Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (251)

Search Parameters:
Keywords = flow-ecology relationships

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3137 KiB  
Article
The Heat Transfer Coefficient During Pool Boiling of Refrigerants in a Compact Heat Exchanger
by Marcin Kruzel, Tadeusz Bohdal, Krzysztof Dutkowski, Krzysztof J. Wołosz and Grzegorz Robakowski
Energies 2025, 18(15), 4030; https://doi.org/10.3390/en18154030 - 29 Jul 2025
Viewed by 189
Abstract
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were [...] Read more.
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were heated from the inside with warm water. The flow of the refrigerant was gravity-based. The heat exchanger was practically flooded with liquid refrigerant at a saturation temperature (ts), which flowed out after evaporation in a gaseous form. The tests were conducted for four refrigerants: R1234ze, R1234yf, R134a (a high-pressure refrigerant), and HFE7100 (a low-pressure refrigerant). Thermal characteristics describing the heat transfer process throughout the entire compact heat exchanger, specifically for the boiling process itself, were developed. It was found that in the case of micro-space boiling, there is an exponential dependence of the heat transfer coefficient on the heat flux density on the heated surface. Experimental data were compared to experimental and empirical data presented in other studies. Our own empirical models were proposed to determine the heat transfer coefficient for boiling in a mini-space for individual refrigerants. The proposed calculation models were also generalized for various refrigerants by introducing the value of reduced pressure into the calculation relationship. The developed relationship enables the determination of heat transfer coefficient values during boiling in a micro-space on the surface of horizontal tubes for various refrigerants with an accuracy of ±25%. Full article
Show Figures

Figure 1

22 pages, 1111 KiB  
Article
Dynamics of Using Digital Technologies in Agroecological Settings: A Case Study Approach
by Harika Meesala and Gianluca Brunori
Agriculture 2025, 15(15), 1636; https://doi.org/10.3390/agriculture15151636 - 29 Jul 2025
Viewed by 222
Abstract
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with [...] Read more.
The main objective of this study is to offer fresh empirical insight into the evolving relationship between digitalisation and agroecology by examining Mulini Di Segalari, a biodynamic vineyard in Italy. While much of the existing literature positions digital agriculture as potentially misaligned with agroecological principles, this case study unveils how digital tools can actively reinforce agroecological practices when embedded within supportive socio-technical networks. Novel findings of this study highlight how the use of digital technologies supported agroecological practices and led to the reconfiguration of social relations, knowledge systems, and governance structures within the farm. Employing a technographic approach revealed that the farm’s transformation was driven not just by technology but through collaborative arrangements involving different stakeholders. These interactions created new routines, roles, and information flows, supporting a more distributed and participatory model of innovation. By demonstrating how digital tools can catalyse agroecological transitions in a context-sensitive and socially embedded manner, this study challenges the binary framings of technology versus ecology and calls for a more nuanced understanding of digitalisation as a socio-technical process. Full article
Show Figures

Figure 1

13 pages, 704 KiB  
Article
Population Substructures of Castanopsis tribuloides in Northern Thailand Revealed Using Autosomal STR Variations
by Patcharawadee Thongkumkoon, Jatupol Kampuansai, Maneesawan Dansawan, Pimonrat Tiansawat, Nuttapol Noirungsee, Kittiyut Punchay, Nuttaluck Khamyong and Prasit Wangpakapattanawong
Plants 2025, 14(15), 2306; https://doi.org/10.3390/plants14152306 - 26 Jul 2025
Viewed by 219
Abstract
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We [...] Read more.
This study investigates the genetic diversity and population structure of Castanopsis tribuloides, a vital tree species in Asian forest ecosystems. Understanding the genetic patterns of keystone forest species provides critical insights into forest resilience and ecosystem function and informs conservation strategies. We analyzed population samples collected from three distinct locations within Doi Suthep Mountain in northern Thailand using Short Tandem Repeat (STR) markers to assess both intra- and inter-population genetic relationships. DNA was extracted from leaf samples and analyzed using a panel of polymorphic microsatellite loci specifically optimized for Castanopsis species. Statistical analyses included the assessment of forensic parameters (number of alleles, observed and expected heterozygosity, gene diversity, polymorphic information content), population differentiation metrics (GST), inbreeding coefficients (FIS), and gene flow estimates (Nm). We further examined population history through bottleneck analysis using three models (IAM, SMM, and TPM) and visualized genetic relationships through principal coordinate analysis and cluster analysis. Our results revealed significant patterns of genetic structuring across the sampled populations, with genetic distance metrics showing statistically significant differentiation between certain population pairs. The PCA and cluster analyses confirmed distinct population groupings that correspond to geographic distribution patterns. These findings provide the first comprehensive assessment of C. tribuloides population genetics in this region, establishing baseline data for monitoring genetic diversity and informing conservation strategies. This research contributes to our understanding of how landscape features and ecological factors shape genetic diversity patterns in essential forest tree species, with implications for managing forest genetic resources in the face of environmental change. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

