Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (765)

Search Parameters:
Keywords = flexible support control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 28281 KiB  
Article
Infrared-Guided Thermal Cycles in FEM Simulation of Laser Welding of Thin Aluminium Alloy Sheets
by Pasquale Russo Spena, Manuela De Maddis, Valentino Razza, Luca Santoro, Husniddin Mamarayimov and Dario Basile
Metals 2025, 15(8), 830; https://doi.org/10.3390/met15080830 (registering DOI) - 24 Jul 2025
Abstract
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser [...] Read more.
Climate concerns are driving the automotive industry to adopt advanced manufacturing technologies that aim to improve energy efficiency and reduce vehicle weight. In this context, lightweight structural materials such as aluminium alloys have gained significant attention due to their favorable strength-to-weight ratio. Laser welding plays a crucial role in assembling such materials, offering high flexibility and fast joining capabilities for thin aluminium sheets. However, welding these materials presents specific challenges, particularly in controlling heat input to minimize distortions and ensure consistent weld quality. As a result, numerical simulations based on the Finite Element Method (FEM) are essential for predicting weld-induced phenomena and optimizing process performance. This study investigates welding-induced distortions in laser butt welding of 1.5 mm-thick Al 6061 samples through FEM simulations performed in the SYSWELD 2024.0 environment. The methodology provided by the software is based on the Moving Heat Source (MHS) model, which simulates the physical movement of the heat source and typically requires extensive calibration through destructive metallographic testing. This transient approach enables the detailed prediction of thermal, metallurgical, and mechanical behavior, but it is computationally demanding. To improve efficiency, the Imposed Thermal Cycle (ITC) model is often used. In this technique, a thermal cycle, extracted from an MHS simulation or experimental data, is imposed on predefined subregions of the model, allowing only mechanical behavior to be simulated while reducing computation time. To avoid MHS-based calibration, this work proposes using thermal cycles acquired in-line during welding via infrared thermography as direct input for the ITC model. The method was validated experimentally and numerically, showing good agreement in the prediction of distortions and a significant reduction in workflow time. The distortion values from simulations differ from the real experiment by less than 0.3%. Our method exhibits a slight decrease in performance, resulting in an increase in estimation error of 0.03% compared to classic approaches, but more than 85% saving in computation time. The integration of real process data into the simulation enables a virtual representation of the process, supporting future developments toward Digital Twin applications. Full article
(This article belongs to the Special Issue Manufacturing Processes of Metallic Materials)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

18 pages, 479 KiB  
Article
Mitigating the Health Impairment Vicious Cycle of Air Traffic Controllers Using Intra-Functional Flexibility: A Mediation-Moderated Model
by Bader Alaydi, Siew-Imm Ng and Xin-jean Lim
Safety 2025, 11(3), 70; https://doi.org/10.3390/safety11030070 - 23 Jul 2025
Abstract
Air traffic controllers (ATCOs) make a significant contribution to ensuring flight safety, making this profession a highly stressful job globally. Job demands–resources (JDR) theory proposes a health impairment process stemming from job demand (complexity) to mental workload, which causes job stress, resulting in [...] Read more.
Air traffic controllers (ATCOs) make a significant contribution to ensuring flight safety, making this profession a highly stressful job globally. Job demands–resources (JDR) theory proposes a health impairment process stemming from job demand (complexity) to mental workload, which causes job stress, resulting in compromised flight safety. This vicious cycle is evident among ATCOs and is recognized as an unsustainable management practice. To curb this process, we propose intra-functional flexibility as a conditional factor. Intra-functional flexibility refers to the flexibility in the reallocation and coordination of resources among team members to help in urgent times. This is a relatively new concept and is yet to be empirically tested in the ATCO context. ATCOs work in a dynamic environment filled with sudden surges of urgent jobs to be handled within short time limits. Intra-functional flexibility allows standby crews to be called to ease these tensions when needed. To ascertain the role of intra-functional flexibility in mitigating health impairment among ATCOs, a questionnaire was administered to 324 ATCOs distributed across Saudi Arabia. Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis exhibited two critical findings: First, the study revealed the prevalence of a vicious cycle of health impairment among Saudi ATCOs, whereby job complexity leads to increased mental workload, resulting in elevated levels of job stress. Secondly, the presence of intra-functional flexibility weakened this vicious cycle by mitigating the influence exerted by mental workload on job stress. That is, the mediation-moderated model proposed in this study provides empirical evidence supporting the applicability of intra-functional flexibility in mitigating the dire suffering of ATCOs. This study discusses limitations and future research directions in the end. Full article
Show Figures

