Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,816)

Search Parameters:
Keywords = first-order differential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3957 KB  
Article
Effects of Different Degrees of Gelatinization on Structural, Physicochemical and Digestive Properties of Kudzu Starch
by Zirui He, Fan Zhu, Mei Li and Xiangli Kong
Foods 2025, 14(21), 3614; https://doi.org/10.3390/foods14213614 - 23 Oct 2025
Abstract
Kudzu (Pueraria spp.) starch, valued for its transparency, viscosity, and stability, has broad potential in functional and instant food applications. However, its limited cold-water solubility and inconsistent functional performance across cultivars hinder wider utilization. To improve its processability and nutritional functionality, this [...] Read more.
Kudzu (Pueraria spp.) starch, valued for its transparency, viscosity, and stability, has broad potential in functional and instant food applications. However, its limited cold-water solubility and inconsistent functional performance across cultivars hinder wider utilization. To improve its processability and nutritional functionality, this study aimed to elucidate how the degree of gelatinization (DG)—a structural indicator of starch transformation—can be precisely controlled and used to modulate starch properties. Starches from two typical kudzu cultivars, K10 (Pueraria thomsonii) and K27 (Pueraria lobata), were subjected to hydrothermal treatment (45–95 °C) to obtain samples with defined DG levels. DG was quantitatively determined by enzymatic assay, differential scanning calorimetry (DSC), and iodine-binding analysis, enabling method cross-validation. Increasing DG enhanced iodine complexation capacity, elevated gelatinization temperatures, and reduced enthalpy change and crystallinity. K27 exhibited more pronounced physicochemical transitions at lower DG than K10, indicating cultivar-specific sensitivity. In vitro digestion revealed that hydrolysis kinetics gradually approached and eventually conformed to a first-order model as DG increased, confirming a DG-dependent shift in digestibility. These results establish DG—rather than processing temperature—as the primary factor governing kudzu starch functionality and provide a methodological basis for designing starch-based foods with tailored glycemic and textural properties. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

15 pages, 3527 KB  
Article
Time-Fractional Differential Operator Modeling of Contaminant Transport with Adsorption and Decay
by Shuai Yang, Qing Wei, Senlin Xie, Hongwei Zhou and Lu An
Fractal Fract. 2025, 9(10), 671; https://doi.org/10.3390/fractalfract9100671 - 17 Oct 2025
Viewed by 173
Abstract
In this work, the advection-dispersion model (ADM) is time-fractionalized by the exploitation of Atangana-Baleanu (AB) differential operator to describe contaminant transport in a geological environment. Dispersion, adsorption, and decay, which are known as the foremost transport mechanisms, are considered. The exact solutions of [...] Read more.
In this work, the advection-dispersion model (ADM) is time-fractionalized by the exploitation of Atangana-Baleanu (AB) differential operator to describe contaminant transport in a geological environment. Dispersion, adsorption, and decay, which are known as the foremost transport mechanisms, are considered. The exact solutions of the suggested Atangana-Baleanu advection-dispersion models (AB-ADMs) are acquired using Fourier sine transform and Laplace transform. The classical ADMs are demonstrated to be the special limiting cases of the suggested models. The high consistency among the suggested models and experimental data denotes that the AB-ADMs characterize contaminant transport more effectively. Additionally, the corresponding numerical and graphical results are explored to demonstrate the necessity, effectiveness, and suitability of the suggested models. Full article
Show Figures

Figure 1

23 pages, 478 KB  
Article
An Exposition on the Kaniadakis κ-Deformed Decay Differential Equation
by Rohan Bolle, Ibrahim Jarra and Jeffery A. Secrest
Math. Comput. Appl. 2025, 30(5), 115; https://doi.org/10.3390/mca30050115 - 17 Oct 2025
Viewed by 222
Abstract
Kaniadakis deformed κ-mathematics is an area of mathematics that has found relevance in the analysis of complex systems. Specifically, the mathematical framework in the context of a first-order decay κ-differential equation is investigated, facilitating an in-depth examination of the κ-mathematical [...] Read more.
Kaniadakis deformed κ-mathematics is an area of mathematics that has found relevance in the analysis of complex systems. Specifically, the mathematical framework in the context of a first-order decay κ-differential equation is investigated, facilitating an in-depth examination of the κ-mathematical structure. This framework serves as a foundational platform, representing the simplest non-trivial setting for such inquiries which are demonstrated for the first time in the literature. Finally, additional avenues of study are discussed. Full article
(This article belongs to the Special Issue Feature Papers in Mathematical and Computational Applications 2025)
Show Figures

