber enhanced with an innovative aerodynamic cap structure designed to optimize aerosol containment. Initially, computational fluid dynamics (CFD) simulations were performed to evaluate multiple structural improvement ideas, including air curtains, bidirectional suction, and aerodynamic cap structures. Among these, the aerodynamic cap was selected due to its superior predicted containment performance, practical feasibility, and cost-effectiveness. The CFD analyses employed realistic transient boundary conditions, precise turbulence modeling using the shear stress transport (SST) k–ω model, and detailed droplet evaporation dynamics under realistic humidity conditions. A full-scale prototype incorporating the selected aerodynamic cap was fabricated and evaluated using physical polyalphaolefin (PAO) particle leakage tests and biological aerosol validation with aerosolized Bacillus subtilis. For the physical leakage tests, the chamber opening was divided into nine sections, and the aerosol dispersion was tested in three distinct directions: ceiling-directed, toward the suction hole, and opposite the suction hole. These tests demonstrated significantly stabilized airflow and substantial reductions in aerosol leakage, consistently maintaining containment levels below the critical threshold of 0.3%, especially under transient coughing conditions. The biological aerosol experiments, conducted in a simulated emergency department environment, involved aerosolizing bacteria continuously for one hour. The results confirmed the effectiveness of the aerodynamic cap structure in achieving at least a one millionth (10−6) reduction in the aerosolized bacterial leakage compared to the control conditions. These findings highlight the importance and effectiveness of advanced CFD modeling methodologies in accurately predicting aerosol dispersion and improving containment strategies. Although further studies assessing the structural durability, long-term operational ease, and effectiveness against pathogenic microorganisms are required, the aerodynamic cap structure presents a promising, clinically practical infection control solution for widespread implementation during aerosol-generating medical procedures. Full article
Show Figures

Figure 1

44 pages, 891 KiB  
Review
Aquaporins in Acute Brain Injury: Insights from Clinical and Experimental Studies
by Stelios Kokkoris, Charikleia S. Vrettou, Nikolaos S. Lotsios, Vasileios Issaris, Chrysi Keskinidou, Kostas A. Papavassiliou, Athanasios G. Papavassiliou, Anastasia Kotanidou, Ioanna Dimopoulou and Alice G. Vassiliou
Biomedicines 2025, 13(6), 1406; https://doi.org/10.3390/biomedicines13061406 - 7 Jun 2025
Viewed by 1020
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins facilitating the transport of water and, in some cases, small solutes such as glycerol, lactate, and urea. In the central nervous system (CNS), several aquaporins play crucial roles in maintaining water homeostasis, modulating [...] Read more.
Aquaporins (AQPs) are a family of transmembrane water channel proteins facilitating the transport of water and, in some cases, small solutes such as glycerol, lactate, and urea. In the central nervous system (CNS), several aquaporins play crucial roles in maintaining water homeostasis, modulating cerebrospinal fluid (CSF) circulation, regulating energy metabolism, and facilitating neuroprotection under pathological conditions. Among them, AQP2, AQP4, AQP9, and AQP11 have been implicated in traumatic and non-traumatic brain injuries. The most abundant aquaporin (AQP) in the brain, AQP4, is essential for fluid regulation, facilitating water transport across the blood–brain barrier and glymphatic clearance. AQP2 is primarily known for its function in the kidneys, but it is also expressed in brain regions related to vasopressin signaling and CSF dynamics. AQP9 acts as a channel for glycerol and lactate, thus playing a role in metabolic adaptation during brain injury. AQP11, an intracellular aquaporin, is involved in oxidative stress responses and cellular homeostasis, with emerging evidence suggesting its role in neuroprotection. Aquaporins play a dual role in brain injury; while they help maintain homeostasis, their dysregulation can exacerbate cerebral edema, metabolic dysfunction, and inflammation. In traumatic brain injury (TBI), aquaporins regulate the formation and resolution of cerebral edema. In non-traumatic brain injuries, including ischemic stroke, aneurysmal subarachnoid hemorrhage (aSAH), and intracerebral hemorrhage (ICH), aquaporins influence fluid balance, energy metabolism, and oxidative stress responses. Understanding the specific roles of AQP2, AQP4, AQP9, and AQP11 in these brain injuries may lead to new therapeutic strategies to mitigate secondary damage and improve neurological outcomes. This review explores the function of the above aquaporins in both traumatic and non-traumatic brain injuries, highlighting their potential and limitations as therapeutic targets for neuroprotection and recovery. Full article
Show Figures

Figure 1

Back to TopTop