Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = flavonoid 3-hydroxylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1972 KiB  
Article
Identification, Quantification, and Antioxidant Evaluation of Phenolic Compounds from Colored Opuntia ficus-indica (L.) Roots Using UHPLC-DAD-ESI-MS/MS
by Elias Benramdane, Ahmad Mustafa, Nadia Chougui, Nawal Makhloufi, Abderezak Tamendjari and Cassamo U. Mussagy
Antioxidants 2025, 14(8), 1023; https://doi.org/10.3390/antiox14081023 - 21 Aug 2025
Viewed by 85
Abstract
This study investigates the phenolic composition and antioxidant potential of root extracts from three Opuntia ficus-indica varieties (green, red, and orange) using ultra-high-performance liquid chromatography coupled with diode array detection and electrospray ionization–tandem mass spectrometry (UHPLC-DAD-ESI-MS/MS). Phenolic compounds were extracted with a hydromethanolic [...] Read more.
This study investigates the phenolic composition and antioxidant potential of root extracts from three Opuntia ficus-indica varieties (green, red, and orange) using ultra-high-performance liquid chromatography coupled with diode array detection and electrospray ionization–tandem mass spectrometry (UHPLC-DAD-ESI-MS/MS). Phenolic compounds were extracted with a hydromethanolic solvent and quantified by spectrophotometric assays, while antioxidant activity was assessed through DPPH, ABTS, iron III reduction, hydroxyl radical, and nitric oxide scavenging methods. A total of 26 compounds were identified, including piscidic acid, epicatechin-3-O-gallate, and isovitexin, with several phenolics newly reported for O. ficus-indica roots. The green and red varieties showed the highest phenolic contents (up to 147.82 mg/g extract) and strong antioxidant capacity, particularly in ABTS (IC50 = 29.38 μg/mL) and hydroxyl radical inhibition (>90%). Relative Antioxidant Capacity Index (RACI) analysis confirmed a consistent correlation between phenolic/flavonoid content and antioxidant efficacy. These findings highlight the analytical relevance of UHPLC-DAD-ESI-MS/MS for profiling underutilized plant matrices and support the potential use of O. ficus-indica root extracts as natural sources of bioactive compounds for pharmaceutical and biomedical applications. Full article
Show Figures

Figure 1

24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Viewed by 533
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

20 pages, 744 KiB  
Review
Chrysin: A Comprehensive Review of Its Pharmacological Properties and Therapeutic Potential
by Magdalena Kurkiewicz, Aleksandra Moździerz, Anna Rzepecka-Stojko and Jerzy Stojko
Pharmaceuticals 2025, 18(8), 1162; https://doi.org/10.3390/ph18081162 - 5 Aug 2025
Viewed by 686
Abstract
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic [...] Read more.
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic ring (C). One representative flavonoid is chrysin, a compound found in honey, propolis, and passionflower (Passiflora spp.). Chrysin exhibits a range of biological activities, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and anxiolytic effects. Its biological activity is primarily attributed to the presence of hydroxyl groups, which facilitate the neutralization of free radicals and the modulation of intracellular signaling pathways. Cellular uptake of chrysin and other flavonoids occurs mainly through passive diffusion; however, certain forms may be transported via specific membrane-associated carrier proteins. Despite its therapeutic potential, chrysin’s bioavailability is significantly limited due to poor aqueous solubility and rapid metabolism in the gastrointestinal tract and liver, which reduces its systemic efficacy. Ongoing research aims to enhance chrysin’s bioavailability through the development of delivery systems such as lipid-based carriers and nanoparticles. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

