Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = flour mixes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6852 KB  
Article
Physicochemical Properties of Sprouted Fava Bean Flour–Fermented Red Rice Flour Mixed System and Its Application in Gluten-Free Noodles
by Zhongman Min, Ting Zheng, Jinghan Wang, Wenkai Hu, Qingyu Yang and Yanwen Kong
Foods 2025, 14(24), 4302; https://doi.org/10.3390/foods14244302 - 14 Dec 2025
Viewed by 591
Abstract
This study investigated the functional, pasting, and rheological properties of sprouted fava bean flour, Lactobacillus plantarum fermented red rice flour, and mixed flour. Then, the study investigated the structural properties of sprouted fava bean dough, fermented red rice dough, and mixed dough, as [...] Read more.
This study investigated the functional, pasting, and rheological properties of sprouted fava bean flour, Lactobacillus plantarum fermented red rice flour, and mixed flour. Then, the study investigated the structural properties of sprouted fava bean dough, fermented red rice dough, and mixed dough, as well as the quality and functional properties of the mixed noodles. The results showed that sprouting and fermentation treatments improved the processing properties of the flour. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and moisture distribution results of the dough showed that the mixed dough had a more stable structure. Scanning electron microscopy (SEM) and Confocal laser scanning microscopy (CLSM) of the noodles showed that the addition of sprouted fava bean flour was able to mimic the protein network structure to some extent. In addition, germination and fermentation were effective in improving the textural properties, as well as increasing the total phenolic content (1.27–2.03 mg GAE/g) and antioxidant activity, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging (43.54–64.84%), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging (41.37–58.98%), Hydroxyl radical scavenging (19–48.38%), while significantly reducing the estimated glycemic index (74.64–57.60) of the mixed noodles. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

12 pages, 252 KB  
Article
Effects of Cantaloupe (Cucumis melo) Melon Seed Flour on Physicochemical Characteristics and Consumer Acceptance of Gluten-Free Cookies
by Sagrario Medina, Roberto Cedillos, Silvia Murillo Miguez, Andrea Muela, Elio Villasmil, Jhunior Marcia and Witoon Prinyawiwatkul
Foods 2025, 14(23), 4117; https://doi.org/10.3390/foods14234117 - 1 Dec 2025
Viewed by 541
Abstract
Cantaloupe melon seeds are a byproduct that can be upcycled for their nutritional value, generating added value, reducing food waste, and supporting food sustainability. This study evaluated the effects of melon seed flour on selected physicochemical and consumer acceptance of gluten-free cookies. Melon [...] Read more.
Cantaloupe melon seeds are a byproduct that can be upcycled for their nutritional value, generating added value, reducing food waste, and supporting food sustainability. This study evaluated the effects of melon seed flour on selected physicochemical and consumer acceptance of gluten-free cookies. Melon seeds were dehydrated at 60 °C for 12 h and ground. Then gluten-free cookies containing varying melon seed flour (20, 40, 60, 80, and 100%) were prepared by mixing the ingredients and baked at 177 °C for 18 min. Color, water activity, proximate composition, and mineral contents of the melon seed flour were measured. Color, water activity, spread factor, and hardness of the five cookie formulations were evaluated. Finally, a randomized block design was used for the consumer test with 90 consumers. Appearance, aroma, flavor, texture, grittiness, and overall liking were evaluated using a 9-point hedonic scale. Also, purchase intent was asked for before and after a sustainability claim. Data were analyzed using an ANOVA and the post hoc Tukey test (p < 0.05). The McNemar test was used to test whether there were significant differences in purchase intent before and after a sustainability claim. Melon seed flour had 21.4% protein, 34.93% crude fiber, 3% ash, 4% moisture, and 26.9% fat. Spread factor and a* (color redness) values increased with increasing melon seed flour. On the other hand, the more melon seed flour in cookies, the lower the L* value and water activity. The treatment with 40% melon seed flour had the highest liking score, 6.25. Finally, the sustainability claim significantly increased the positive purchase intent of the cookies. This study demonstrates the potential of cantaloupe melon seed flour as an ingredient in food, such as gluten-free cookies. This practice in the food industry can help increase value and reduce waste in cantaloupe processing. Full article
18 pages, 1754 KB  
Article
Qualitative Characteristics of Semolina–Pulse Flour Mixes and Related Breads
by Michele Canale, Rosalia Sanfilippo, Salvatore Moscaritolo, Maria Carola Fiore, Maria Concetta Strano, Maria Allegra, Giancarlo Fascella, Giovanni Gugliuzza and Alfio Spina
Foods 2025, 14(21), 3720; https://doi.org/10.3390/foods14213720 - 30 Oct 2025
Viewed by 776
Abstract
In recent years, pulse flours have gained attention in baked goods for their nutritional value. This study evaluated the effects of incorporating common bean, yellow pea, and grass pea flours (20%, 30%, 40%) into durum wheat semolina on the technological, physical, and rheological [...] Read more.
In recent years, pulse flours have gained attention in baked goods for their nutritional value. This study evaluated the effects of incorporating common bean, yellow pea, and grass pea flours (20%, 30%, 40%) into durum wheat semolina on the technological, physical, and rheological properties of flours, doughs, and breads. Combining pulse flours with durum wheat semolina allows for improved dough handling and processing performance, leveraging the functional properties of both ingredients. Water absorption increased with pulse flour addition (average 1.90 g H2O/g dry matter), though higher levels of yellow pea and grass pea reduced it. Color changes were most evident with common bean flour. Leavening rates varied, reaching 144% after 60 min with 30% yellow pea and 68.75% after 40 min with 30% common bean. Rheological results indicated longer dough development and stability times but reduced strength and extensibility, with higher tenacity. Bread volume decreased from 276.25 cm3 (control) to 208.75 cm3 (40% common bean). Crumb porosity declined, particularly with common bean flour, producing smaller pores. Grass pea flour promoted browning, enhancing color contrast. Texture analysis showed harder, more gum-like breads with higher chew resistance: hardness ranged from 15.85 N (20% common bean) to 30.45 N (40% yellow pea). Gumminess and chewiness increased, while cohesiveness decreased. Overall, pulse flour integration alters bread quality, yet represents a promising approach to creating healthier, functional, baked products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