34 pages, 11148 KiB  
Article
Research on Construction of Suzhou’s Historical Architectural Heritage Corridors and Cultural Relics-Themed Trails Based on Current Effective Conductance (CEC) Model
by Yao Wu, Yonglan Wu, Mingrui Miao, Muxian Wang, Xiaobin Li and Antonio Candeias
Buildings 2025, 15(15), 2605; https://doi.org/10.3390/buildings15152605 - 23 Jul 2025
Viewed by 294
Abstract
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel [...] Read more.
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel density estimation, this study identifies 15 kernel density groups, along with the Analytic Hierarchy Process (AHP), to pinpoint clusters of historical architectural heritage and assess the involved resistance factors. Current Effective Conductance (CEC) theory is further applied to model spatial flow relationships among heritage nodes, leading to the delineation of 27 heritage corridors and revealing a spatial structure characterized by one primary core, one secondary core, and multiple peripheral zones. Based on 15 source points, six cultural relics-themed routes are proposed—three land-based and three waterfront routes—connecting historical sites, towns, and ecological areas. The study further recommends a resource management strategy centered on departmental collaboration, digital integration, and community co-governance. By integrating historical architectural types, settlement forms, and ecological patterns, the research builds a multi-scale narrative and experience system that addresses fragmentation while improving coordination and sustainability. This framework delivers practical advice on heritage conservation and cultural tourism development in Suzhou and the broader Jiangnan region. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

31 pages, 23687 KiB  
Article
Spatiotemporal Dynamics of Ecosystem Services and Human Well-Being in China’s Karst Regions: An Integrated Carbon Flow-Based Assessment
by Yinuo Zou, Yuefeng Lyu, Guan Li, Yanmei Ye and Cifang Wu
Land 2025, 14(8), 1506; https://doi.org/10.3390/land14081506 - 22 Jul 2025
Viewed by 292
Abstract
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still [...] Read more.
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still needs to be strengthened. As an element transferred in the natural–society coupling system, carbon can assist in characterizing the dynamic interactions within coupled human–natural systems. Carbon, as a fundamental element transferred across ecological and social spheres, offers a powerful lens to characterize these linkages. This study develops and applies a novel analytical framework that integrates carbon flow as a unifying metric to quantitatively assess the spatiotemporal dynamics of the land use and land cover change (LUCC)–ESs–HWB nexus in Guizhou Province, China, from 2000 to 2020. The results show that: (1) Ecosystem services in Guizhou showed distinct trends from 2000 to 2020: supporting and regulating services declined and then recovered, and provisioning services steadily increased, while cultural services remained stable but varied across cities. (2) Human well-being generally improved over time, with health remaining stable and the HSI rising across most cities, although security levels fluctuated and remained low in some areas. (3) The contribution of ecosystem services to human well-being peaked in 2010–2015, followed by declines in central and northern regions, while southern and western areas maintained or improved their levels. (4) Supporting and regulating services were positively correlated with HWB security, while cultural services showed mixed effects, with strong synergies between culture and health in cities like Liupanshui and Qiandongnan. Overall, this study quantified the coupled dynamics between ecosystem services and human well-being through a carbon flow framework, which not only offers a unified metric for cross-dimensional analysis but also reduces subjective bias in evaluation. This integrated approach provides critical insights for crafting spatially explicit land management policies in Guizhou and offers a replicable methodology for exploring sustainable development pathways in other ecologically fragile karst regions worldwide. Compared with conventional ecosystem service frameworks, the carbon flow approach provides a process-based, dynamic mediator that quantifies biogeochemical linkages in LUCC–ESs–HWB systems, which is particularly important in fragile karst regions. However, we acknowledge that further empirical comparison with traditional ESs metrics could strengthen the framework’s generalizability. Full article
(This article belongs to the Special Issue Advances in Land Consolidation and Land Ecology (Second Edition))
Show Figures