Figure 1

18 pages, 3172 KiB  
Article
Equivalent Two-Port Modeling Method and Application for External Distribution Networks Under Flexible Interconnection Device Integration
by Qingshuai Zhao, Jiaoxin Jia, Xiangwu Yan, Waseem Aslam, Chen Shao and Abubakar Siddique
Processes 2025, 13(8), 2328; https://doi.org/10.3390/pr13082328 - 22 Jul 2025
Abstract
With the large-scale integration of renewable energy sources, traditional distribution networks are gradually evolving into a new form of flexible interconnection distribution networks. To enhance the rapidity and accuracy of power flow control through flexible interconnection devices, there is an increasing demand for [...] Read more.
With the large-scale integration of renewable energy sources, traditional distribution networks are gradually evolving into a new form of flexible interconnection distribution networks. To enhance the rapidity and accuracy of power flow control through flexible interconnection devices, there is an increasing demand for precise grid equivalent models. Existing grid equivalent models predominantly adopt single-port configurations for radial networks, while there is limited research on two-port network equivalent models tailored for flexible interconnection distribution networks. Focusing on the scenario of flexible interconnection distribution networks integrated with Rotary Power Flow Controllers (RPFCs), this paper proposes an equivalent modeling method of two-port networks based on the superposition theorem under small disturbance conditions. A flexible interconnection distribution network model incorporating RPFCs and its corresponding two-port equivalent model are developed. The parameters of the two-port equivalent model are derived through superposition theorem calculations, enabling the realization of power decoupling control functionality for RPFCs. The simulation results show that the deviations between the set value of active power and the actual value remains at about 3%, and the deviations between the set value of reactive power and the actual value is between 4% and 7%, thereby verifying the effectiveness of the constructed two-port model in power flow control and further supporting the accuracy of the proposed method. Full article
Show Figures

Figure 1

17 pages, 2728 KiB  
Article
The Impact of Personalized Office Spaces on Faculty Productivity, Performance, and Satisfaction in Universities’ Educational Facilities: Case Study of Al Yamamah University, Riyadh, KSA
by Dalia Abdelfattah
Buildings 2025, 15(14), 2559; https://doi.org/10.3390/buildings15142559 - 20 Jul 2025
Viewed by 156
Abstract
Educational facilities are the physical environment that supports the academic process for a better education. The quality of offices as workspaces is crucial in creating a supportive environment to enhance the staff and students’ experience. This paper aims to study the concept of [...] Read more.
Educational facilities are the physical environment that supports the academic process for a better education. The quality of offices as workspaces is crucial in creating a supportive environment to enhance the staff and students’ experience. This paper aims to study the concept of space personalization and its impact on faculty members’ productivity, performance, and satisfaction in universities’ educational facilities. To achieve this aim, the research applied the qualitative research method of semi-structured interviews to gather comprehensive data about user experience. Approaching 39 faculty members within Al Yamamah University across three departments within the College of Engineering (Architecture, Industrial, and Computer). Data were analyzed using thematic analysis for qualitative insights, focusing on environmental aspects (such as: natural lighting, ventilation, noise control, etc.), psychological factors (such as: privacy, aesthetic appeal, etc.), and architectural settings (such as: area, space layout, materials, etc.). The research proposes a methodological framework for design considerations for office spaces in universities, fostering more flexible and personalized designs for enhancing sense of ownership and well-being. Findings indicate that personalized office spaces significantly enhance faculty satisfaction and productivity. Qualitative data highlighted that a lack of privacy in standardized offices adds stress and an overwhelming environment. These findings suggest that universities should consider flexible office designs to optimize academic work environments. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