30 pages, 6204 KB  
Article
Technological Assessment of Bread with the Addition of Cyperus esculentus L. Accessions Flour Grown in the Kuban–Azov Plain
by Nina G. Kon’kova, Valentina I. Khoreva, Vitaliy S. Popov, Tamara V. Yakusheva, Ilya A. Kibkalo, Leonid L. Malyshev, Alla E. Solovyеva and Tatiana V. Shelenga
Foods 2025, 14(21), 3680; https://doi.org/10.3390/foods14213680 - 28 Oct 2025
Viewed by 642
Abstract
Due to increased interest in new functional food products, 20 accessions of chufa tubers from the collection of the N.I. Vavilov Institute of Plant Industry, grown in the Kuban–Azov Plain in 2022, as well as bread samples made from mixed flour (70% whole-grain [...] Read more.
Due to increased interest in new functional food products, 20 accessions of chufa tubers from the collection of the N.I. Vavilov Institute of Plant Industry, grown in the Kuban–Azov Plain in 2022, as well as bread samples made from mixed flour (70% whole-grain wheat flour, 30% chufa tuber flour) were studied. Biochemical, farinographic, and baking evaluations were carried out. Differences between the properties of dough with the addition of flour from various accessions of chufa tubers were recorded. According to the results of comparative, dispersion, and principal component analysis, all biochemical indicators (oil, fiber, sum of phenolic substances, antioxidant activity) of chufa tuber flour and bread with added chufa flour surpassed control samples (whole-grain wheat flour and wheat bread), with the exception of protein and starch content. Viscoamylographic, farinographic sedimentation, and baking quality evaluations indicated that the dough made from mixed flour was stronger than the control (dough from whole-grain wheat flour), more resistant to kneading, and had a lower degree of liquefaction. In terms of organoleptic properties, differences were also identified, and the accessions that enhance the taste of mixed bread were selected. Therefore, a preliminary conclusion can be drawn that chufa tubers grown in the conditions of the Kuban–Azov Plain with high rheological properties and high sedimentation values of the mixed dough can be recommended for improving the baking properties not only of wheat but also of other bread cereals. Chufa is also a promising crop in the manufacture of functional food products in the Krasnodar region and for the food industry in general as a potential thickener. Full article
Show Figures