21 pages, 1360 KiB  
Article
Design and Characterization of Mn(II), Co(II), and Zn(II) Complexes with Chrysin: Spectroscopic, Antibacterial, and Anti-Biofilm Insights
by Elżbieta Woźnicka, Anna Miłoś, Lidia Zapała, Małgorzata Kosińska-Pezda, Katarzyna Lecka-Szlachta and Łukasz Byczyński
Processes 2025, 13(8), 2468; https://doi.org/10.3390/pr13082468 - 4 Aug 2025
Viewed by 441
Abstract
This study presents the synthesis and physicochemical characterization of coordination compounds formed between chrysin, a natural flavonoid, and transition metal ions: Mn(II), Co(II), and Zn(II). The complexes were obtained under mildly basic conditions and analyzed using elemental analysis, thermogravimetric analysis (TGA), silver-assisted laser [...] Read more.
This study presents the synthesis and physicochemical characterization of coordination compounds formed between chrysin, a natural flavonoid, and transition metal ions: Mn(II), Co(II), and Zn(II). The complexes were obtained under mildly basic conditions and analyzed using elemental analysis, thermogravimetric analysis (TGA), silver-assisted laser desorption/ionization mass spectrometry (SALDI-MS), FT-IR spectroscopy, and 1H NMR. The spectroscopic data confirm that chrysin coordinates as a bidentate ligand through the 5-hydroxyl and 4-carbonyl groups, with structural differences depending on the metal ion involved. The mass spectrometry results revealed distinct stoichiometries: 1:2 metal-to-ligand ratios for Mn(II) and Co(II), and 1:1 for Zn(II), with additional hydroxide coordination. Biological assays demonstrated that Co(II) and Mn(II) complexes exhibit enhanced antibacterial and anti-biofilm activity compared to free chrysin, particularly against drug-resistant Staphylococcus epidermidis, whereas the Zn(II) complex showed negligible biological activity. Full article
(This article belongs to the Special Issue Metal Complexes: Design, Properties and Applications)
Show Figures

Graphical abstract

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 - 4 Aug 2025
Viewed by 296
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 391
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

25 pages, 3460 KiB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 892
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

40 pages, 2830 KiB  
Review
Metal Complexes with Hydroxyflavones: A Study of Anticancer and Antimicrobial Activities
by Ljiljana E. Mihajlović, Monica Trif and Marijana B. Živković
Inorganics 2025, 13(8), 250; https://doi.org/10.3390/inorganics13080250 - 22 Jul 2025
Viewed by 575
Abstract
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform [...] Read more.
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform is the flavone scaffold, derived from flavonoids and studied since ancient times. Flavones are plant-derived compounds known for their diverse biological activities and health benefits. They exhibit significant structural variability, primarily through backbone modifications such as hydroxylation. Importantly, coordination of metal ions to hydroxylated flavone cores often improves their natural bioactivities, including anticancer and antimicrobial effects. In this review, we summarize transition metal complexes incorporating hydroxyflavone (OH–F) ligands reported over the past 15 years. We provide a concise overview of synthetic approaches and structural characterization, with a particular emphasis on coordination modes (e.g., maltol-type, acetylacetonate-type, catechol-type, and others). Furthermore, we discuss biological evaluation results, especially anticancer and antimicrobial studies, to highlight the therapeutic potential of these complexes. Finally, we suggest directions for the future development of metal-based agents bearing hydroxyflavone moieties through several critical points in terms of the accuracy, reproducibility, and relevance of biological studies involving metal-based compounds. Full article
Show Figures