Figure 1

36 pages, 7238 KB  
Article
Physics-Aware Reinforcement Learning for Flexibility Management in PV-Based Multi-Energy Microgrids Under Integrated Operational Constraints
by Shimeng Dong, Weifeng Yao, Zenghui Li, Haiji Zhao, Yan Zhang and Zhongfu Tan
Energies 2025, 18(20), 5465; https://doi.org/10.3390/en18205465 - 16 Oct 2025
Viewed by 287
Abstract
The growing penetration of photovoltaic (PV) generation in multi-energy microgrids has amplified the challenges of maintaining real-time operational efficiency, reliability, and safety under conditions of renewable variability and forecast uncertainty. Conventional rule-based or optimization-based strategies often suffer from limited adaptability, while purely data-driven [...] Read more.
The growing penetration of photovoltaic (PV) generation in multi-energy microgrids has amplified the challenges of maintaining real-time operational efficiency, reliability, and safety under conditions of renewable variability and forecast uncertainty. Conventional rule-based or optimization-based strategies often suffer from limited adaptability, while purely data-driven reinforcement learning approaches risk violating physical feasibility constraints, leading to unsafe or economically inefficient operation. To address this challenge, this paper develops a Physics-Informed Reinforcement Learning (PIRL) framework that embeds first-order physical models and a structured feasibility projection mechanism directly into the training process of a Soft Actor–Critic (SAC) algorithm. Unlike traditional deep reinforcement learning, which explores the state–action space without physical safeguards, PIRL restricts learning trajectories to a physically admissible manifold, thereby preventing battery over-discharge, thermal discomfort, and infeasible hydrogen operation. Furthermore, differentiable penalty functions are employed to capture equipment degradation, user comfort, and cross-domain coupling, ensuring that the learned policy remains interpretable, safe, and aligned with engineering practice. The proposed approach is validated on a modified IEEE 33-bus distribution system coupled with 14 thermal zones and hydrogen facilities, representing a realistic and complex multi-energy microgrid environment. Simulation results demonstrate that PIRL reduces constraint violations by 75–90% and lowers operating costs by 25–30% compared with rule-based and DRL baselines while also achieving faster convergence and higher sample efficiency. Importantly, the trained policy generalizes effectively to out-of-distribution weather conditions without requiring retraining, highlighting the value of incorporating physical inductive biases for resilient control. Overall, this work establishes a transparent and reproducible reinforcement learning paradigm that bridges the gap between physical feasibility and data-driven adaptability, providing a scalable solution for safe, efficient, and cost-effective operation of renewable-rich multi-energy microgrids. Full article
Show Figures

Figure 1

19 pages, 6627 KB  
Article
Functional Data Analysis for the Structural, Chemical, Thermal, and Mechanical Properties of PA12 Additively Manufactured via SLS
by Alejandro García Rodríguez, Yamid Gonzalo Reyes, Edgar Espejo Mora, Carlos Alberto Narváez Tovar and Marco Antonio Velasco Peña
Polymers 2025, 17(20), 2763; https://doi.org/10.3390/polym17202763 - 15 Oct 2025
Viewed by 311
Abstract
Additive manufacturing via selective laser sintering (SLS) enables the rapid production of geometrically complex polyamide 12 (PA12) components. However, conventional pointwise analysis techniques often overlook the full depth of continuous experimental datasets, thus limiting the interpretation of structure–function relationships that are essential to [...] Read more.
Additive manufacturing via selective laser sintering (SLS) enables the rapid production of geometrically complex polyamide 12 (PA12) components. However, conventional pointwise analysis techniques often overlook the full depth of continuous experimental datasets, thus limiting the interpretation of structure–function relationships that are essential to high-performance design. This study employs functional data analysis (FDA) to elucidate the microstructural, chemical, thermal, and mechanical behaviours of SLS-fabricated PA12, focusing on the effects of build orientation (horizontal, transverse, vertical) and wall thickness (2.0–3.0 mm). The samples were produced via a commercial SLS platform and characterised via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and tensile testing. The FDA was applied to raw, normalised, and first derivative datasets via Python’s Scikit-FDA package, increasing the sensitivity to latent material variations. The findings demonstrate that the build orientation has a marked influence on the crystallinity and mechanical performance: horizontal builds yield narrower gamma-phase XRD peaks, greater structural order, and enhanced tensile properties, whereas vertical builds exhibit broader peak dispersion and greater thermal sensitivity. The wall thickness effects were minor, with only isolated flux-related anomalies. The FTIR spectra confirmed the consistent chemical stability across all the conditions. The FDA successfully identified subtle transitions and anisotropies that eluded traditional methods, underscoring its methodological strength for advanced polymer characterisation. These insights offer practical guidance for refining SLS process parameters and improving predictive design strategies in polymer-based additive manufacturing. Full article
Show Figures