Figure 1

17 pages, 5766 KB  
Article
Wheat–Oat Bread Enriched with Beetroot-Based Additives: Technological and Quality Aspects
by Zuzanna Posadzka-Siupik, Joanna Kaszuba, Ireneusz Tomasz Kapusta and Grażyna Jaworska
Appl. Sci. 2025, 15(21), 11408; https://doi.org/10.3390/app152111408 - 24 Oct 2025
Cited by 1 | Viewed by 549
Abstract
Beetroot-based additives are interesting for enriching bread in terms of bioactive compounds. The objective of this study was to determine the effect of the following beetroot-based additives: a beetroot lyophilizate powder (wheat–oat baking mix flour was replaced in proportions of 2.5, 5.0, 7.5, [...] Read more.
Beetroot-based additives are interesting for enriching bread in terms of bioactive compounds. The objective of this study was to determine the effect of the following beetroot-based additives: a beetroot lyophilizate powder (wheat–oat baking mix flour was replaced in proportions of 2.5, 5.0, 7.5, 10%), a beetroot juice (water was replaced with juice in proportions of 25, 50, 75, 100%) and a by-product of beetroot juice production, i.e., pomace (wheat–oat baking mix flour was replaced in proportions of 2.5, 5.0, 7.5, 10%) on the quality of wheat–oat bread and the content of bioactive components in this type of bread. The properties of the dough were also assessed. The type and percentage level of partially replacing wheat–oat baking mix flour or water with beetroot-based additives had a significant impact on water absorption, dough development, and stability time of the tested dough. The beetroot juice (BJ) and powder (BLP) had the most significant impact on the rheological properties of the dough, whereas the pomace (BP) had the smallest effect. Beetroot-based additives, especially powder and juice, reduced the volume of bread (from 199 to 148 cm3/100 g of bread) but did not change oven loss [%] and bread crumb porosity index. Breads with these additives showed higher increased values for dough yield [%] and bread yield [%] (for beetroot powder—by 10% compared to the control sample (133.37% and 113.83%)). Tested additives had an impact on the crust and crumb color of the tested wheat–oat breads. The proposed additives significantly increased the antioxidant activity, total phenolic content, and betalain content in the bread samples. The above results showed that, from a technological point of view, replacing water or flour in the wheat–oat bread recipe with beetroot-based additives with a maximum concentration of 5% for BP or BLP and 50% for BJ allows for obtaining a product of good quality. Full article
Show Figures

Figure 1

15 pages, 3211 KB  
Article
Exploring the Sustainable Development Strategy of Wood Flour-Based Composite Materials in Outdoor Furniture
by Huidi Zhou, Yuqi Gao and Kaili Zhang
Sustainability 2025, 17(20), 9235; https://doi.org/10.3390/su17209235 - 17 Oct 2025
Viewed by 660
Abstract
Wood flour, a landscaping byproduct, poses disposal challenges due to its poor degradability, despite its potential as a sustainable material. This study modified wood powder by synergistically incorporating fly ash and TiO2, followed by curing it with polyamide and epoxy resin [...] Read more.
Wood flour, a landscaping byproduct, poses disposal challenges due to its poor degradability, despite its potential as a sustainable material. This study modified wood powder by synergistically incorporating fly ash and TiO2, followed by curing it with polyamide and epoxy resin to produce high-performance wood powder-based composites suitable for outdoor furniture applications, it can solve the environmental problems caused by fly ash. The research findings indicated that as the TiO2 content increased, the material’s pore size diminished, structural strength improved, and it demonstrated enhanced hydrophobic properties and UV absorption capabilities. The optimal UV absorption performance was observed at a TiO2 content of 1.5%. The combination of TiO2 and fly ash led to the formation of more stable Si-O-Ti and Si-O-Si bonds, which further strengthened the material. Water contact angle and water repellency tests indicated that the 1.5% TiO2 composite showed a 12% increase in compressive strength and a water contact angle of 100.6°, indicating improved hydrophobicity. The addition of TiO2 reduced the number of free-OH groups within the matrix, thereby improving the composite’s hydrophobicity. Outdoor chairs fabricated by mixing 1.5% TiO2-modified wood powder with PET for demolding exhibited excellent structural stability while also being safe and environmentally friendly. This study proposes a feasible preparation strategy for wood powder, enhancing durability through improved mechanical strength, water repellency, and UV shielding. Furthermore, it offers valuable insights into the material modification of wood powder-based materials for the production of outdoor garden furniture. Full article
Show Figures