Graphical abstract

16 pages, 1978 KiB  
Article
Comparative Analysis of Anti-Inflammatory Flavones in Chrysanthemum indicum Capitula Using Primary Cultured Rat Hepatocytes
by Keita Minamisaka, Airi Fujii, Cheng Li, Yuto Nishidono, Saki Shirako, Teruhisa Kawamura, Yukinobu Ikeya and Mikio Nishizawa
Molecules 2025, 30(14), 2996; https://doi.org/10.3390/molecules30142996 - 16 Jul 2025
Viewed by 485
Abstract
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum [...] Read more.
The capitula of Chrysanthemum indicum Linné or C. morifolium Ramatuelle (Kikuka in Japanese) are included in several formulae of Kampo medicines (traditional Japanese medicines), such as Chotosan, which is used for headache and dizziness. Luteolin, the principal constituent of C. indicum, has antioxidant and anti-inflammatory activities. However, the effects of other flavonoids on this crude drug have not yet been thoroughly investigated. To evaluate and compare anti-inflammatory effects, we used primary cultured rat hepatocytes, which produce proinflammatory mediators, such as nitric oxide (NO) and proinflammatory cytokines, in response to interleukin (IL)-1β. Eight derivatives of 5,7-dihydroxyflavone were purified and identified in the ethyl acetate-soluble fraction of a C. indicum capitulum extract: luteolin (Compound 1), apigenin (2), diosmetin (3), 5,7-dihydroxy-3′,4′,5′-trimethoxyflavone (4), acacetin (5), eupatilin (6), jaceosidin (7), and 6-methoxytricin (8). Luteolin is the most abundant compound in this fraction. All compounds significantly suppressed NO production in hepatocytes, with apigenin and acacetin showing the greatest efficacy. The comparison of the IC50 values of the inhibition of NO production suggests that substitutions by hydroxyl and methoxy groups at the C-3′ and C-4′ positions of 5,7-dihydroxyflavone may be at least essential for the suppression of NO production. In hepatocytes, acacetin and luteolin decreased the levels of mRNAs encoding inducible nitric oxide synthase (iNOS), proinflammatory cytokines, including tumor necrosis factor, IL-6, and type 1 IL-1 receptor, which regulates inflammatory responses. Based on the comparison of the IC50 values and the content, luteolin, jaceosidin, and diosmetin may be responsible for the anti-inflammatory effects of C. indicum capitula. Full article
Show Figures

Graphical abstract

19 pages, 4128 KiB  
Article
Integrating Metabolomics and Machine Learning to Analyze Chemical Markers and Ecological Regulatory Mechanisms of Geographical Differentiation in Thesium chinense Turcz
by Cong Wang, Ke Che, Guanglei Zhang, Hao Yu and Junsong Wang
Metabolites 2025, 15(7), 423; https://doi.org/10.3390/metabo15070423 - 20 Jun 2025
Viewed by 507
Abstract
Background: The relationship between medicinal efficacy and the geographical environment in Thesium chinense Turcz. (T. chinense Turcz.), a traditional Chinese herb, remains systematically unexplored. This study integrates metabolomics, machine learning, and ecological factor analysis to elucidate the geographical variation patterns and regulatory [...] Read more.
Background: The relationship between medicinal efficacy and the geographical environment in Thesium chinense Turcz. (T. chinense Turcz.), a traditional Chinese herb, remains systematically unexplored. This study integrates metabolomics, machine learning, and ecological factor analysis to elucidate the geographical variation patterns and regulatory mechanisms of secondary metabolites in T. chinense Turcz. from Anhui, Henan, and Shanxi Provinces. Methods: Metabolomic profiling was conducted on T. chinense Turcz. samples collected from three geographical origins across Anhui, Henan, and Shanxi Provinces. Machine learning algorithms (Random Forest, LASSO regression) identified region-specific biomarkers through intersection analysis. Metabolic pathway enrichment employed MetaboAnalyst 5.0 with target prediction. Antioxidant activity (DPPH/hydroxyl radical scavenging) was quantified spectrophotometrically. Environmental correlation analysis incorporated 19 WorldClim variables using redundancy analysis, Mantel tests, and Pearson correlations. Results: We identified 43 geographical marker compounds (primarily flavonoids and alkaloids). Random forest and LASSO regression algorithms determined core markers for each production area: Anhui (4 markers), Henan (6 markers), and Shanxi (3 markers). Metabolic pathway enrichment analysis revealed these markers exert pharmacological effects through neuroactive ligand–receptor interaction and PI3K-Akt signaling pathways. Redundancy analysis demonstrated Anhui samples exhibited significantly higher antioxidant activity (DPPH and hydroxyl radical scavenging rates) than other regions, strongly correlating with stable low-temperature environments (annual mean temperature) and precipitation patterns. Conclusions: This study established the first geo-specific molecular marker system for T. chinense Turcz., demonstrating that the geographical environment critically influences metabolic profiles and bioactivity. Findings provide a scientific basis for quality control standards of geo-authentic herbs and offer insights into plant–environment interactions for sustainable cultivation practices. Full article
(This article belongs to the Special Issue Metabolomics in Plant Natural Products Research, 2nd Edition)
Show Figures