Figure 1

21 pages, 11447 KB  
Article
Sensitivity Analysis of the Differential Atmospheric Transmission in Water Vapour Mixing Ratio Retrieval from Raman Lidar Measurements
by Arlett Díaz-Zurita, Víctor M. Naval-Hernández, David N. Whiteman, Onel Rodríguez-Navarro, Jorge Muñiz-Rosado, Daniel Pérez-Ramírez, Lucas Alados-Arboledas and Francisco Navas-Guzmán
Remote Sens. 2025, 17(20), 3444; https://doi.org/10.3390/rs17203444 - 15 Oct 2025
Viewed by 224
Abstract
This study assesses the effect of the differential atmospheric transmission term in Raman lidar water vapour mixing ratio retrievals. Such issue is evaluated for two optical configurations: the first is a vibrational–rotational Raman nitrogen (∼387 nm) and the second is a pure–rotational Raman [...] Read more.
This study assesses the effect of the differential atmospheric transmission term in Raman lidar water vapour mixing ratio retrievals. Such issue is evaluated for two optical configurations: the first is a vibrational–rotational Raman nitrogen (∼387 nm) and the second is a pure–rotational Raman molecular reference near 354 nm (nitrogen and oxygen). Both optical configurations use a vibrational–rotational water vapour channel at ∼408 nm. More than 300 aerosol profiles acquired by the University of Granada Raman lidar over the period 2010–2016 enabled the calculation of the aerosol contribution of the differential atmospheric transmission term, indicating that neglecting the total differential atmospheric transmission term can introduce systematic uncertainties in water vapour mixing ratio retrievals of approximately 5.1% and 15% (18% under high-aerosol conditions) at 6 km for the first and second configuration, respectively. Subsequently, in order to apply automatic differential transmission calculations, we developed a technique for estimating the aerosol contribution from sun photometer AOD measurements, yielding relative deviations in water vapour mixing ratio of 0.10% and 0.40% for ∼387 nm and ∼354 nm configurations when compared with cases where Raman lidar aerosol profiles were available. This approach transforms systematic uncertainties into random ones that can be reduced by increasing the number of measurements. Full article
Show Figures

Figure 1

16 pages, 313 KB  
Article
Evolution of Life Satisfaction Throughout the Gestation Process and at Different Postpartum Stages
by María Crespo, Miri Kestler-Peleg, Patricia Catalá, Celia Arribas and Cecilia Peñacoba
Behav. Sci. 2025, 15(10), 1390; https://doi.org/10.3390/bs15101390 - 14 Oct 2025
Viewed by 255
Abstract
Background: Life satisfaction during the perinatal period has gained increasing attention as a relevant indicator of mental health, providing a more complete view of women’s adaptation to motherhood. Methods: This study examines the evolution of life satisfaction across four time points: [...] Read more.
Background: Life satisfaction during the perinatal period has gained increasing attention as a relevant indicator of mental health, providing a more complete view of women’s adaptation to motherhood. Methods: This study examines the evolution of life satisfaction across four time points: the third trimester of pregnancy (T1), 8 weeks after birth (T2), 5 months after birth (T3) and 5 years postpartum (T4). A total of 231 women participated in this longitudinal study. Participants completed an ad hoc questionnaire for sociodemographic data and standardized self-report measures assessing different personality variables (attachment style, social support, maternal self-efficacy and positive/negative affect) at T1 as well as the Satisfaction with Life Scale (SWLS) (T1–T4). Statistical analyses were performed in order to evaluate the relationships between variables (Student’s test, ANOVA, Pearson’s correlation), and a linear regression analysis was conducted to explore the contribution of psychosocial variables at each time point. Additional subgroup analyses (employment status and parity) were carried out. Results: Results showed that at the first and second time points, life satisfaction was maintained, but five months after birth (T3), it decreased, and then it changed again five years after birth, increasing to its highest level. The psychosocial variables significantly associated with changes in life satisfaction varied across time points. Differential profiles are also observed depending on the subgroup. Conclusions: These findings suggest that monitoring these variables throughout the perinatal period may help identify women at risk and guide interventions in addition to preventive programs aimed at promoting well-being during the perinatal period and into motherhood. Full article
Show Figures