Figure 1

33 pages, 8240 KB  
Article
Valorization of Avocado Seeds for Active Packaging: Comparative Analysis of Extracted Starch- and Seed Flour-Based Materials with Cinnamon Essential Oil
by Pedro Francisco Muñoz-Gimena, Alejandro Aragón-Gutiérrez, Enrique Blázquez-Blázquez, Marina P. Arrieta, Laura Peponi and Daniel López
Polysaccharides 2025, 6(3), 83; https://doi.org/10.3390/polysaccharides6030083 - 10 Sep 2025
Cited by 1 | Viewed by 1640
Abstract
This work aims to develop bio-based and biodegradable materials for active food packaging purposes by comparing the properties of avocado seed flour (ASF) and avocado extracted starch (AES). A 36.4% dry basis yield is obtained for the extracted AES from ASF. ASF presents [...] Read more.
This work aims to develop bio-based and biodegradable materials for active food packaging purposes by comparing the properties of avocado seed flour (ASF) and avocado extracted starch (AES). A 36.4% dry basis yield is obtained for the extracted AES from ASF. ASF presents a higher crystallinity, and SEM images show a mixture of starch granules and other materials, whereas AES presents lower ash, protein, and lipid content relative to ASF. To make a comparison between the two, ASF or AES are mixed with glycerol at different concentrations, then twin-screw extruded and injection-molded to develop thermoplastic starch-based materials. The morphological, mechanical, barrier, antioxidant, antimicrobial, and disintegrability properties are evaluated to compare their different compositions. ASF-based films exhibit better barrier properties and a 134% higher intrinsic antioxidant capacity. Conversely, the homogenous nature of AES-based materials results in better interactions with the plasticizer, allowing a wide range of mechanical properties. Moreover, cinnamon essential oil (CEO) was incorporated into the preferred compositions of both ASF and AES to improve antimicrobial properties. Adding a 5% concentration of CEO to samples was sufficient to completely inhibit the growth of P. expansum. These results support waste valorization for developing active packaging materials with high antioxidant and antimicrobial properties without competing for resources with the food industry. Full article
Show Figures

Graphical abstract

11 pages, 863 KB  
Article
Testing Analytical Methods for Antibiotic Detection in Tenebrio molitor Larvae: A Controlled Feeding Trial
by Tomke Asendorf, Christine Wind and Andreas Vilcinskas
Antibiotics 2025, 14(9), 909; https://doi.org/10.3390/antibiotics14090909 - 9 Sep 2025
Viewed by 1007
Abstract
Background: As edible insects gain importance as sustainable protein sources, their integration into the food system requires that they meet the same safety standards as conventional animal products. This includes systematic testing for residues of pharmacologically active substances, such as antibiotics. To enable [...] Read more.
Background: As edible insects gain importance as sustainable protein sources, their integration into the food system requires that they meet the same safety standards as conventional animal products. This includes systematic testing for residues of pharmacologically active substances, such as antibiotics. To enable such monitoring, validated analytical methods for insect matrices are essential—but currently lacking. This study evaluates whether LC-MS/MS methods already validated for conventional animal products are suitable for detecting antibiotics in edible insects. Methods:Tenebrio molitor larvae were fed wheat flour containing 10 mg of tiamulin or chloramphenicol and 31.3 mg erythromycin per 100 g flour. The antibiotics were mixed into the feed, and their homogeneity and stability were confirmed. After seven days of feeding and a 24-h fasting period, larval samples were analyzed by LC-MS/MS. Results: All three antibiotics were detected in the insects. After seven days, mealworms contained 6.8 ± 0.3 mg/kg tiamulin, 1.4 ± 0.2 mg/kg chloramphenicol, and 224.5 ± 111 mg/kg erythromycin. Following the 24-hour fasting period, concentrations declined markedly to 0.6 ± 0.03 mg/kg, 0.2 ± 0.002 mg/kg, and 130.5 ± 0.7 mg/kg, respectively. Conclusions: The detection of all three antibiotics demonstrates that existing LC-MS/MS methods can be applied to insect matrices. Owing to the small number of replicates and the exploratory nature of the trial, these residue levels should be interpreted qualitatively as a proof of concept. The study provides a reproducible model for further feeding trials and underscores the need for more comprehensive validation. Potential drivers of antibiotic misuse in insect farming are discussed as a basis for developing and expanding testing methods to ensure the food safety of edible insects. Full article
Show Figures