Graphical abstract

18 pages, 14333 KiB  
Article
Unveiling the Intrinsic Linkages Between “Water–Carbon–Ecology” Footprints in the Yangtze River Economic Belt and the Yellow River Basin
by Daiwei Zhang, Ming Jing, Weiwei Chen, Buhui Chang, Ting Li, Shuai Zhang, En Liu, Ziming Li and Chang Liu
Sustainability 2025, 17(14), 6419; https://doi.org/10.3390/su17146419 - 14 Jul 2025
Viewed by 235
Abstract
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically [...] Read more.
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically evaluate the “W-C-E” footprints and resource flow characteristics of the Yangtze River Economic Belt and the Yellow River Basin. By integrating import and export trade data, this study reveals the patterns of resource flows within and outside these regions. This research delineates the connection patterns between the “W-C-E” footprints and resource flows across three dimensions: spatial, sectoral, and environmental–economic factors. The results indicate that the Yangtze River Economic Belt has gained significant economic benefits from regional trade but also bears substantial environmental costs. Import and export trade further exacerbate the imbalance in regional resource flows, with the Yangtze River Economic Belt exporting many embodied resources through high-energy-consuming products, while the Yellow River Basin increases resource input by importing products such as food and tobacco. Sectoral analysis reveals that agriculture, electricity and water supply, and mining are the sectors with the highest net output of “W-C-E” footprints in both regions, whereas services, food and tobacco, and construction are the sectors with the highest net input. The comprehensive framework of this study can be extended to the analysis of resource–environment–economic systems in other regions, providing methodological support for depicting complex human–land system linkage patterns. Full article
Show Figures

Figure 1

26 pages, 5129 KiB  
Article
HEC-RAS-Based Evaluation of Water Supply Reliability in the Dry Season of a Cold-Region Reservoir in Mudanjiang, Northeast China
by Peng-Fei Lu, Chang-Lei Dai, Yuan-Ming Wang, Xiao Yang and Xin-Yu Wang
Sustainability 2025, 17(14), 6302; https://doi.org/10.3390/su17146302 - 9 Jul 2025
Viewed by 318
Abstract
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking [...] Read more.
Under the influence of global climate change, water conservancy projects located in the high-latitude cold regions of the world are facing severe challenges. This study addresses the contradiction between water supply stability and ecological flow during the dry season in cold regions. Taking Linhai Reservoir as the core, it integrates the HEC-RAS hydrodynamic model with multi-source data such as basin topography, hydro-meteorological data, and water conservancy project parameters to construct a multi-scenario water supply scheduling model during the dry season. The aim is to provide scientific recommendations for different reservoir operation strategies in response to varying frequencies of upstream inflow, based on simulations conducted after the reservoir’s completion. Taking into account winter runoff reduction characteristics and engineering parameters, we simulated the relationships between water level and flow, ecological flow requirements, and urban water shortages. The results indicate that in both flood and normal years, dynamic coordination of storage and discharge can achieve a daily water supply of 120,000 cubic meters, with 100% compliance for the ecological flow rate. For mild and moderate drought years, additional water diversion becomes necessary to achieve 93.5% and 89% supply reliability, respectively. During severe and extreme droughts, significantly reduced reservoir inflows lower ecological compliance rates, necessitating emergency measures, such as utilizing dead storage capacity and exploring alternative water sources. The study proposes operational strategies tailored to different drought intensities: initiating storage adjustments in September for mild droughts and implementing peak-shifting measures by mid-October for extreme droughts. These approaches enhance storage efficiency and mitigate ice blockage risks. This research supports the water supply security and river ecological health of urban and rural areas in Mudanjiang City and Hailin City and provides a certain scientific reference basis for the multi-objective coordinated operation of reservoirs in the same type of high-latitude cold regions. Full article
Show Figures