39 pages, 1774 KiB  
Review
FACTS Controllers’ Contribution for Load Frequency Control, Voltage Stability and Congestion Management in Deregulated Power Systems over Time: A Comprehensive Review
by Muhammad Asad, Muhammad Faizan, Pericle Zanchetta and José Ángel Sánchez-Fernández
Appl. Sci. 2025, 15(14), 8039; https://doi.org/10.3390/app15148039 - 18 Jul 2025
Viewed by 277
Abstract
Incremental energy demand, environmental constraints, restrictions in the availability of energy resources, economic conditions, and political impact prompt the power sector toward deregulation. In addition to these impediments, electric power competition for power quality, reliability, availability, and cost forces utilities to maximize utilization [...] Read more.
Incremental energy demand, environmental constraints, restrictions in the availability of energy resources, economic conditions, and political impact prompt the power sector toward deregulation. In addition to these impediments, electric power competition for power quality, reliability, availability, and cost forces utilities to maximize utilization of the existing infrastructure by flowing power on transmission lines near to their thermal limits. All these factors introduce problems related to power network stability, reliability, quality, congestion management, and security in restructured power systems. To overcome these problems, power-electronics-based FACTS devices are one of the beneficial solutions at present. In this review paper, the significant role of FACTS devices in restructured power networks and their technical benefits against various power system problems such as load frequency control, voltage stability, and congestion management will be presented. In addition, an extensive discussion about the comparison between different FACTS devices (series, shunt, and their combination) and comparison between various optimization techniques (classical, analytical, hybrid, and meta-heuristics) that support FACTS devices to achieve their respective benefits is presented in this paper. Generally, it is concluded that third-generation FACTS controllers are more popular to mitigate various power system problems (i.e., load frequency control, voltage stability, and congestion management). Moreover, a combination of multiple FACTS devices, with or without energy storage devices, is more beneficial compared to their individual usage. However, this is not commonly adopted in small power systems due to high installation or maintenance costs. Therefore, there is a trade-off between the selection and cost of FACTS devices to minimize the power system problems. Likewise, meta-heuristics and hybrid optimization techniques are commonly adopted to optimize FACTS devices due to their fast convergence, robustness, higher accuracy, and flexibility. Full article
(This article belongs to the Special Issue State-of-the-Art of Power Systems)
Show Figures

Figure 1

25 pages, 324 KiB  
Article
Psychological Flexibility and Inflexibility of University Students: An In-Depth Qualitative Study
by Wendy Cervantes-Perea, Jone Martínez-Bacaicoa and Manuel Gámez-Guadix
Int. J. Environ. Res. Public Health 2025, 22(7), 1141; https://doi.org/10.3390/ijerph22071141 - 18 Jul 2025
Viewed by 187
Abstract
In the Hexaflex model of Acceptance and Commitment Therapy (ACT), psychological flexibility refers to the ability to openly embrace difficult thoughts and emotions while acting in alignment with personal values. In contrast, psychological inflexibility involves rigid avoidance and control strategies that hinder adaptive [...] Read more.
In the Hexaflex model of Acceptance and Commitment Therapy (ACT), psychological flexibility refers to the ability to openly embrace difficult thoughts and emotions while acting in alignment with personal values. In contrast, psychological inflexibility involves rigid avoidance and control strategies that hinder adaptive functioning. Although previously studied, more culturally relevant evidence is needed to inform interventions that promote well-being and mental health among Latin American students. This study explored manifestations of psychological flexibility and inflexibility in 15 undergraduate students from the University of Magdalena in Colombia (mean age = 20.13 years; 53.33% female) through semi-structured, face-to-face interviews (~45 min each). Data were analyzed using Interpretative Phenomenological Analysis (IPA), focusing on how participants described and made sense of their experiences. A total of 25 emergent themes were identified and grouped into 12 subordinate themes, mapped onto the 6 core ACT processes. The participants reported efforts to control or avoid distressing internal experiences, often resulting in difficulty acting in accordance with their values. The findings highlight a recurring ambivalence between avoidance and acceptance, and barriers to committed action, underscoring the dynamic interplay between flexibility and inflexibility. These results support the relevance of ACT-based interventions, such as structured group sessions that foster acceptance, mindfulness, and values-based behavior. Integrating this training into counseling and academic support services could enhance students’ well-being and performance. Future research should examine these dynamics longitudinally and across diverse contexts. Full article
(This article belongs to the Section Behavioral and Mental Health)
27 pages, 5242 KiB  
Article
Development of a Compliant Pediatric Upper-Limb Training Robot Using Series Elastic Actuators
by Jhon Rodriguez-Torres, Paola Niño-Suarez and Mauricio Mauledoux
Actuators 2025, 14(7), 353; https://doi.org/10.3390/act14070353 - 18 Jul 2025
Viewed by 210
Abstract
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly [...] Read more.
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly suitable for pediatric applications. In children aged 2 to 5 years—where motor control is still developing and movements can be unpredictable or unstructured—SEAs provide a compliant mechanical response that ensures user protection and enables safe physical interaction. This study explores the role of SEAs as a central component for imparting compliance and backdrivability in robotic systems designed for upper-limb training. A dynamic model is proposed, incorporating interaction with the user’s limb, along with a computed torque control strategy featuring integral action. The system’s performance is validated through simulations and experimental tests, demonstrating stable trajectory tracking, disturbance absorption, and effective impedance decoupling. The results support the use of SEAs as a foundational technology for developing safe adaptive robotic solutions in pediatric contexts capable of responding flexibly to user variability and promoting secure interaction in early motor development environments. Full article
Show Figures