Figure 1

16 pages, 3385 KiB  
Article
Effects of C-Ring Structural Differences on the Inhibition of Nε-(Carboxyethyl)lysine in the Methylglyoxal-Lysine System by Flavonoids
by Yating Ling, Linlin Zhang, Bangzhu Peng and Zhuo Zhang
Int. J. Mol. Sci. 2025, 26(12), 5914; https://doi.org/10.3390/ijms26125914 - 19 Jun 2025
Viewed by 469
Abstract
This study investigated the effects of taxifolin (Tax), quercetin (Que), (+)-catechin (Cat) and luteolin (Lute) on the advanced Maillard reaction stage in the methylglyoxal-lysine (MGO-Lys) system. Since the four flavonoids share identical A- and B-ring structures, the inhibitory effects and molecular [...] Read more.
This study investigated the effects of taxifolin (Tax), quercetin (Que), (+)-catechin (Cat) and luteolin (Lute) on the advanced Maillard reaction stage in the methylglyoxal-lysine (MGO-Lys) system. Since the four flavonoids share identical A- and B-ring structures, the inhibitory effects and molecular mechanisms of flavonoids with different C-ring structures on Nε-(carboxyethyl)lysine (CEL) formation were revealed. The results demonstrated that Cat exhibited the best inhibitory effect on CEL with an inhibition rate of 53.78%, while Lute showed the lowest inhibition rate of 3.97%. The flavonoids (i.e., Tax, Que, Cat and Lute) inhibited the formation of non-fluorescent CEL, where hydroxylation at C3 on the C-ring favored the enhancement of the inhibitory effect of the flavonoids on CEL, while the C2-C3 double bond and the carbonyl group at the C4 position reduced their inhibitory ability. The alkaline environment favored the enhancement of the inhibition of CEL by Tax, Que, Cat and Lute. Notably, Tax, Que, Cat and Lute can inhibit CEL formation by competitively capturing MGO to form mono- or di-adducts and reducing lysine consumption. This study provides innovative strategies and a theoretical foundation for developing effective CEL inhibitors in food thermal processing. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

14 pages, 781 KiB  
Article
Chemical Composition and Antioxidant Activity of Prokupac Grape Pomace Extract: Implications for Redox Modulation in Honey Bee Cells
by Uroš Glavinić, Đura Nakarada, Jevrosima Stevanović, Uroš Gašić, Marko Ristanić, Miloš Mojović and Zoran Stanimirović
Antioxidants 2025, 14(6), 751; https://doi.org/10.3390/antiox14060751 - 18 Jun 2025
Cited by 1 | Viewed by 579
Abstract
There is a growing interest in using agri-food by-products and a demand for natural substances that might help maintain healthy honey bee colonies. We investigated a by-product of the wine industry, a grape pomace (GP) of the autochthonous Prokupac grape cultivar from Serbia. [...] Read more.
There is a growing interest in using agri-food by-products and a demand for natural substances that might help maintain healthy honey bee colonies. We investigated a by-product of the wine industry, a grape pomace (GP) of the autochthonous Prokupac grape cultivar from Serbia. A hydroethanolic extract (50% (w/v) ethanol) of GP (Prokupac GP extract) obtained by the pressurized liquid extraction (PLE) method was subjected to qualitative profiling of phenolic composition by liquid chromatography with OrbiTrap Exploris 120 mass spectrometer. Then, the extracts’ antioxidant and redox-modulatory activities were evaluated through Electron Paramagnetic Resonance (EPR) spectroscopy. Finally, the extract’s potential to modulate cellular redox status was evaluated using cultured AmE-711 honey bee cells. The results show that the Prokupac GP extract contains a wide array of flavonoids, anthocyanins, stilbenes, and their various conjugated derivatives and that anthocyanins, particularly malvidin-based compounds, dominate. EPR measurements showed strong scavenging activity against superoxide anion (O2•−) and hydroxyl radicals (OH), with inhibition efficiencies of 84.37% and 81.81%, respectively, while activity against the DPPH radical was lower (17.75%). In the cell-based assay, the Prokupac GP extract consistently provided strong antioxidant protection and modulated the cellular response to oxidative stress by over 14%. In conclusion, while the Prokupac GP extract demonstrated antioxidant properties and the ability to modulate cellular responses to oxidative stress, in vivo studies on honey bees are required to confirm its efficacy and safety for potential use in beekeeping practice. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