Figure 1

23 pages, 2732 KiB  
Article
Impacts of Low-Order Stream Connectivity Restoration Projects on Aquatic Habitat and Fish Diversity
by Xinfeng Li, Xuan Che, Xiaolong Chen, Changfeng Tian and Jiahua Zhang
Fishes 2025, 10(7), 321; https://doi.org/10.3390/fishes10070321 - 2 Jul 2025
Viewed by 265
Abstract
River barriers constitute a key factor that is degrading river connectivity and represent a critical research focus in riverine ecosystem conservation. Management authorities and river restoration agencies globally have increasingly employed barrier removal or modification for connectivity restoration projects in recent years, practices [...] Read more.
River barriers constitute a key factor that is degrading river connectivity and represent a critical research focus in riverine ecosystem conservation. Management authorities and river restoration agencies globally have increasingly employed barrier removal or modification for connectivity restoration projects in recent years, practices that are widely discussed and empirically supported in academia. However, existing research predominantly focuses on large dams in primary rivers, overlooking the more severe fragmentation caused by low-head barriers within low-order streams. This study targets the Yanjing River (total length: 70 km), a third-order tributary of the Yangtze River basin, implementing culvert modification and complete removal measures, respectively, for two river barriers distributed within its terminal 9 km reach. Using differential analysis, principal component analysis (PCA), cluster analysis, Mantel tests, and structural equation modeling (SEM), we systematically examined the mechanisms by which connectivity restoration projects influences aquatic habitat and fish diversity, the evolution of reach heterogeneity, and intrinsic relationships between aquatic environmental factors and diversity metrics. Results indicate that (1) the post-restoration aquatic habitat significantly improved with marked increases in fish diversity metrics, where hydrochemical factors and species diversity exhibited the highest sensitivity to connectivity changes; (2) following restoration, the initially barrier-fragmented river segments (upstream, middle, downstream) exhibited significantly decreased differences in aquatic habitat and fish diversity, demonstrating progressive homogenization across reaches; (3) hydrological factors exerted stronger positive effects on fish diversity than hydrochemical factors did, particularly enhancing species diversity, with a significant positive synergistic effect observed between species diversity and functional diversity. These studies demonstrate that “culvert modification and barrier removal” represent effective project measures for promoting connectivity restoration in low-order streams and eliciting positive ecological effects, though they may reduce the spatial heterogeneity of short-reach rivers in the short term. It is noteworthy that connectivity restoration projects should prioritize the appropriate improvement of hydrological factors such as flow velocity, water depth, and water surface width. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes, Second Edition)
Show Figures

Graphical abstract

24 pages, 1500 KiB  
Article
Coupling Relationship Between Transportation Corridors and Ecosystem Service Value Realization in Giant Panda National Park
by Lulin Liu, Renna Du, Qian Mao, Gaoru Zhu and Hong Zhong
Land 2025, 14(7), 1385; https://doi.org/10.3390/land14071385 - 1 Jul 2025
Viewed by 261
Abstract
As critical zones for ecological conservation, national parks necessitate integrated management of transportation corridors (TCs) and ecosystem service value (ESV) to advance ecological civilisation. This study investigates the TC-ESV mutual construction mechanism in the Giant Panda National Park (GPNP). This research employs the [...] Read more.
As critical zones for ecological conservation, national parks necessitate integrated management of transportation corridors (TCs) and ecosystem service value (ESV) to advance ecological civilisation. This study investigates the TC-ESV mutual construction mechanism in the Giant Panda National Park (GPNP). This research employs the TOPSIS method to measure the development level of TCs, applies the equivalent factor method to calculate the ESV, and uses a coupling coordination model and local spatial autocorrelation analysis to evaluate their interaction patterns. The results show that TC development in the GPNP has been increasing, accompanied by a significant rise in ESV. A coupling coordination relationship exists between TCs and ESV, with notable spatial differentiation. TCs not only increase the market ESV by reducing distribution costs and facilitating the outward flow of ESV, they also improve the accessibility of national parks, promote ecotourism and cultural services, facilitate the movement of people and the exchange of knowledge, and enhance the ability of local populations and migrants to realise the ESV in the long term. However, challenges persist, including ESV conversion difficulties and TC construction’s potential impacts on ESV realisation. Therefore, we propose optimised green transport corridors and differentiated ecological compensation mechanisms, and by analysing the interaction between them, the innovation of this paper is to provide an innovative framework for sustainable spatial governance of ESV conversion and TC development in national parks, enriching the interdisciplinary approach. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