Figure 1

26 pages, 505 KiB  
Article
Cost Modeling for Pickup and Delivery Outsourcing in CEP Operations: A Multidimensional Approach
by Ermin Muharemović, Amel Kosovac, Muhamed Begović, Snežana Tadić and Mladen Krstić
Logistics 2025, 9(3), 96; https://doi.org/10.3390/logistics9030096 - 17 Jul 2025
Viewed by 184
Abstract
Background: The growth of parcel volumes in urban areas, largely driven by e-commerce, has increased the complexity of pickup and delivery operations. To meet demands for cost efficiency, flexibility, and sustainability, CEP (Courier, Express, and Parcel) operators increasingly outsource segments of their [...] Read more.
Background: The growth of parcel volumes in urban areas, largely driven by e-commerce, has increased the complexity of pickup and delivery operations. To meet demands for cost efficiency, flexibility, and sustainability, CEP (Courier, Express, and Parcel) operators increasingly outsource segments of their last-mile networks. Methods: This study proposes a novel multidimensional cost model for outsourcing, integrating five key variables: transport unit type (parcel/pallet), service phase (pickup/delivery), vehicle category, powertrain type, and delivery point type. The model applies correction coefficients based on internal operational costs, further adjusted for location and service quality using a bonus/malus mechanism. Results: Each cost component is calculated independently, enabling full transparency and route-level cost tracking. A real-world case study was conducted using operational data from a CEP operator in Bosnia and Herzegovina. The model demonstrated improved accuracy and fairness in cost allocation, with measurable savings of up to 7% compared to existing fixed-price models. Conclusions: The proposed model supports data-driven outsourcing decisions, allows tailored cost structuring based on operational realities, and aligns with sustainable last-mile delivery strategies. It offers a scalable and adaptable tool for CEP operators seeking to enhance cost control and service efficiency in complex urban environments. Full article
Show Figures

Figure 1

15 pages, 395 KiB  
Article
Empower-Grief for Relatives of Cancer Patients: Implementation and Findings from an Exploratory Randomized Controlled Trial
by David Dias Neto, Alexandra Coelho, Ana Nunes da Silva, Teresa Garcia Marques and Sara Albuquerque
Behav. Sci. 2025, 15(7), 972; https://doi.org/10.3390/bs15070972 - 17 Jul 2025
Viewed by 554
Abstract
Grief reactions among relatives of palliative care patients are often overlooked, with most interventions targeting Prolonged Grief Disorder (PGD) rather than its prevention. Few interventions have been developed for individuals at risk. This study aimed to evaluate the efficacy of Empower-Grief, a selective [...] Read more.
Grief reactions among relatives of palliative care patients are often overlooked, with most interventions targeting Prolonged Grief Disorder (PGD) rather than its prevention. Few interventions have been developed for individuals at risk. This study aimed to evaluate the efficacy of Empower-Grief, a selective intervention designed to address early problematic grief reactions and to explore predictors of its effectiveness. This exploratory randomized controlled trial (RCT) compared Empower-Grief with Treatment as Usual (TAU) among relatives or caregivers of palliative and oncological patients at risk of developing PGD. A total of 46 participants were assessed at baseline, post-intervention, and six months later. The primary outcome was PGD symptoms, with additional measures including anxiety, depression, coping strategies, attachment style, psychological flexibility, post-traumatic growth, social support, and therapeutic alliance. The final analyses indicate equivalence between Empower-Grief and TAU, suggesting that both interventions yielded comparable outcomes in reducing PGD symptoms and associated psychological distress. The initial symptoms and therapeutic alliance were predictors of the results in both post- and follow-up moments. This study contributes to the evidence on grief interventions in palliative care, highlighting the importance of structured support for bereaved caregivers. While Empower-Grief demonstrated comparable effectiveness to TAU, its lower intensity, ease of training, and application make it a promising treatment option. Full article
(This article belongs to the Special Issue Advances in Clinical Interventions on Grief)
Show Figures