14 pages, 1184 KiB  
Article
Quantification of Phenolic Compounds by HPLC/DAD and Evaluation of the Antioxidant, Antileishmanial, and Cytotoxic Activities of Ethanolic Extracts from the Leaves and Bark of Sarcomphalus joazeiro (Mart.)
by Natália Kelly Gomes de Carvalho, Débora Odília Duarte Leite, Aracélio Viana Colares, Fernando Almeida Souza, Kátia da Silva Calabrese, Gerson Javier Torres Salazar, Joice Barbosa do Nascimento, Mariana Pereira da Silva, Fabiola Fernandes Galvão Rodrigues and José Galberto Martins da Costa
Plants 2025, 14(11), 1733; https://doi.org/10.3390/plants14111733 - 5 Jun 2025
Viewed by 620
Abstract
Sarcomphalus joazeiro (Mart.) is a promising candidate for the formulation of new therapies against parasitic infections. This study aimed to quantify the content of phenolic compounds and evaluate the antioxidant, antileishmanial, and cytotoxic potential of ethanolic extracts of the leaves (EELSJ) and bark [...] Read more.
Sarcomphalus joazeiro (Mart.) is a promising candidate for the formulation of new therapies against parasitic infections. This study aimed to quantify the content of phenolic compounds and evaluate the antioxidant, antileishmanial, and cytotoxic potential of ethanolic extracts of the leaves (EELSJ) and bark (EEBSJ) of S. joazeiro. Quantification of phenolic acids (caffeic acid, p-coumaric acid, ferulic acid, cinnamic acid) and flavonoids (naringenin, pinocembrin, and apigenin) was performed by high-performance liquid chromatography with a diode array detector (HPLC-DAD). The extracts were subjected to antioxidant assays, including Fe3+ reduction, Fe2+ chelation, and inhibition of oxidative degradation of deoxyribose (2-DR). The antileishmanial activity was evaluated against promastigote forms of Leishmania amazonensis, while cytotoxicity was assessed in J774.G8 macrophages. Among the biological effects evaluated, EELSJ showed potent hydroxyl radical (•OH) scavenging activity, with IC50 < 10 µg/mL, which potentially correlates with its phenolic acid and flavonoid content (0.7066 mg/g). In comparison, EEBSJ showed a lower phenolic content (0.197 mg/g) and demonstrated Fe2+ chelating activity (IC50 = 14.96 ± 0.0477 µg/mL). EELSJ also exhibited antileishmanial activity against L. amazonensis (IC50 = 246.20 µg/mL), with low cytotoxicity (CC50 = 343.3 µg/mL; SI = 1.39), whereas EEBSJ showed minimal antileishmanial effect and marked cytotoxicity toward J774.G8 macrophages (CC50 = 5.866 µg/mL). The leaves of S. joazeiro stand out as the most promising plant organ for future investigations. Future studies should focus on investigating their action mechanisms in more detail. Full article
Show Figures

