Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (559)

Search Parameters:
Keywords = fluctuating motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10949 KiB  
Article
Segmentation Control in Dynamic Wireless Charging for Electric Vehicles
by Tran Duc Hiep, Nguyen Huu Minh, Tran Trong Minh, Nguyen Thi Diep and Nguyen Kien Trung
Electronics 2025, 14(15), 3086; https://doi.org/10.3390/electronics14153086 (registering DOI) - 1 Aug 2025
Abstract
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power [...] Read more.
Dynamic wireless charging systems have emerged as a promising solution to extend the driving range of electric vehicles by enabling energy transfer while the vehicle is in motion. However, the segment-based charging lane structure introduces challenges such as pulsation of the output power and the need for precise switching control of the transmitting segments. This paper proposes a position-sensorless control method for managing transmitting lines in a dynamic wireless charging system. The proposed approach uses a segmented charging lane structure combined with two receiving coils and LCC compensation circuits on both the transmitting and receiving sides. Based on theoretical analysis, the study determines the optimal switching positions and signals to reduce the current fluctuation. To validate the proposed method, a dynamic wireless charging system prototype with a power rating of 3kW was designed, constructed, and tested in a laboratory environment. The results demonstrate that the proposed position-sensorless control method effectively mitigates power fluctuations and enhances the stability and efficiency of the wireless charging process. Full article
Show Figures

Figure 1

24 pages, 5578 KiB  
Article
Adaptive Covariance Matrix for UAV-Based Visual–Inertial Navigation Systems Using Gaussian Formulas
by Yangzi Cong, Wenbin Su, Nan Jiang, Wenpeng Zong, Long Li, Yan Xu, Tianhe Xu and Paipai Wu
Sensors 2025, 25(15), 4745; https://doi.org/10.3390/s25154745 (registering DOI) - 1 Aug 2025
Abstract
In a variety of UAV applications, visual–inertial navigation systems (VINSs) play a crucial role in providing accurate positioning and navigation solutions. However, traditional VINS struggle to adapt flexibly to varying environmental conditions due to fixed covariance matrix settings. This limitation becomes especially acute [...] Read more.
In a variety of UAV applications, visual–inertial navigation systems (VINSs) play a crucial role in providing accurate positioning and navigation solutions. However, traditional VINS struggle to adapt flexibly to varying environmental conditions due to fixed covariance matrix settings. This limitation becomes especially acute during high-speed drone operations, where motion blur and fluctuating image clarity can significantly compromise navigation accuracy and system robustness. To address these issues, we propose an innovative adaptive covariance matrix estimation method for UAV-based VINS using Gaussian formulas. Our approach enhances the accuracy and robustness of the navigation system by dynamically adjusting the covariance matrix according to the quality of the images. Leveraging the advanced Laplacian operator, detailed assessments of image blur are performed, thereby achieving precise perception of image quality. Based on these assessments, a novel mechanism is introduced for dynamically adjusting the visual covariance matrix using a Gaussian model according to the clarity of images in the current environment. Extensive simulation experiments across the EuRoC and TUM VI datasets, as well as the field tests, have validated our method, demonstrating significant improvements in navigation accuracy of drones in scenarios with motion blur. Our algorithm has shown significantly higher accuracy compared to the famous VINS-Mono framework, outperforming it by 18.18% on average, as well as the optimization rate of RMS, which reaches 65.66% for the F1 dataset and 41.74% for F2 in the field tests outdoors. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

38 pages, 5463 KiB  
Article
Configuration Synthesis and Performance Analysis of 1T2R Decoupled Wheel-Legged Reconfigurable Mechanism
by Jingjing Shi, Ruiqin Li and Wenxiao Guo
Micromachines 2025, 16(8), 903; https://doi.org/10.3390/mi16080903 (registering DOI) - 31 Jul 2025
Abstract
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are [...] Read more.
A method for configuration synthesis of a reconfigurable decoupled parallel mechanical leg is proposed. In addition, a configuration evaluation index is proposed to evaluate the synthesized configurations and select the optimal one. Kinematic analysis and performance optimization of the selected mechanism’s configuration are carried out, and the motion mode of the robot’s reconfigurable mechanical leg is selected according to the task requirements. Then, the robot’s gait in walking mode is planned. Firstly, based on bionic principles, the motion characteristics of a mechanical leg based on a mammalian model and an insect model were analyzed. The input and output characteristics of the mechanism were analyzed to obtain the reconfiguration principle of the mechanism. Using type synthesis theory for the decoupled parallel mechanism, the configuration synthesis of the chain was carried out, and the constraint mode of the mechanical leg was determined according to the constraint property of the chain and the motion characteristics of the moving platform. Secondly, an evaluation index for the complexity of the reconfigurable mechanical leg structure was developed, and the synthesized mechanism was further analyzed and evaluated to select the mechanical leg’s configuration. Thirdly, the inverse position equations were established for the mechanical leg in the two motion modes, and its Jacobian matrix was derived. The degrees of freedom of the mechanism are completely decoupled in the two motion modes. Then, the workspace and motion/force transmission performance of the mechanical leg in the two motion modes were analyzed. Based on the weighted standard deviation of the motion/force transmission performance, the global performance fluctuation index of the mechanical leg motion/force transmission is defined, and the structural size parameters of the mechanical leg are optimized with the performance index as the optimization objective function. Finally, with the reconfigurable mechanical leg in the insect mode, the robot’s gait in the walking operation mode is planned according to the static stability criterion. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications, 2nd Edition)
Show Figures

Figure 1

22 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 209
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 145
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

25 pages, 7034 KiB  
Article
Transient Simulation of Aerodynamic Load Variations on Carrier-Based Aircraft During Recovery in Carrier Airwake
by Xiaoxi Yang, Baokuan Li, Yang Nie, Zhibo Ren and Fangchao Tian
Aerospace 2025, 12(8), 656; https://doi.org/10.3390/aerospace12080656 - 23 Jul 2025
Viewed by 185
Abstract
Carrier-based aircraft recovery is a critical and challenging phase in maritime operations due to the turbulent airwake generated by aircraft carriers, which significantly increases the workload of flight control systems and pilots. This study investigates the airwake effects of an aircraft carrier under [...] Read more.
Carrier-based aircraft recovery is a critical and challenging phase in maritime operations due to the turbulent airwake generated by aircraft carriers, which significantly increases the workload of flight control systems and pilots. This study investigates the airwake effects of an aircraft carrier under varying wind direction conditions. A high-fidelity mathematical model combining delayed detached-eddy simulation (DDES) with the overset grid method was developed to analyze key flow characteristics, including upwash, downwash, and lateral recirculation. The model ensures precise control of aircraft speed and trajectory during landing while maintaining numerical stability through rigorous mesh optimization. The results indicate that the minimum lift occurs in the downwash region aft of the deck, marking it as the most hazardous zone during landing. Aircraft above the deck are primarily influenced by ground effects, causing a sudden increase in lift that complicates arresting wire engagement. Additionally, the side force on the aircraft undergoes an abrupt reversal during the approach phase. The dual overset mesh technique effectively captures the coupled motion of the hull and aircraft, revealing higher turbulence intensity along the glideslope and a wider range of lift fluctuations compared to stationary hull conditions. These findings provide valuable insights for optimizing carrier-based aircraft recovery procedures, offering more realistic data for simulation training and enhancing pilot preparedness for airwake-induced disturbances. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 327 KiB  
Review
Renormalization Group and Effective Field Theories in Magnetohydrodynamics
by Amir Jafari
Fluids 2025, 10(8), 188; https://doi.org/10.3390/fluids10080188 - 23 Jul 2025
Viewed by 245
Abstract
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder [...] Read more.
We briefly review the recent developments in magnetohydrodynamics, which in particular deal with the evolution of magnetic fields in turbulent plasmas. We especially emphasize (i) the necessity and utility of renormalizing equations of motion in turbulence where velocity and magnetic fields become Hölder singular; (ii) the breakdown of Laplacian determinism of classical physics (spontaneous stochasticity or super chaos) in turbulence; and (iii) the possibility of eliminating the notion of magnetic field lines in magnetized plasmas, using instead magnetic path lines as trajectories of Alfvénic wave packets. These methodologies are then exemplified with their application to the problem of magnetic reconnection—rapid change in magnetic field pattern that accelerates plasma—a ubiquitous phenomenon in astrophysics and laboratory plasmas. Renormalizing rough velocity and magnetic fields on any finite scale l in turbulence inertial range, to remove singularities, implies that magnetohydrodynamic equations should be regarded as effective field theories with running parameters depending upon the scale l. A high wave-number cut-off should also be introduced in fluctuating equations of motion, e.g., Navier–Stokes, which makes them effective, low-wave-number field theories rather than stochastic differential equations. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
21 pages, 11311 KiB  
Article
Shore-Based Constant Tension Mooring System Performance and Configuration Study Based on Cross-Domain Collaborative Analysis Method
by Nan Liu, Peijian Qu, Songgui Chen, Hanbao Chen and Shoujun Wang
J. Mar. Sci. Eng. 2025, 13(8), 1385; https://doi.org/10.3390/jmse13081385 - 22 Jul 2025
Viewed by 136
Abstract
In this paper, a new solution is proposed for the problem of mooring safety of large ships in complex sea conditions. Firstly, a dual-mode mooring system is designed to adaptively switch between active control and passive energy storage, adjusting the mooring strategy based [...] Read more.
In this paper, a new solution is proposed for the problem of mooring safety of large ships in complex sea conditions. Firstly, a dual-mode mooring system is designed to adaptively switch between active control and passive energy storage, adjusting the mooring strategy based on real-time sea conditions. Second, a collaborative analysis platform based on AQWA-Python-MATLAB/Simulink was researched and developed. Thirdly, based on the above simulation platform, the performance of the mooring system and the effects of different configurations on the stability of ship motion and dynamic tension of the cable are emphasized. Finally, by comparing the different mooring positions under various sea conditions with the traditional mooring system, the results show that the constant tension mooring system significantly improves the stability and safety of the ship under both conventional and extreme sea conditions, effectively reducing the fluctuation of cable tension. Through the optimization analysis, it is determined that the configuration of bow and stern cables is the optimal solution, which ensures safety while also improving economic benefits. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 6865 KiB  
Article
The Impact of Riblet Walls on the Structure of Liquid–Solid Two-Phase Turbulent Flow: Streak Structures and Burst Events
by Yuchen Zhao, Jiao Sun, Nan Jiang, Jingyu Niu, Jinghang Yang, Haoyang Li, Xiaolong Wang and Pengda Yuan
Appl. Sci. 2025, 15(14), 7977; https://doi.org/10.3390/app15147977 - 17 Jul 2025
Viewed by 193
Abstract
This study employs Particle Image Velocimetry (PIV) technology to investigate the statistical properties and flow structures of the turbulent boundary layer over smooth walls and riblet walls with yaw angles of 0, ±30° in both clear water and liquid–solid two-phase flow fields. The [...] Read more.
This study employs Particle Image Velocimetry (PIV) technology to investigate the statistical properties and flow structures of the turbulent boundary layer over smooth walls and riblet walls with yaw angles of 0, ±30° in both clear water and liquid–solid two-phase flow fields. The results indicate that, compared to the smooth wall, streamwise riblet walls and 30° divergent riblet walls can reduce the boundary layer thickness, wall friction force, comprehensive turbulence intensity, and Reynolds stress, with the divergent riblet wall being more effective. In contrast, convergent riblet walls have the opposite effect. The addition of particles leads to an increase in boundary layer thickness and a reduction in wall friction resistance, primarily by reducing turbulence fluctuations and Reynolds stress in the logarithmic region of the turbulent boundary layer. Moreover, the two types of drag-reduction riblet walls can decrease the energy content ratio of near-wall streak structures and suppress their motion in the spanwise direction. Their impact on burst events is mainly characterized by a reduction in the number of ejection events and their contribution to Reynolds shear stress. In comparison, convergent riblet walls have the complete opposite effect and also enhance the intensity of burst events. The addition of particles can fragment streak structures and suppress the intensity and number of burst events, acting similarly on drag-reduction riblet walls and further strengthening their drag reduction characteristics. Full article
Show Figures

Figure 1

28 pages, 3409 KiB  
Article
Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales
by Mahsa Barfi, Theodoros Deligiannis, Brian Schlattmann, Karl M. Newell and Madhur Mangalam
Sensors 2025, 25(14), 4454; https://doi.org/10.3390/s25144454 - 17 Jul 2025
Viewed by 219
Abstract
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination [...] Read more.
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination involving a wobble board, introducing mechanical instability mainly along the mediolateral (ML) axis and the Trail Making Task (TMT), which imposes precise visual demands primarily along the anteroposterior (AP) axis. Using Multiscale Regression Analysis (MRA), a novel analytical method rooted in Detrended Fluctuation Analysis (DFA), we scrutinized CoP-to-CoM and CoM-to-CoP effects across multiple timescales ranging from 100ms to 10s. CoP was computed from ground reaction forces recorded via a force plate, and CoM was derived from full-body 3D motion capture using a biomechanical model. We found that the wobble board attenuated CoM-to-CoP effects across timescales ranging from 100to400ms. Further analysis revealed nuanced changes: while there was an overall reduction, this encompassed an accentuation of CoM-to-CoP effects along the AP axis and a decrease along the ML axis. Importantly, these alterations in CoP’s responses to CoM movements outweighed any nonsignificant effects attributable to the TMT. CoM exhibited no sensitivity to CoP movements, regardless of the visual and mechanical task demands. In addition to identifying the characteristic timescales associated with bodily DoFs in facilitating upright posture, our findings underscore the critical significance of directionally challenging biomechanical constraints, particularly evident in the amplification of CoP-to-CoM effects along the AP axis in response to ML instability. These results underscore the potential of wobble board training to enhance the coordinative and compensatory responses of bodily DoFs to the shifting CoM by prompting appropriate adjustments in CoP, thereby suggesting their application for reinstating healthy CoM–CoP dynamics in clinical populations with postural deficits. Full article
Show Figures

Figure 1

25 pages, 1318 KiB  
Article
Mobile Reading Attention of College Students in Different Reading Environments: An Eye-Tracking Study
by Siwei Xu, Mingyu Xu, Qiyao Kang and Xiaoqun Yuan
Behav. Sci. 2025, 15(7), 953; https://doi.org/10.3390/bs15070953 - 14 Jul 2025
Viewed by 339
Abstract
With the widespread adoption of mobile reading across diverse scenarios, understanding environmental impacts on attention has become crucial for reading performance optimization. Building upon this premise, the study examined the impacts of different reading environments on attention during mobile reading, utilizing a mixed-methods [...] Read more.
With the widespread adoption of mobile reading across diverse scenarios, understanding environmental impacts on attention has become crucial for reading performance optimization. Building upon this premise, the study examined the impacts of different reading environments on attention during mobile reading, utilizing a mixed-methods approach that combined eye-tracking experiments with semi-structured interviews. Thirty-two college students participated in the study. Quantitative attention metrics, including total fixation duration and fixation count, were collected through eye-tracking, while qualitative data regarding perceived environmental influences were obtained through interviews. The results indicated that the impact of different environments on mobile reading attention varies significantly, as this variation is primarily attributable to environmental complexity and individual interest. Environments characterized by multisensory inputs or dynamic disturbances, such as fluctuating noise and visual motion, were found to induce greater attentional dispersion compared to monotonous, low-variation environments. Notably, more complex potential task-like disturbances (e.g., answering calls, conversations) were found to cause the greatest distraction. Moreover, stimuli aligned with an individual’s interests were more likely to divert attention compared to those that did not. These findings contribute methodological insights for optimizing mobile reading experiences across diverse environmental contexts. Full article
Show Figures

Figure 1

24 pages, 4771 KiB  
Article
Constant High-Voltage Triboelectric Nanogenerator with Stable AC for Sustainable Energy Harvesting
by Aso Ali Abdalmohammed Shateri, Salar K. Fatah, Fengling Zhuo, Nazifi Sani Shuaibu, Chuanrui Chen, Rui Wan and Xiaozhi Wang
Micromachines 2025, 16(7), 801; https://doi.org/10.3390/mi16070801 - 9 Jul 2025
Viewed by 416
Abstract
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert [...] Read more.
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert linear motion into rotational energy using a robust gear system, enabling a high voltage and reliable full cycle of alternating current (AC). The device features a radially patterned disk with triboelectric layers composed of polyimide. The SHLR-TENG achieves a peak-to-peak voltage of 1420 V, a short-circuit current of 117 µA, and an average power output of 41.5 mW, with a surface charge density of 110 µC/m2. Moreover, it demonstrates a power density per unit volume of 371.2 W·m−3·Hz−1. The device retains 80% efficiency after 1.5 million cycles, demonstrating substantial durability under mechanical stress. These properties enable the SHLR-TENG to directly power commercial LEDs and low-power circuits without the need for energy storage. This study presents an innovative approach to sustainable energy generation by integrating horizontal motion harvesting with rotational energy conversion. The compact and scalable design of the SHLR-TENG, coupled with its resilience to humidity (20–90% RH) and temperature fluctuations (10–70 °C), positions it as a promising next-generation energy source for Internet of Things (IoT) devices and autonomous systems. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

23 pages, 2620 KiB  
Article
An Efficient SAR Raw Signal Simulator Accounting for Large Trajectory Deviation
by Shaoqi Dai, Haiyan Zhang, Cheng Wang, Zhongwei Lin, Yi Zhang and Jinhe Ran
Sensors 2025, 25(14), 4260; https://doi.org/10.3390/s25144260 - 9 Jul 2025
Viewed by 217
Abstract
A synthetic aperture radar (SAR) raw signal simulator is useful for supporting algorithm innovation, system scheme verification, etc. Trajectory deviation is a realistic factor that should be considered in a SAR raw signal simulator and is very important for applications such as motion [...] Read more.
A synthetic aperture radar (SAR) raw signal simulator is useful for supporting algorithm innovation, system scheme verification, etc. Trajectory deviation is a realistic factor that should be considered in a SAR raw signal simulator and is very important for applications such as motion composition and image formation for a SAR with nonlinear trajectory. However, existing efficient simulators become deteriorated and even invalid when the magnitude of trajectory deviation increases. Therefore, we designed an efficient SAR raw signal simulator that accounts for large trajectory deviation. Based on spatial spectrum analysis of the SAR raw signal, it is disclosed and verified that the 2D spatial frequency spectrum of the SAR raw signal is an arc of a circle at a fixed transmitted signal frequency. Based on this finding, the proposed method calculates the SAR raw signal by curvilinear integral in the 2D frequency domain. Compared with existing methods, it can precisely simulate the SAR raw signal in the case that the deviation radius is much larger. Moreover, taking advantage of the fast Fourier transform (FFT), the computational complexity of this method is much less than the time-domain ones. Furthermore, this method is applicable for multiple SAR acquisition modes and diverse waveforms and compatible with radar antenna beam width, squint angle, radar signal bandwidth, and trajectory fluctuation. Experimental results show its outstanding performance for simulating the raw signal of SAR with large trajectory deviation. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

30 pages, 956 KiB  
Article
Stochastic Production Planning with Regime-Switching: Sensitivity Analysis, Optimal Control, and Numerical Implementation
by Dragos-Patru Covei
Axioms 2025, 14(7), 524; https://doi.org/10.3390/axioms14070524 - 8 Jul 2025
Viewed by 192
Abstract
This study investigates a stochastic production planning problem with regime-switching parameters, inspired by economic cycles impacting production and inventory costs. The model considers types of goods and employs a Markov chain to capture probabilistic regime transitions, coupled with a multidimensional Brownian motion representing [...] Read more.
This study investigates a stochastic production planning problem with regime-switching parameters, inspired by economic cycles impacting production and inventory costs. The model considers types of goods and employs a Markov chain to capture probabilistic regime transitions, coupled with a multidimensional Brownian motion representing stochastic demand dynamics. The production and inventory cost optimization problem is formulated as a quadratic cost functional, with the solution characterized by a regime-dependent system of elliptic partial differential equations (PDEs). Numerical solutions to the PDE system are computed using a monotone iteration algorithm, enabling quantitative analysis. Sensitivity analysis and model risk evaluation illustrate the effects of regime-dependent volatility, holding costs, and discount factors, revealing the conservative bias of regime-switching models when compared to static alternatives. Practical implications include optimizing production strategies under fluctuating economic conditions and exploring future extensions such as correlated Brownian dynamics, non-quadratic cost functions, and geometric inventory frameworks. In contrast to earlier studies that imposed static or overly simplified regime-switching assumptions, our work presents a fully integrated framework—combining optimal control theory, a regime-dependent system of elliptic PDEs, and comprehensive numerical and sensitivity analyses—to more accurately capture the complex stochastic dynamics of production planning and thereby deliver enhanced, actionable insights for modern manufacturing environments. Full article
Show Figures

Figure 1

Back to TopTop