Figure 1

49 pages, 763 KiB  
Review
A Comprehensive Review on Sensor-Based Electronic Nose for Food Quality and Safety
by Teodora Sanislav, George D. Mois, Sherali Zeadally, Silviu Folea, Tudor C. Radoni and Ebtesam A. Al-Suhaimi
Sensors 2025, 25(14), 4437; https://doi.org/10.3390/s25144437 - 16 Jul 2025
Viewed by 372
Abstract
Food quality and safety are essential for ensuring public health, preventing foodborne illness, reducing food waste, maintaining consumer confidence, and supporting regulatory compliance and international trade. This has led to the emergence of many research works that focus on automating and streamlining the [...] Read more.
Food quality and safety are essential for ensuring public health, preventing foodborne illness, reducing food waste, maintaining consumer confidence, and supporting regulatory compliance and international trade. This has led to the emergence of many research works that focus on automating and streamlining the assessment of food quality. Electronic noses have become of paramount importance in this context. We analyze the current state of research in the development of electronic noses for food quality and safety. We examined research papers published in three different scientific databases in the last decade, leading to a comprehensive review of the field. Our review found that most of the efforts use portable, low-cost electronic noses, coupled with pattern recognition algorithms, for evaluating the quality levels in certain well-defined food classes, reaching accuracies exceeding 90% in most cases. Despite these encouraging results, key challenges remain, particularly in diversifying the sensor response across complex substances, improving odor differentiation, compensating for sensor drift, and ensuring real-world reliability. These limitations indicate that a complete device mimicking the flexibility and selectivity of the human olfactory system is not yet available. To address these gaps, our review recommends solutions such as the adoption of adaptive machine learning models to reduce calibration needs and enhance drift resilience and the implementation of standardized protocols for data acquisition and model validation. We introduce benchmark comparisons and a future roadmap for electronic noses that demonstrate their potential to evolve from controlled studies to scalable industrial applications. In doing so, this review aims not only to assess the state of the field but also to support its transition toward more robust, interpretable, and field-ready electronic nose technologies. Full article
(This article belongs to the Special Issue Sensors in 2025)
Show Figures

Figure 1

27 pages, 5760 KiB  
Review
Recent Advances in Soft Acoustic Metamaterials: A Comprehensive Review of Geometry, Mechanisms, and System Responsiveness
by Ju-Hee Lee, Haesol Kwak, Eunjik Kim and Min-Woo Han
Appl. Sci. 2025, 15(14), 7910; https://doi.org/10.3390/app15147910 - 16 Jul 2025
Viewed by 511
Abstract
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable [...] Read more.
Acoustic metamaterials (AMs) are artificially structured materials composed of subwavelength units that enable acoustic phenomena not achievable with conventional materials and structures. This review defines and presents a distinct category referred to as soft acoustic metamaterials (SAMs), which use soft materials or reconfigurable structures to achieve enhanced acoustic functionality. These systems make use of the inherent flexibility of their materials or the deformability of their geometry to support passive, active, and adaptive functions. To capture this structural and functional diversity, we introduce a three-dimensional classification that considers geometry, acoustic control mechanisms, and functional responsiveness as interrelated aspects. The geometry is classified into two-dimensional metasurfaces and three-dimensional bulk structures. The control mechanisms include local resonance, phase modulation, attenuation, and structural reconfiguration. The response type refers to whether the system behaves passively, actively, or adaptively. Using this approach, we provide an overview of representative implementations and compare different design approaches to highlight their working principles and application areas. This review presents a structured classification for soft acoustic metamaterials and offers a foundation for future research, with broad potential in intelligent sound systems, wearable acoustics, and architectural applications. Full article
Show Figures