Figure 1

22 pages, 15832 KiB  
Review
The Chalcogen Exchange: The Replacement of Oxygen with Sulfur and Selenium to Boost the Activity of Natural Products
by Muhammad Jawad Nasim, Wesam Ali, Eufrânio N. da Silva Júnior, Rahman Shah Zaib Saleem, Caroline Gaucher, Jadwiga Handzlik, Silvana Pedatella and Claus Jacob
Sci 2025, 7(2), 74; https://doi.org/10.3390/sci7020074 - 3 Jun 2025
Viewed by 1332
Abstract
Antioxidants, such as stilbenes, anthocyanidins, coumarins, tannins and flavonoids, are often based on oxygen-containing redox systems and tend to feature several hydroxyl groups in their chemical structures. From a synthetic perspective, oxygen atoms are prone to bioisosteric replacement with sulfur and, notably, selenium. [...] Read more.
Antioxidants, such as stilbenes, anthocyanidins, coumarins, tannins and flavonoids, are often based on oxygen-containing redox systems and tend to feature several hydroxyl groups in their chemical structures. From a synthetic perspective, oxygen atoms are prone to bioisosteric replacement with sulfur and, notably, selenium. The main objective of this narrative literature review is to explore if and how bioisosteric substitution of oxygen with sulfur or selenium can enhance the biological activity of natural products. This replacement boosts the biological activity of the resulting molecules considerably as they now combine the redox and antioxidant properties of the original flavonoids and other natural products with the specific redox behavior of sulfur and selenium. Besides sequestering free radicals and peroxides, they may, for instance, also catalyze the removal of oxidative stressors, capture free metal ions and even provide scope for selenium supplementation. Since these molecules resemble their natural counterparts, they also exhibit considerable selectivity inside the body and a good pharmacokinetic profile. Still, the synthesis of such hybrid molecules integrating sulfur and selenium into flavonoids and other natural products is a challenge and requires innovative synthetic strategies and approaches. Full article
(This article belongs to the Special Issue Feature Papers—Multidisciplinary Sciences 2024)
Show Figures

Figure 1

23 pages, 1347 KiB  
Article
Araçá-Boi Extract and Gallic Acid Reduce Cell Viability and Modify the Expression of Tumor Suppressor Genes and Genes Involved in Epigenetic Processes in Ovarian Cancer
by Felipe Tecchio Borsoi, Henrique Silvano Arruda, Amanda Cristina Andrade, Mônica Pezenatto dos Santos, Isabelle Nogueira da Silva, Leonardo Augusto Marson, Ana Sofia Martelli Chaib Saliba, Severino Matias de Alencar, Murilo Vieira Geraldo, Iramaia Angélica Neri Numa and Glaucia Maria Pastore
Plants 2025, 14(11), 1671; https://doi.org/10.3390/plants14111671 - 30 May 2025
Viewed by 692
Abstract
In the present study, we characterized and investigated the effect of the araçá-boi extract on antioxidant activity, cell viability, and the regulation of genes related to tumor suppression and epigenetic mechanisms in ovarian cancer cells. The results showed that araçá-boi extract revealed a [...] Read more.
In the present study, we characterized and investigated the effect of the araçá-boi extract on antioxidant activity, cell viability, and the regulation of genes related to tumor suppression and epigenetic mechanisms in ovarian cancer cells. The results showed that araçá-boi extract revealed a remarkable diversity of phytochemicals (organic acids, phenolic acids, and flavonoids), significant antioxidant potential, and efficient scavenging of reactive oxygen species, particularly hydroxyl and peroxyl radicals. Gallic acid, one of the phenolic acids present in the extract, was used alone to verify its contribution to cytotoxic activities. Exposure of human ovarian cancer cells (NCI/ADR-RES and OVCAR3) to the extract (0.15–150 μg/mL) and gallic acid (6–48 μg/mL) resulted in a significant reduction in cell viability, particularly after 48 h of treatment. Both treatments modulated genes involved in DNA repair, tumor suppression, and epigenetic regulation. However, no changes were observed in the methylation status of the BRCA1 gene promoter region with either araçá-boi extract or gallic acid. These findings reinforce the therapeutic potential of araçá-boi extract and its phenolic compounds against ovarian cancer and point to the need for further studies to better elucidate the molecular pathways involved and validate these effects in vivo. Full article
Show Figures

Graphical abstract

Back to TopTop