26 pages, 743 KiB  
Article
The Impact of Green Finance and Financial Globalization on Environmental Sustainability: Empirical Evidence from Türkiye
by Pınar Yardımcı and Cansel Oskay
Sustainability 2025, 17(13), 5696; https://doi.org/10.3390/su17135696 - 20 Jun 2025
Viewed by 761
Abstract
Green finance—including bilateral and multilateral development aid and concessional loans—has emerged as a critical tool in supporting the transition to a low-carbon economy, particularly in emerging economies. Türkiye, since the early 2000s, has increasingly relied on climate-related official development flows in alignment with [...] Read more.
Green finance—including bilateral and multilateral development aid and concessional loans—has emerged as a critical tool in supporting the transition to a low-carbon economy, particularly in emerging economies. Türkiye, since the early 2000s, has increasingly relied on climate-related official development flows in alignment with its sustainability and emissions reduction targets. This study examines the impact of green finance and financial globalization on environmental sustainability in Türkiye over the period 2001–2021. It specifically tests the load capacity curve (LCC) hypothesis, which posits a non-linear (U-shaped) relationship between financial drivers and ecological outcomes. The study employs the load capacity factor (LCF) as an environmental pressure indicator and uses ARDL, FMOLS, DOLS, and CCR estimation methods to ensure robustness. The results indicate that green finance has a long-term positive effect on Türkiye’s environmental sustainability, whereas financial globalization shows mixed effects. The findings confirm the presence of a U-shaped relationship between green finance and environmental pressure, supporting the LCC hypothesis. These results contribute to the limited empirical literature on green finance in emerging economies and suggest that policy frameworks should emphasize the sequencing and institutional alignment of green financial flows. Policymakers in Türkiye and similar economies may benefit from integrating green finance strategies with targeted regulatory reforms to maximize ecological benefits. Full article
(This article belongs to the Special Issue Development Economics and Sustainable Economic Growth)
Show Figures

Figure 1

17 pages, 9097 KiB  
Article
Dimensional Analysis of Hydrological Response of Sluice Gate Operations in Water Diversion Canals
by Hengchang Li, Zhenyong Cui, Jieyun Wang, Chunping Ning, Xiangyu Xu and Xizhi Nong
Water 2025, 17(11), 1662; https://doi.org/10.3390/w17111662 - 30 May 2025
Viewed by 440
Abstract
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial [...] Read more.
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial canals under the control of sluice gates is lacking, as are scientifically accurate calculations of sluice gate discharge. Therefore, addressing these gaps in long-distance artificial water transfer is of great importance. In this study, real-time operation data of 61 sluice gates, pertaining to the period from May 2019 to July 2021, including data on water levels, flow discharge, velocity, and sluice gate openings in the main canal of the Middle Route of the South-to-North Water Diversion Project of China, were analyzed. The discharge coefficient of each sluice gate was calculated by the dimensional analysis method, and the unit-width discharge was modeled as a function of gate opening (e), gravity acceleration (g), and energy difference (H). Through logarithmic transformation of the Buckingham Pi theorem-derived equation, a linear regression model was used. Data within the relative opening orifice flow regime were selected for fitting, yielding the discharge coefficients and stage–discharge relationships. The results demonstrate that during the study period, the water level, discharge, and velocity of the main canal showed an increasing trend year by year. The dimensional analysis results indicate that the stage–discharge response relationship followed a power function (Q(He)constant) and that there was a good linear relationship between lg(He) and lg(Ke) (R2 > 0.95, K=(q2/g)1/3). By integrating geometric, operational, and hydraulic parameters, the proposed method provides a practical tool and a scientific reference for analyzing sluice gates’ regulation and hydrological response characteristics, optimizing water allocation, enhancing ecological management, and improving operational safety in long-distance inter-basin water diversion projects. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