Figure 1

18 pages, 4032 KB  
Article
Effect of Sodium Chloride Concentrations on Processing Characteristics and Quality of Mianpi Made Using Different Wheat Flour–Starch Levels
by Yang Lu, Luo Tang, Shuying Li, Peiling Liu, Ting Chen and Fayin Ye
Foods 2025, 14(17), 3127; https://doi.org/10.3390/foods14173127 - 6 Sep 2025
Viewed by 1352
Abstract
Sodium chloride (NaCl) was essential for making mianpi, a traditional Chinese wheat starch gel food. The production process included wheat flour/starch slurry preparation, steaming, cooling, and cutting. This study investigated how NaCl affected both the slurry’s properties and the quality of mianpi using [...] Read more.
Sodium chloride (NaCl) was essential for making mianpi, a traditional Chinese wheat starch gel food. The production process included wheat flour/starch slurry preparation, steaming, cooling, and cutting. This study investigated how NaCl affected both the slurry’s properties and the quality of mianpi using three formulations: wheat flour (F100), a 50:50 (w/w) wheat flour–starch mix (F50), and wheat starch (F0). Our findings demonstrated that NaCl significantly altered the slurry rheology, pasting behavior, texture, and starch ordered structures. It notably reduced the slurry apparent viscosity, while it showed a divergent effect on its pasting properties. Regarding product quality, NaCl induced a measurable alteration in L*, a*, and b* values of mianpi, though visually imperceptible. F100 mianpi maintained texture except for when adding 2% NaCl, which reduced hardness. NaCl increased tensile strength (excluding F0). However, it caused irregular texture changes in F50 and F0 mianpi. Furthermore, NaCl modulated viscoelastic properties of mianpi products, as evidenced by reductions in storage and loss modulus. FT-IR showed NaCl disrupted starch short-range order in F100/F0 but improved it in F50, though Raman spectroscopy (480 cm−1) did not detect this shift. Gluten protein secondary structure remained unaffected across all formulations. These results guide NaCl–starch–flour formulations in starch-gel-based foods. Full article
(This article belongs to the Special Issue Cereal Products: Novel Uses and Processing Technology)
Show Figures

Figure 1

19 pages, 1408 KB  
Article
Yellow Pea Flour Fermented with Kefir as a Valuable Ingredient for the Techno-Functional and Sensory Improvement of Gluten-Free Bread
by Débora N. López, Pamela S. Forastieri, Natalia L. Calvo, María Belén Cossia, Camila Tedaldi, Emilce E. Llopart, María Eugenia Steffolani and Valeria Boeris
Fermentation 2025, 11(9), 521; https://doi.org/10.3390/fermentation11090521 - 4 Sep 2025
Cited by 1 | Viewed by 1330
Abstract
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation [...] Read more.
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation improved the flour functionality. Bulk density (g/mL) decreased from 0.54 ± 0.02 in YPF and 0.47 ± 0.01 in UF to 0.43 ± 0.01 in FF, while the water absorption capacity (g/g) increased from 1.20 ± 0.01 in YPF and 1.50 ± 0.05 in UF to 1.92 ± 0.02 in FF. YPF showed the lowest oil absorption capacity (0.90 ± 0.02 g/g), while higher values were obtained for FF and UF (averaging 1.54 g/g). The yellowness index showed a clear tendency: higher in UF (34.9 ± 0.2), intermediate in FF (32.869 ± 0.008), and lower in YPF (22.4 ± 0.1). In gluten-free bread, baking loss did not show significant differences between FF-B and UF-B (averaging 15.65%) but they were significantly lower than that of YPF-B (18.5 ± 0.5%). The highest specific volume (mL/g) was observed in FF-B (1.96 ± 0.02), followed by UF-B (1.33 ± 0.02) and YPF-B (1.08 ± 0.02). Significantly reduced “pea” sensory attributes were perceived in FF-B, while acidity perception increased. Hardness was similar among breads, although chewiness was higher in FF-B. These results suggest that kefir fermentation enhances YPF functionality in gluten-free breadmaking. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Graphical abstract

12 pages, 899 KB  
Communication
Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process
by Nayeli Anayansi Loyo-Trujillo, María Remedios Mendoza-López, Rosa Isela Guzmán-Gerónimo, Rosario Galvan-Martínez, Francisco Erik González-Jiménez, Josué Antonio del Ángel-Zumaya, Audry Peredo-Lovillo and Juan Vicente Méndez-Méndez
Foods 2025, 14(16), 2909; https://doi.org/10.3390/foods14162909 - 21 Aug 2025
Cited by 1 | Viewed by 1238
Abstract
Currently, there is an increasing demand for plant-based and low-fat snacks. Non-conventional starch and grains are alternative ingredients. Environmentally friendly processing, such as liquid nitrogen and microwaves, can be used to obtain modified starch, as well as hot air frying to cook snacks. [...] Read more.
Currently, there is an increasing demand for plant-based and low-fat snacks. Non-conventional starch and grains are alternative ingredients. Environmentally friendly processing, such as liquid nitrogen and microwaves, can be used to obtain modified starch, as well as hot air frying to cook snacks. The aim of this work was to evaluate the impact of eco-friendly physical modification of starch from Oxalis tuberosa in a low-fat snack processed by hot air frying. First, native starch (NS) was treated with liquid nitrogen (LNS) and liquid nitrogen/microwaves (LNMS), and the amylose/amylopectin content and functional properties were determined. The snacks were formulated with NS or modified starches, amaranth flour, quinoa flour, corn, onion powder, salt, and water; the ingredients were mixed and placed in an electric pasta maker and cooked by hot air frying. The hardness, hedonic test, colorimetric parameters, acrylamide, proximal composition, and fatty acid profile were analyzed. All starches showed similar values of amylose and amylopectin content. LNMS starch had the lowest water solubility index as compared to NS and LNS. The snacks with the starch modified with liquid nitrogen showed the highest values of hardness as well as the highest score for the texture from a hedonic test. The snacks with modified starches showed a lower browning index than the snack formulated with NS. Acrylamide was not detected in any snacks. The lipid value of the snacks with modified starch was 1.9–2.70 g/100 g of sample, providing ω-9, ω-6, and ω-3 fatty acids. All snacks contained 7.7 g of protein/100 g of sample. These low-fat and plant-based snacks are a healthy option made by environmentally friendly technologies. Full article
Show Figures

Graphical abstract

15 pages, 1125 KB  
Article
Mixed Green Banana (Musa spp.) Pulp and Peel Flour Reduced Body Weight Gain and Adiposity and Improved Lipid Profile and Intestinal Morphology in Wistar Rats
by Leonara Martins Viana, Bárbara Pereira da Silva, Fabiana Silva Rocha Rodrigues, Laise Trindade Paes, Marcella Duarte Villas Mishima, Renata Celi Lopes Toledo, Elad Tako, Hércia Stampini Duarte Martino and Frederico Barros
Nutrients 2025, 17(15), 2493; https://doi.org/10.3390/nu17152493 - 30 Jul 2025
Viewed by 2656
Abstract
Background and Objectives: In recent years, there has been growing interest in the production of ingredients rich in dietary fiber and antioxidants, such as green banana flours. This study evaluated the effect of consumption of mixed green banana pulp (PF) and peel (PeF) [...] Read more.
Background and Objectives: In recent years, there has been growing interest in the production of ingredients rich in dietary fiber and antioxidants, such as green banana flours. This study evaluated the effect of consumption of mixed green banana pulp (PF) and peel (PeF) flours on the body weight gain, adiposity, lipid profile, and intestinal morphology of Wistar rats. Methods: Male young rats were divided into four groups (n = 8) that received a standard diet (SD), or one of the following three test diets: M1 (SD + 90% PF/10% PeF), M2 (SD + 80% PF/20% PeF), or P (SD + 100% PF) for 28 days. Results: Rats from M1, M2, and P groups showed reduced body weight gain and adiposity and had lower contents of total cholesterol, LDL-c, VLDL-c, and triglycerides. Animals from M1 and M2 groups had an increase in cecum weight, fecal moisture, acetic acid concentration, and crypt depth and reduced fecal pH. Moreover, consumption of the M1, M2, and P diets increased the expression of proteins involved in intestinal functionality. Significant negative correlations were observed between consumption of resistant starch and soluble dietary fiber, from the flours, and weight gain (r = −0.538 and r = −0.538, respectively), body adiposity (r = −0.780 and r = −0.767, respectively), total cholesterol (r = −0.789 and r = −0.800, respectively), and triglycerides (r = −0.790 and r = −0.786, respectively). Conclusions: Mixed green banana pulp and peel flour proved to be a viable alternative as a food ingredient that can promote weight loss, improve lipid profile and intestinal morphology, and minimize post-harvest losses. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

22 pages, 1419 KB  
Article
Effect of Lactic Acid Bacteria Concentration and Flaxseed Cake Flour on the Formation and Stability of Bovine Blood Plasma Gels
by Assem Shulenova, Amirzhan Kassenov, Mukhtarbek Kakimov, Gulnara Kokayeva, Ayaulym Mustafayeva, Maigul Mursalykova, Yelena Krasnopyorova, Diana Sviderskaya, Bakhtiyar Rzayev and Bauyrzhan Iskakov
Processes 2025, 13(7), 2024; https://doi.org/10.3390/pr13072024 - 26 Jun 2025
Viewed by 944
Abstract
The protein fraction of slaughterhouse blood remains underutilized primarily due to challenges associated with its instability during processing and storage. This study aimed to develop stable bovine blood plasma gels using selected lactic acid bacteria and flaxseed oil cake flour. Various lactic acid [...] Read more.
The protein fraction of slaughterhouse blood remains underutilized primarily due to challenges associated with its instability during processing and storage. This study aimed to develop stable bovine blood plasma gels using selected lactic acid bacteria and flaxseed oil cake flour. Various lactic acid bacteria strains were incorporated at concentrations of 5–20% (w/w), and gel properties such as pH, gelation time, yield stress, and freeze–thaw syneresis were evaluated. Optimal gelation was achieved at 20% inoculum, producing fibrin networks with yield stresses (372 Pa) comparable to recalcified controls (410 Pa), but accompanied by high serum loss and undesired acidic aromas at higher bacterial densities. Incorporating 5% hydrated flaxseed oil cake flour successfully reduced syneresis below 10%, improved water-holding capacity (135%), and prevented development of off-flavors, demonstrating beneficial interactions between flaxseed polysaccharides and blood plasma proteins. Thus, combining a 20% mixed lactic starter with 5% flaxseed cake flour yielded a stable plasma gel suitable for meat product applications, balancing rapid gel formation, high moisture retention, desirable rheological properties, and neutral sensory characteristics. Full article
Show Figures

Figure 1

18 pages, 1752 KB  
Article
Effects of Saccharomyces cerevisiae Fermentation on Off-Odour Reduction and Flavour Compounds in Pig Large Intestines
by Ye-Xing Liang, Yun-Cheng Li, Zheng Cao, Xue Li, Ling Zhang, Fan-Bing Meng and Yong-Hua Zhou
Foods 2025, 14(13), 2204; https://doi.org/10.3390/foods14132204 - 23 Jun 2025
Viewed by 1022
Abstract
Pig large intestines (PLIs) are usually processed into various dishes for consumption through cooking methods such as stir frying, stewing, and braising, which are difficult for many consumers to accept because of their unique and pungent off-odours. To reduce the number of off-odour [...] Read more.
Pig large intestines (PLIs) are usually processed into various dishes for consumption through cooking methods such as stir frying, stewing, and braising, which are difficult for many consumers to accept because of their unique and pungent off-odours. To reduce the number of off-odour substances present in PLIs, we compared the effects of an untreated control group (blank), added flour (WF), and added S. cerevisiae mixed 4% flour in PLIs for fermentation (SC) on the treatment of PLIs. We analysed colour, thiobarbituric acid reactive substance (TBARS) values, and total volatile basic nitrogen (TVB-N) values; additionally, sensory evaluations were performed. The results showed that after 5 h of fermentation, the S. cerevisiae mixed flour exhibited the most significant effect on reducing the off-odour of PLIs, exhibited the least effect on the TBARS value and TVB-N was controlled within a reasonable range, while simultaneously maintaining good quality. A total of 415 volatile compounds were identified via flavouromics. Combined with principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), the key off-odour substances, including indole (faecal odour), 2-pentylthiophene (fat odour), (E)-2-octenal (fishy odour), and 2-methoxy-phenol (smoky odour), were reduced by 28.1%, 23.90%, 21%, and 22.89%, respectively, after fermentation. Moreover, the content of ethyl octanoate increased 31.04-fold, which enriched the flavour components of the PLIs. The results showed that fermentation of S. cerevisiae mixed flour could be used as a method to reduce the off-odours of PLIs. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

19 pages, 1289 KB  
Article
Effects of Different Highland Barley Varieties on Quality and Digestibility of Noodles
by Guiyun Wu, Lili Wang, Xueqing Wang, Bin Dang, Wengang Zhang, Jingjing Yang, Lang Jia, Jinbian Wei, Zhihui Han, Xiaopei Chen, Jingfeng Li, Xijuan Yang and Fengzhong Wang
Foods 2025, 14(13), 2163; https://doi.org/10.3390/foods14132163 - 20 Jun 2025
Viewed by 1970
Abstract
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated [...] Read more.
This study comprehensively assessed the effects of ten highland barley varieties on the quality and digestibility of noodles. The characteristics of highland barley flour, including proximate composition, pasting properties, and dough mixing behavior, were analyzed. The quality of the resulting noodles was evaluated through cooking and textural property analysis. The digestion characteristics of the noodles were determined to evaluate the starch hydrolysis rate and glycemic index (GI). Additionally, a correlation analysis was conducted among the proximate composition of highland barley flour, the characteristics of flour, and the quality of noodles. The results demonstrate that Chaiqing 1 exhibited superior performance in terms of flour quality and noodle texture compared to other varieties. The noodles produced from this variety possessed an outstanding texture, with moderate hardness and excellent elasticity. Additionally, its noodles also exhibited superior cooking resistance and low cooking loss. Nutritionally, the moderate estimated glycemic index (eGI) and high resistant starch (RS) content of Chaiqing 1 were beneficial for intestinal health. Ximalaya 22 showed good processing performance but slightly inferior texture, whereas Kunlun 14 had a high dietary fiber content, which resulted in noodles prone to breaking. Through a comprehensive variety comparison and screening, Chaiqing 1 emerged as the preferred choice for producing high-quality highland barley noodles. Furthermore, correlation analysis revealed that dietary fiber was significantly and positively correlated with water absorption, stability time (ST), and hardness (p < 0.01). Amylose content was associated with peak temperature and breakdown viscosity. This study provides valuable insights into the selection of highland barley varieties for noodle production. Full article
(This article belongs to the Special Issue Research on the Structure and Physicochemical Properties of Starch)
Show Figures

Figure 1

Back to TopTop