Figure 1

21 pages, 1587 KB  
Article
Structure-Preserving Numerical Methods for Fractional Nonlinear Schrödinger Equations with Wave Operators
by Mengnan Zhang, Xinyu Zhou and Cuicui Liao
Mathematics 2025, 13(19), 3187; https://doi.org/10.3390/math13193187 - 5 Oct 2025
Viewed by 400
Abstract
This main focus of this work is the fractional-order nonlinear Schrödinger equation with wave operators. First, a conservative difference scheme is constructed. Then, the discrete energy and mass conservation formulas are derived and maintained by the difference scheme constructed in this paper. Through [...] Read more.
This main focus of this work is the fractional-order nonlinear Schrödinger equation with wave operators. First, a conservative difference scheme is constructed. Then, the discrete energy and mass conservation formulas are derived and maintained by the difference scheme constructed in this paper. Through rigorous theoretical analysis, it is proved that the constructed difference scheme is unconditionally stable and has second-order precision in both space and time. Due to the completely implicit property of the differential scheme proposed, a linearized iterative algorithm is proposed to implement the conservative differential scheme. Numerical experiments including one example with the fractional boundary conditions were studied. The results effectively demonstrate the long-term numerical behaviors of the fractional nonlinear Schrödinger equations with wave operators. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

17 pages, 1807 KB  
Article
Free Vibration of FML Beam Considering Temperature-Dependent Property and Interface Slip
by Like Pan, Yingxin Zhao, Tong Xing and Yuan Yuan
Buildings 2025, 15(19), 3575; https://doi.org/10.3390/buildings15193575 - 3 Oct 2025
Viewed by 244
Abstract
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on [...] Read more.
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on one-dimensional heat conduction theory using a transfer formulation. Subsequently, based on the two-dimensional elasticity theory, the governing equations are established. Compared with shear deformation theories, the present solution does not rely on a shear deformation assumption, enabling more accurate capture of interlaminar shear effects and higher-order vibration modes. The relationship of stresses and displacements is determined by the differential quadrature method, the state-space method and the transfer matrix method. Since the corresponding matrix is singular due to the absence of external loads, the natural frequencies are determined using the bisection method. The comparison study indicates that the present solutions are consistent with experimental results, and the errors of finite element simulation and the solution based on the first-order shear deformation theory reach 3.81% and 3.96%, respectively. At last, the effects of temperature, the effects of temperature degree, interface bonding and boundary conditions on the vibration performance of the FML beams are investigated in detail. The research results provide support for the design and analysis of FML beams under high-temperature and vibration environments in practical engineering. Full article
Show Figures

Figure 1

23 pages, 4556 KB  
Article
Radiomics-Based Detection of Germ Cell Neoplasia In Situ Using Volumetric ADC and FA Histogram Features: A Retrospective Study
by Maria-Veatriki Christodoulou, Ourania Pappa, Loukas Astrakas, Evangeli Lampri, Thanos Paliouras, Nikolaos Sofikitis, Maria I. Argyropoulou and Athina C. Tsili
Cancers 2025, 17(19), 3220; https://doi.org/10.3390/cancers17193220 - 2 Oct 2025
Viewed by 415
Abstract
Background/Objectives: Germ Cell Neoplasia In Situ (GCNIS) is considered the precursor lesion for the majority of testicular germ cell tumors (TGCTs). The aim of this study was to evaluate whether first-order radiomics features derived from volumetric diffusion tensor imaging (DTI) metrics—specifically apparent diffusion [...] Read more.
Background/Objectives: Germ Cell Neoplasia In Situ (GCNIS) is considered the precursor lesion for the majority of testicular germ cell tumors (TGCTs). The aim of this study was to evaluate whether first-order radiomics features derived from volumetric diffusion tensor imaging (DTI) metrics—specifically apparent diffusion coefficient (ADC) and fractional anisotropy (FA) histogram parameters—can detect GCNIS. Methods: This study included 15 men with TGCTs and 10 controls. All participants underwent scrotal MRI, including DTI. Volumetric ADC and FA histogram metrics were calculated for the following tissues: group 1, TGCT; group 2: testicular parenchyma adjacent to tumor, histologically positive for GCNIS; and group 3, normal testis. Non-parametric statistics were used to assess differences in ADC and FA histogram parameters among the three groups. Pearson’s correlation analysis was followed by ordinal regression analysis to identify key predictive histogram parameters. Results: Widespread distributional differences (p < 0.05) were observed for many ADC and FA variables, with both TGCTs and GCNIS showing significant divergence from normal testes. Among the ADC statistics, the 10th percentile and skewness (p = 0.042), range (p = 0.023), interquartile range (p = 0.021), total energy (p = 0.033), entropy and kurtosis (p = 0.027) proved the most significant predictors for tissue classification. FA_energy (p = 0.039) was the most significant fingerprint of the carcinogenesis among the FA metrics. These parameters correctly characterized 88.8% of TGCTs, 87.5% of GCNIS tissues and 100% of normal testes. Conclusion: Radiomics features derived from volumetric ADC and FA histograms have promising potential to differentiate TGCTs, GCNIS, and normal testicular tissue, aiding early detection and characterization of pre-cancerous lesions. Full article
(This article belongs to the Special Issue Updates on Imaging of Common Urogenital Neoplasms 2nd Edition)
Show Figures