Figure 1

40 pages, 600 KiB  
Article
Advanced Lifetime Modeling Through APSR-X Family with Symmetry Considerations: Applications to Economic, Engineering and Medical Data
by Badr S. Alnssyan, A. A. Bhat, Abdelaziz Alsubie, S. P. Ahmad, Abdulrahman M. A. Aldawsari and Ahlam H. Tolba
Symmetry 2025, 17(7), 1118; https://doi.org/10.3390/sym17071118 - 11 Jul 2025
Viewed by 192
Abstract
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for [...] Read more.
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for enhancing shape flexibility while maintaining mathematical tractability. This construction enables fine control over both the tail behavior and the symmetry properties, distinguishing it from traditional alpha power or survival-based extensions. We focus on a key member of this family, the two-parameter Alpha Power Survival Ratio Exponential (APSR-Exp) distribution, deriving essential mathematical properties including moments, quantile functions and hazard rate structures. We estimate the model parameters using eight frequentist methods: the maximum likelihood (MLE), maximum product of spacings (MPSE), least squares (LSE), weighted least squares (WLSE), Anderson–Darling (ADE), right-tailed Anderson–Darling (RADE), Cramér–von Mises (CVME) and percentile (PCE) estimation. Through comprehensive Monte Carlo simulations, we evaluate the estimator performance using bias, mean squared error and mean relative error metrics. The proposed APSR-X framework uniquely enables preservation or controlled modification of the symmetry in probability density and hazard rate functions via its shape parameter. This capability is particularly valuable in reliability and survival analyses, where symmetric patterns represent balanced risk profiles while asymmetric shapes capture skewed failure behaviors. We demonstrate the practical utility of the APSR-Exp model through three real-world applications: economic (tax revenue durations), engineering (mechanical repair times) and medical (infection durations) datasets. In all cases, the proposed model achieves a superior fit over that of the conventional alternatives, supported by goodness-of-fit statistics and visual diagnostics. These findings establish the APSR-X family as a unique, symmetry-aware modeling framework for complex lifetime data. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 1509 KiB  
Article
Objective Functions for Minimizing Rescheduling Changes in Production Control
by Gyula Kulcsár, Mónika Kulcsárné Forrai and Ákos Cservenák
Automation 2025, 6(3), 30; https://doi.org/10.3390/automation6030030 - 11 Jul 2025
Viewed by 191
Abstract
This paper presents an advanced rescheduling approach that jointly applies two sets of objective functions within a novel multi-objective search algorithm and a production simulation of the manufacturing system. The role of the first set of objective functions is to optimize the performance [...] Read more.
This paper presents an advanced rescheduling approach that jointly applies two sets of objective functions within a novel multi-objective search algorithm and a production simulation of the manufacturing system. The role of the first set of objective functions is to optimize the performance of production systems, while the second newly proposed set of objective functions aims to minimize the intervention changes from the original schedule, thereby supporting schedule stability and smooth manufacturing processes. The combined use of these two objective sets is ensured by a flexible candidate-qualification method, which allows for priorities to be assigned to each objective function, offering precise control over the rescheduling process. The applicability of this approach is presented through an example of an extended flexible flow shop manufacturing system. A new test problem containing 16 objective functions has been developed. The effectiveness of the proposed new objective functions and rescheduling method is validated by a simulation model. The obtained numerical results are also presented in this paper. The aim of this study is not to compare different search algorithms but rather to demonstrate the beneficial impact of change-minimizing objective functions within a given search framework. Full article
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Optimization of RIS-Assisted 6G NTN Architectures for High-Mobility UAV Communication Scenarios
by Muhammad Shoaib Ayub, Muhammad Saadi and Insoo Koo
Drones 2025, 9(7), 486; https://doi.org/10.3390/drones9070486 - 10 Jul 2025
Viewed by 370
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, and rapid network reconfiguration, making them ideal candidates for RIS-based signal optimization. However, the high mobility of UAVs and their three-dimensional trajectory dynamics introduce unique challenges in maintaining robust, low-latency links and seamless handovers. This paper presents a comprehensive performance analysis of RIS-assisted UAV-based NTNs, focusing on optimizing RIS phase shifts to maximize the signal-to-interference-plus-noise ratio (SINR), throughput, energy efficiency, and reliability under UAV mobility constraints. A joint optimization framework is proposed that accounts for UAV path loss, aerial shadowing, interference, and user mobility patterns, tailored specifically for aerial communication networks. Extensive simulations are conducted across various UAV operation scenarios, including urban air corridors, rural surveillance routes, drone swarms, emergency response, and aerial delivery systems. The results reveal that RIS deployment significantly enhances the SINR and throughput while navigating energy and latency trade-offs in real time. These findings offer vital insights for deploying RIS-enhanced aerial networks in 6G, supporting mission-critical drone applications and next-generation autonomous systems. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

Back to TopTop