18 pages, 7348 KiB  
Article
Augmenting Coral Growth on Breakwaters: A Shelter-Based Approach
by Almog Ben Natan, Natalie Chernihovsky and Nadav Shashar
Coasts 2025, 5(2), 18; https://doi.org/10.3390/coasts5020018 - 28 May 2025
Viewed by 498
Abstract
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically [...] Read more.
With the increasing global population and migration toward coastal regions, and the rising demand for coastal urbanization, including the development of living spaces, ports, and tourism infrastructure, the need for coastal defense structures (CDSs) is also increasing. Traditional CDSs, such as breakwaters, typically composed of hard units designed to block and divert wave and current energy, often fail to support diverse and abundant marine communities because of their impact on current and sediment transport, the introduction of invasive species, and the loss of natural habitats. Marine ecoengineering aims at increasing CDS ecological services and the development of marine organisms on them. In this study, carried out in a coral reef environment, we examined the relationship between coral colony protection levels and three factors related to their development, namely, coral fragment survival rate, larval settlement, and water motion (flow rate), across three distinct niches: Exposed, Semi-sheltered, and Sheltered. Coral survivability was assessed through fragment planting, while recruitment was monitored using ceramic settlement tiles. Water motion was measured in all defined niches using plaster of Paris Clod-Cards. Additionally, concrete barrier structures were placed in Exposed niches to test whether artificially added protective elements could enhance coral fragment survival. No differences were found in coral settlement between the niches. Flow rate patterns remained similar in Exposed and Sheltered niches due to vortex formation in the Sheltered zones. Survival analysis revealed variability between niches, with the addition of artificial shelter barriers leading to the highest coral fragment survival on the breakwater. This study contributes to the development of ways to enhance coral development with the goal of transforming artificial barriers into functional artificial reefs. Full article
Show Figures

Figure 1

18 pages, 4507 KiB  
Article
Mapping Water Yield Service Flows in the Transnational Area of Tumen River
by Huangen Xie, Da Zhang and Ying Nan
Sustainability 2025, 17(10), 4637; https://doi.org/10.3390/su17104637 - 19 May 2025
Viewed by 416
Abstract
Ecosystem service flows are critical linkages between ecological supply and human demand. As a vital component of ecosystem services, water yield service is essential for human survival and development. Therefore, it is of great significance to explore the supply–demand relationship of water yield [...] Read more.
Ecosystem service flows are critical linkages between ecological supply and human demand. As a vital component of ecosystem services, water yield service is essential for human survival and development. Therefore, it is of great significance to explore the supply–demand relationship of water yield service and its spatial flow process. This study investigates the supply–demand dynamics and spatial flow of water yield service in the transnational area of Tumen River (2000–2020), utilizing the InVEST model and the miniature delivery-path-mechanism model. The results show the following: (1) From 2000 to 2020, the supply of water yield service in the Tumen River Basin exhibited a spatial distribution pattern of “low center, high surrounding”, with significant spatial heterogeneity in the distribution of supply and demand. (2) Despite the substantial surplus of water yield service in the study area, the ecosystem service supply–demand ratio (ESDR) shows an overall declining trend. The dominant spatial mismatch type is high-supply–low-demand (HL type) zones, primarily located in mountainous and hilly areas, accounting for over 40% of the total identified pixel types. (3) Driven by economic and social development, the spatial scope of water yield service flow has gradually expanded. Supply-side flows initially increased before declining, while demand-side flows followed the opposite trend. By mapping ecosystem service flows, this study provides a reference and basis for establishing the regional ecological compensation mechanism and promoting integrated water resource management, both of which are crucial for the long-term sustainable development of the basin. Full article
Show Figures