Figure 1

21 pages, 301 KB  
Article
First-Order Impulses for an Impulsive Stochastic Differential Equation System
by Tayeb Blouhi, Safa M. Mirgani, Fatima Zohra Ladrani, Amin Benaissa Cherif, Khaled Zennir and Keltoum Bouhali
Mathematics 2025, 13(19), 3115; https://doi.org/10.3390/math13193115 - 29 Sep 2025
Viewed by 271
Abstract
We consider first-order impulses for impulsive stochastic differential equations driven by fractional Brownian motion (fBm) with Hurst parameter H(12,1) involving a nonlinear ϕ-Laplacian operator. The system incorporates both state and derivative impulses at fixed time [...] Read more.
We consider first-order impulses for impulsive stochastic differential equations driven by fractional Brownian motion (fBm) with Hurst parameter H(12,1) involving a nonlinear ϕ-Laplacian operator. The system incorporates both state and derivative impulses at fixed time instants. First, we establish the existence of at least one mild solution under appropriate conditions in terms of nonlinearities, impulses, and diffusion coefficients. We achieve this by applying a nonlinear alternative of the Leray–Schauder fixed-point theorem in a generalized Banach space setting. The topological structure of the solution set is established, showing that the set of all solutions is compact, closed, and convex in the function space considered. Our results extend existing impulsive differential equation frameworks to include fractional stochastic perturbations (via fBm) and general ϕ-Laplacian dynamics, which have not been addressed previously in tandem. These contributions provide a new existence framework for impulsive systems with memory and hereditary properties, modeled in stochastic environments with long-range dependence. Full article
15 pages, 633 KB  
Article
Influence of Truncated M-Fractional Derivative on Soliton Dynamics and Stability Analysis of Fifth-Order KdV Equation Using Improved Modified Extended Tanh Function Method
by Rawan Bossly, Noorah Mshary and Hamdy M. Ahmed
Fractal Fract. 2025, 9(10), 632; https://doi.org/10.3390/fractalfract9100632 - 28 Sep 2025
Viewed by 295
Abstract
In this study, we explore the soliton solutions of the truncated M-fractional fifth-order Korteweg–de Vries (KdV) equation by applying the improved modified extended tanh function method (IMETM). Novel analytical solutions are obtained for the proposed system, such as brigh soliton, dark soliton, hyperbolic, [...] Read more.
In this study, we explore the soliton solutions of the truncated M-fractional fifth-order Korteweg–de Vries (KdV) equation by applying the improved modified extended tanh function method (IMETM). Novel analytical solutions are obtained for the proposed system, such as brigh soliton, dark soliton, hyperbolic, exponential, Weierstrass, singular periodic, and Jacobi elliptic periodic solutions. To validate these results, we present detailed graphical representations of selected solutions, demonstrating both their mathematical structure and physical behavior. Furthermore, we conduct a comprehensive linear stability analysis to investigate the stability of these solutions. Our findings reveal that the fractional derivative significantly affects the amplitude, width, and velocity of the solitons, offering new insights into the control and manipulation of soliton dynamics in fractional systems. The novelty of this work lies in extending the IMETM approach to the truncated M-fractional fifth-order KdV equation for the first time, yielding a wide spectrum of exact analytical soliton solutions together with a rigorous stability analysis. This research contributes to the broader understanding of fractional differential equations and their applications in various scientific fields. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

40 pages, 476 KB  
Article
Regularity of Generalized Mean-Field G-SDEs
by Karl-Wilhelm Georg Bollweg and Thilo Meyer-Brandis
Mathematics 2025, 13(19), 3099; https://doi.org/10.3390/math13193099 - 27 Sep 2025
Viewed by 226
Abstract
We study the regularity properties of the unique solution of a generalized mean-field G-SDE. More precisely, we consider a generalized mean-field G-SDE with a square-integrable random initial condition, establish its first- and second-order Fréchet differentiability in the stochastic initial condition, and [...] Read more.
We study the regularity properties of the unique solution of a generalized mean-field G-SDE. More precisely, we consider a generalized mean-field G-SDE with a square-integrable random initial condition, establish its first- and second-order Fréchet differentiability in the stochastic initial condition, and specify the G-SDEs of the respective Fréchet derivatives. The first- and second-order Fréchet derivatives are obtained for locally Lipschitz coefficients admitting locally Lipschitz first- and second-order Fréchet derivatives respectively. Our approach heavily relies on the Grönwall inequality, which leverages the Lipschitz continuity of the coefficients. Full article
(This article belongs to the Special Issue Applications of Differential Equations in Sciences)
21 pages, 13182 KB  
Article
Command-Filter-Based Velocity-Free Tracking Control of an Electrohydraulic System with Adaptive Disturbance Compensation
by Gaoyang Zhao, Xiaowei Yang, Wenxiang Deng, Chuanjie Lu and Jianyong Yao
Mathematics 2025, 13(19), 3081; https://doi.org/10.3390/math13193081 - 25 Sep 2025
Viewed by 282
Abstract
Achieving high-precision tracking control in electrohydraulic servo systems remains challenging due to internal uncertainties, external disturbances, and inaccessible state variables. To address these issues, a command-filter-based velocity-free tracking controller is proposed for an electrohydraulic system. A cascaded adaptive extended state observer is designed [...] Read more.
Achieving high-precision tracking control in electrohydraulic servo systems remains challenging due to internal uncertainties, external disturbances, and inaccessible state variables. To address these issues, a command-filter-based velocity-free tracking controller is proposed for an electrohydraulic system. A cascaded adaptive extended state observer is designed to simultaneously compensate for both matched and mismatched disturbances and estimate the unmeasurable velocity state. A first-order command filter is incorporated into the traditional backstepping framework to prevent “differential explosion”. Lyapunov analysis proves that the controller guarantees the boundedness of tracking errors, observer estimation errors, and all closed-loop signals. Comparative simulations demonstrate the superior performance of the proposed controller. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

23 pages, 1623 KB  
Article
Integral and Numerical Formulations for Seeking the Period of Non-Conservative Nonlinear Oscillator With/Without the First Integral
by Chein-Shan Liu, Chia-Cheng Tsai and Chih-Wen Chang
Symmetry 2025, 17(9), 1584; https://doi.org/10.3390/sym17091584 - 22 Sep 2025
Viewed by 295
Abstract
For a non-conservative nonlinear oscillator (NCNO) having a periodic solution, the existence of the first integral is a certain symmetry of the nonlinear dynamical system, which signifies the balance of kinetic energy and potential energy. A first-order nonlinear ordinary differential equation (ODE) is [...] Read more.
For a non-conservative nonlinear oscillator (NCNO) having a periodic solution, the existence of the first integral is a certain symmetry of the nonlinear dynamical system, which signifies the balance of kinetic energy and potential energy. A first-order nonlinear ordinary differential equation (ODE) is used to derive the first integral, which, equipped with a right-end boundary condition, can determine an implicit potential function for computing the period by an exact integral formula. However, the integrand is singular, which renders a less accurate value of the period. A generalized integral conservation law endowed with a weight function is constructed, which is proved to be equivalent to the exact integral formula. Minimizing the error to satisfy the periodicity conditions, the optimal initial value of the weight function is determined. Two non-iterative methods are developed by integrating three first-order ODEs or two first-order ODEs to compute the period. Very accurate value of the period can be observed upon testing five examples. For the NCNO without having the first integral, the integral-type period formula is derived. Four examples belong to the Liénard equation, involving the van der Pol equation, are evaluated by the proposed iterative method to determine the oscillatory amplitude and period. For the case with one or more limit cycles, the amplitude and period can be estimated very accurately. For the NCNO of a broad type with or without having the first integral, the present paper features a solid theoretical foundation and contributes integral-type formulations for the determination of the oscillatory period. The development of new numerical algorithms and extensive validation across a diverse set of examples is given. Full article
Show Figures

Figure 1

Back to TopTop