Figure 1

19 pages, 4231 KiB  
Article
Divergent Driving Mechanisms Shape the Temporal Dynamics of Benthic Prokaryotic and Eukaryotic Microbial Communities in Coastal Subtidal Zones
by Daode Ji, Jianfeng Zhang, Fan Li, Wensheng Li, Luping Bi, Wenlu Li, Yingjun Fu and Yunfeng Wang
Microorganisms 2025, 13(5), 1050; https://doi.org/10.3390/microorganisms13051050 - 30 Apr 2025
Cited by 1 | Viewed by 513
Abstract
Benthic microbial communities are a vital component of coastal subtidal zones, playing an essential role in nutrient cycling and energy flow, and are fundamental to maintaining the stability and functioning of marine ecosystems. However, the response of benthic prokaryotic and eukaryotic microbial communities [...] Read more.
Benthic microbial communities are a vital component of coastal subtidal zones, playing an essential role in nutrient cycling and energy flow, and are fundamental to maintaining the stability and functioning of marine ecosystems. However, the response of benthic prokaryotic and eukaryotic microbial communities to environmental changes remains poorly understood. Herein, we conducted a nearly semimonthly annual sampling survey to investigate the temporal patterns and underlying mechanisms of benthic prokaryotic and eukaryotic microbial communities in the subtidal sediments of Sanshan Island, situated in the eastern Laizhou Bay of the Bohai Sea, China. The results showed that the temporal variations in benthic microbial communities followed a distinct seasonal pattern, with turnover playing a more dominant role in community succession. Nonetheless, contrasting temporal variations were observed in the alpha diversity of benthic prokaryotic and eukaryotic microbial communities, as well as in the dominant taxa across different microbial communities. Water temperature, dissolved oxygen, electrical conductivity, salinity, total nitrogen (TN), NH4+, and PO43− were identified as the predominant environmental drivers. The assembly of benthic microbial communities was driven by different ecological processes, in which stochastic processes mainly shaped the benthic prokaryotic communities, while deterministic processes dominated the assembly of benthic eukaryotic microbial communities. Interactions within benthic microbial communities were primarily characterized by mutualistic or cooperative relationships, but the ability of prokaryotic and eukaryotic microbial communities to maintain stability under environmental disturbances showed notable differences. These results shed light on the temporal dynamics and potential driving mechanisms of benthic prokaryotic and eukaryotic microbial communities under environmental disturbances, highlighting the distinct roles of prokaryotic and eukaryotic communities in coastal subtidal zones and providing valuable insights for the management and conservation of coastal subtidal marine ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 3828 KiB  
Article
A Five-Dimensional Comprehensive Evaluation of the Yellow River Basin’s Water Environment Using Entropy–Catastrophe Progression Method: Implications for Differentiated Governance Strategies
by Yaqun Zhang and Yangan Ren
Water 2025, 17(8), 1228; https://doi.org/10.3390/w17081228 - 20 Apr 2025
Viewed by 407
Abstract
The systematic evaluation of the water environment in the Yellow River basin is a critical scientific basis for achieving the goals of ecological protection and high-quality development. In this study, a five-dimensional comprehensive evaluation framework (“quality–quantity–space–flow–biota”) consisting of 19 indicators was constructed. The [...] Read more.
The systematic evaluation of the water environment in the Yellow River basin is a critical scientific basis for achieving the goals of ecological protection and high-quality development. In this study, a five-dimensional comprehensive evaluation framework (“quality–quantity–space–flow–biota”) consisting of 19 indicators was constructed. The entropy method and the catastrophe progression method were innovatively combined to solve the limitations of traditional evaluation models in characterizing the nonlinear relationships within water environment systems. The results indicated that the Yellow River basin’s overall comprehensive water environment index was 0.032, classified as “good”. However, the spatial differentiation is significant, showing a step-by-step degradation characteristic of “upstream > downstream > midstream”. Gansu Province (0.028), Ningxia Hui Autonomous Region (0.026), Shaanxi (0.024), and Shanxi (0.020) were rated as “poor” and urgently need to be regulated. The core problems are water shortage (Gansu, Ningxia), water quality deterioration (Shaanxi, Shanxi), and fragmentation of aquatic space (Shanxi, Shaanxi). The findings of this study provided a quantitative tool for differentiated governance in the Yellow River basin which could directly support the decision-making needs of “zoning control and precise policy implementation” in the “Outline of the Plan for Ecological Protection and High-quality Development of the Yellow River Basin”. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop