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Abstract

This main focus of this work is the fractional-order nonlinear Schrödinger equation with
wave operators. First, a conservative difference scheme is constructed. Then, the discrete
energy and mass conservation formulas are derived and maintained by the difference
scheme constructed in this paper. Through rigorous theoretical analysis, it is proved that
the constructed difference scheme is unconditionally stable and has second-order precision
in both space and time. Due to the completely implicit property of the differential scheme
proposed, a linearized iterative algorithm is proposed to implement the conservative
differential scheme. Numerical experiments including one example with the fractional
boundary conditions were studied. The results effectively demonstrate the long-term
numerical behaviors of the fractional nonlinear Schrödinger equations with wave operators.

Keywords: fractional Schrödinger equation; energy-conserving methods; conservation
laws; wave operators; convergence; stability
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1. Introduction
The Schrödinger equation, as the core equation of quantum mechanics, describes

the spatial distribution and temporal evolution of the wave function of microscopic par-
ticles. However, particle dynamics in fractal media, anomalous diffusion, or long-range
interaction systems are difficult to accurately classify with classical models [1]. In recent
years, the wave-type fractional Schrödinger equation (WFSE) with wave operators has been
proposed. The WFSE combines the non-locality of fractional derivatives with the second-
order temporal characteristics of wave operators, providing a more universal mathematical
framework for wave propagation in complex quantum systems and non-local media [2,3].
It has been applied in many scientific fields, such as modeling soliton transmission in
optical fiber communication [4,5] and ultra-cold atomic gases and superfluids in non-local
quantum systems [6–8]. More specifically, the wave-type fractional Schrödinger equation
has been utilized to describe the non-Markovian dynamics of open quantum systems with
memory effects [9,10], the propagation of laser beams in nonlinear fractional media with
long-range interactions, and the study of wave scattering in fractal porous materials where
the fractional order α is linked to the fractal dimension of the material [11,12].

In this paper, we discuss the nonlinear fractional Schrödinger equation with wave
operators as follows [13]:

ψtt(x, t)+ (−∆)α/2ψ(x, t)+ iγψt(x, t)+ β|ψ(x, t)|2ψ(x, t) = 0, a < x < b, 0 < t < T, (1)
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with the initial condition:

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), (2)

and the Dirichlet boundary condition:

ψ(a, t) = ψ(b, t) = 0, 0 ⩽ t ⩽ T, (3)

where i =
√
−1, p ∈ Z+, 1 < α ≤ 2, α are positive real constants; the parameter β is a real

constant; ψ(x, t) is a complex-valued wave function with periodic boundary conditions;
and ψ0(x), ψ1(x) are given smooth initial value functions.

The spatial fractional Laplace operator [14] is used to characterize the non-local motion
of particles in fractal media, simulating the anomalous diffusion and long-range correlation
effects of particles in disordered media such as optical lattices [15]. It has multiple equiva-
lent definitions in R, such as Riesz, spectral, and directional definitions. However, when
these definitions are limited to bounded regions, the relevant boundary conditions can lead
to different operator forms [16,17]. The Ritz fractional derivatives are studied in this paper
and are defined as

(−∆)
α
2 ψ(x) =

1
2 cos απ

2

[
−∞

Dα
xψ(x, t) +x Dα

+∞ψ(x, t)
]
, (4)

where −∞Dα
xψ(x, t), xDα

+∞ψ(x, t) represent the left- and right-side Riemann–Liouville frac-
tional derivatives:

−∞Dα
xψ(x, t) =


1

Γ(2−α)
d2

dx2

∫ x
a (x − s)1−αψ(s, t)ds, 1 < α < 2,

d2

dx2 ψ(x, t), α = 2,

xDα
+∞ψ(x, t) =


1

Γ(2−α)
d2

dx2

∫ b
x (s − x)1−αψ(s, t)ds, 1 < α < 2,

d2

dx2 ψ(x, t), α = 2,

Γ(·) is gamma function. The Riesz fractional derivative can also be defined as [14]:

−(−△)
α
2 ψ(x, t) = −F−1(|ξ|αψ̂(ξ, t)

)
,

where F is the Fourier transform.
The classical nonlinear partial differential equations have some physical quantities nat-

urally derived from the physical environment, such as symplectic and multi-symplectic
conservation laws and energy and mass conservation laws. Bao [18] deduced that a system (1)
with periodic boundary conditions has the following conservation laws of mass and energy:

M(t) = M(0), E(t) = E(0), (5)

where
M(t) := γ∥ψ(x, t)∥2

L2 + 2Im(ψt(x, t), ψ(x, t)),

E(t) := ∥ψt(x, t)∥2
L2 + ∥(−∆)α/4ψ(x, t)∥2

L2 +
β

2
∥ψ(x, t)∥4

L4 ,
(6)

and
∥ψt(x, t)∥2

L2 =
∫

Ω
|ψt(x, t)|2 dx, ∥ψ(x, t)∥p

Lp =
∫

Ω
|ψ(x, t)|p dx. (7)
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Structure-preserving methods are crucial for the long-term simulation of the fractional
nonlinear Schrödinger equation with wave operators for two primary reasons. First, the
conservation laws of mass and energy are fundamental physical properties inherent to the
closed system described by Equations (1)–(3). A numerical scheme that preserves these
discrete analogues ensures that the numerical solution respects the underlying physics, pre-
venting unphysical numerical dissipation or blow-up that can occur with non-conservative
schemes [9,10]. Second, from a numerical analysis perspective, these conservation laws
provide a powerful tool for proving the unconditional stability of the scheme, as demon-
strated in Theorem 4. This is especially important for the nonlinear and non-local problems
studied here, where conventional stability analysis can be exceedingly difficult. The ability
to perform accurate and stable long-term simulations is paramount for studying the evo-
lutionary behavior of wave functions in quantum systems, making structure-preserving
methods the preferred choice for this class of problems [18,19].

Stable dynamics ensure that the system does not spontaneously generate or annihilate
energy during the evolution process [20] and can maintain the stability of the physical state.
Therefore, the conservation law and unconditional stability of equations have become hot
topics in recent years. In the past few years, scholars have studied various conservative and
precise numerical methods, such as the Galerkin finite element method [21,22], spectrum
method [23–25], collocation methods [26], and finite difference method [19,27–29]. In
Reference [21], a conservative difference scheme is constructed for the nonlinear fractional
order Schrödinger equation in space based on discretization using the Galerkin finite
element method in space and the Crank–Nicolson method in time. In Reference [22],
Li et al. studied a series of Galerkin finite element methods and discussed the conservation
and convergence of discrete systems. Wang and Huang [19] constructed a conservative
linearized difference scheme and an energy conserving Crank–Nicolson difference scheme
for the nonlinear Riesz fractional order Schrödinger equation and analyzed the convergence
of the l∞-norm. Wang [28] used the compact difference method and extrapolation method
to provide two high-order conservative difference schemes for fractional order derivatives
and proved second-order accuracy convergence in both time and space.

This paper is structured as follows: In Section 2, various symbolic and discrete schemes
for fractional derivatives are introduced. Section 3 presents a conservative difference
scheme along with an iterative linearization algorithm. In Section 4, a detailed analysis
of energy and mass conservation in discrete cases is conducted. Section 5 discusses the
convergence and stability of the difference scheme. Numerical experiments are presented
in Section 6. Finally, conclusions are drawn in Section 7.

2. Notations
We segment the region [a, b]× [0, T] with time step τ := T

N and space step h := b−a
M .

The grid node is recorded as ψ(xj, tn), where xj = j∆x, j = 0, 1, . . ., M, and tn = n∆t,
n = 0, 1, . . ., N. Here, M, N is a positive integer. Let ψn

j = ψ(xj, tn), ψ∗n
j ≈ ψ(xj, tn).

Ωh = {xj|0 ≤ j ≤ M}, Ωτ = {tn|0 ≤ n ≤ N}.

Given a grid function w = {wn
j | (xj, tn) ∈ Ωh × Ωτ}, the finite difference operators can

be defined:

ŵn
j =

wn+1
j + wn−1

j

2
, δtwn

j =
wn+1

j − wn
j

τ
,

δt̂w
n
j =

wn+1
j − wn−1

j

2τ
, δ2

t wn
j =

wn+1
j − 2wn

j + wn+1
j

τ2 .
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Let Vh = {w | w = (w1, . . . , wM−1)} be the space of grid functions; for any grid
function u, v ∈ Vh, we define discrete inner product, L2-norm, and Lp-norm as

⟨u, v⟩ = h
J−1

∑
j=1

ujvj, ∥u∥2 = ⟨u, u⟩,

∥u∥p
lp
h
= h

J−1

∑
j=1

|uj|p, 1 ≤ p < +∞, ∥u∥l∞
h
= sup

0<j<J−1
|uj|.

This paper employs the fractional central difference discretization method for Riesz
fractional derivatives. For 1 < α < 2, we define

−(−△)
α
2 ψn

j = − 1
hα

j

∑
l=−M+j

g(α)l ψn
j−l + O

(
h2
)
= − 1

hα

M−1

∑
l=1

g(α)j−lψ
n
l + O

(
h2
)

, (8)

where the coefficients g(γ)k = (−1)kΓ(γ+1)
Γ( γ

2 −k+1)Γ( γ
2 +k+1)

. For convenience, we introduce the follow-

ing discrete operator:

∆α
hψn

j =
1
hα

M−1

∑
k=1

g(γ)j−kψn
k , 1 ≤ j ≤ M − 1. (9)

Lemma 1. The coefficients g(α)k have the following properties (see [30]):

g(γ)0 ⩾ 0,

g(γ)−k = g(γ)k ⩽ 0 for all |k| ⩾ 1.
(10)

Let

∆α
hψ∗n

j = h−α
M−1

∑
l=1

g(α)j−lψ
∗n
l , 1 ⩽ j ⩽ M − 1.

where ψ∗n
j denotes the numerical approximation to ψn

j .

3. Conservative Difference Schemes
As stated in Lemma 1, the fractional central difference effectively preserves the sym-

metry properties of Riesz fractional derivatives, serving as a fundamental element in
subsequent analysis. We define

∆α
hψ(xj, tn) = (−△)

α
2 ψn

j = − ∂α

∂|x|α ψ(x, t) + O
(

h2
)

. (11)

Let ψ, ψ∗ ∈ Vh be the exact solution and numerical approximation, respectively.
Considering the Schrödinger Equation (1) and using the Crank–Nicolson method in time
and the fractional centered difference scheme (8) in space, we derive the conservative
difference scheme for the Schrödinger equation, which is

δ2
t ψ∗n

j + ∆α
hψ̂∗n

j + iγδt̂ψ
∗n
j +

β

2
(∣∣ψ∗(n−1)

j

∣∣2 + ∣∣ψ∗(n+1)
j

∣∣2)ψ̂∗n
j = 0, 1 ⩽ j ⩽ M − 1, 0 ⩽ n ⩽ N − 1,

ψ∗0
j = ψ0(xj), ψt(xj, 0) = ψ1(xj), 0 ⩽ j ⩽ M,

ψ∗n
0 = ψ∗n

M = 0, 0 ⩽ n ⩽ N.

(12)

The above Equation (12) is divided into the following two cases:
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(1) If n = 0,

(2 + τ2∆α
h)ψ

∗1
j

= 2ψ∗0
j + (2τ + τ3∆α

h − iγτ2)ψ1(xj)−
βτ2

2
(
|ψ∗1

j − 2τψ1(xj)|2 + |ψ∗1
j |

)(
ψ∗1

j − τψ1(xj)
)
,

(13)

(2) If n ≥ 1,

(1 +
τ2

2
∆α

h +
iατ

2
)ψ

∗(n+1)
j

= 2ψ∗n
j + (−1 − τ2

2
∆α

h +
iατ

2
)ψ

∗(n−1)
j − βτ2

4
(∣∣ψ∗(n−1)

j

∣∣2 + ∣∣ψ∗(n+1)
j

∣∣2)(ψ
∗(n+1)
j + ψ

∗(n−1)
j

)
.

(14)

Given the characteristics of this numerical format in (13) and (14), MATLAB software
(R2024a 9.8) is used in programming to obtain the values of each time layer through an
iterative method; then, the following iterative algorithm is defined:

(1) If n = 0,

(2 + τ2∆α
h)ψ

∗1(s+1)
j

= 2ψ∗0
j + (2τ + τ3∆α

h − iγτ2)ψ1(xj)−
βτ2

2
(
|ψ∗1(s)

j − 2τψ1(xj)|2 + |ψ∗1(s)
j |

)(
ψ
∗1(s)
j − τψ1(xj)

)
,

(15)

(2) If n ≥ 1,

(1 +
τ2

2
∆α

h +
iατ

2
)ψ

∗(n+1)
j

= 2ψ∗n
j + (−1 − τ2

2
∆α

h +
iατ

2
)ψ

∗(n−1)
j − βτ2

4
(∣∣ψ∗(n−1)

j

∣∣2 + ∣∣ψ∗(n+1)
j

∣∣2)(ψ
∗(n+1)
j + ψ

∗(n−1)
j

)
.

(16)

where 1 ⩽ j ⩽ M − 1, 0 ⩽ n ⩽ N − 1, s = 0, 1, 2 . . ., and the initial iterations are given by

ψ
∗(n+1)(0)
j =


ψ∗n

j , n = 0,

2ψ∗n
j − ψ

∗(n−1)
j , n ⩾ 1.

(17)

When
∥∥∥ψ

∗(n+1)(s+1)
j − ψ∗n

j

∥∥∥ converges, the ψ
∗(n+1)
j = ψ

∗(n+1)(s+1)
j .

The computational cost per time step is dominated by solving the linear system with
the dense Toeplitz matrix Tn. While a naive dense solver would incur a cost of O

(
M3),

the Toeplitz structure can be exploited using iterative solvers (e.g., Conjugate Gradient)
coupled with Fast Fourier Transform for matrix–vector products, reducing the cost to
O(M log M) per iteration. The number of iterations in the linear solver and the outer fixed-
point iteration (15) and (16) depends on the prescribed tolerance but is typically observed
to be small and independent of the grid size in our numerical experiments.

4. Mass and Energy Conservation
The nonlinear fractional Schrödinger equation with wave operators (1)–(3) satisfies

the conservation of energy and mass in the continuous sense. In this section, we will
demonstrate that the difference scheme (12) preserves the conservation of energy and mass
in the discrete setting.

Let the matrix Tn be

Tn =


g(γ)0 g(γ)−1 · · · g(γ)−M+2

g(γ)1 g(γ)0 · · · g(γ)−M+3
...

...
. . .

...

g(γ)M−2 g(γ)M−3 · · · g(γ)0

. (18)
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It follows from g(γ)k = g(γ)−k and Lemma 1 that the matrix Tn is a symmetric Toeplitz
matrix. It is the discrete analogue of the fractional Laplacian operator (−∆)α/2 in the
fractional central difference scheme. Its structure is central to proving the conservation
properties and stability of our numerical method.

Denote λ = [λ1, λ2, . . ., λM−1], where λi is the eigenvalue of matrix Tn.

Lemma 2. For any grid function ψ∗n, ϕ∗n ∈ Vh, there exists a linear operator Λα, such that
(see [31]): (

(−∆)α/2ψ∗n, ϕ∗n
)
= (Λαψ∗n, Λαϕ∗n). (19)

Proof. There is a real orthogonal matrix P and a real diagonal matrix A = diag(λ), such that

Tn = PAPT = (PA
1
2 PT)T(PA

1
2 PT) = QTQ.

where A
1
2 = diag(λ

1
2 ), Q = PA

1
2 PT .(

(−∆)α/2ψ∗n, ϕ∗n) = (
h−αTnψ∗n, ϕ∗n) = (

h−αQTQψ∗n, ϕ∗n)
=

(
h−

α
2 Qψ∗n, h−

α
2 Qϕ∗n) = (

Λαψ∗n, Λαϕ∗n).

where Λαψ∗n = h−
α
2 Qψ∗n.

Thus, the proof is complete.

Lemma 3. For any grid function ψ∗n ∈ Vh, we have

Re
(
∆α

hψ̂∗n, δt̂ψ
∗n) = 1

4τ

(
∥Λαψ∗(n+1)∥2 − ∥Λαψ∗(n−1)∥2),

Re
(
δ2

t ψ∗n, δt̂ψ
∗n) = 1

2τ

(
∥δtψ

∗n∥2 − ∥δtψ
∗(n−1)∥2),

Re
(
ψ̂∗n, δt̂ψ

∗n) = 1
4τ

(
∥ψ∗(n+1)∥2 − ∥ψ∗(n−1)∥2),

Im
(
δ2

t ψ∗n, ψ̂∗n) = 1
τ

(
Im(δtψ

∗n, ψ∗n)− Im(δtψ
∗(n−1), ψ∗(n−1))

)
.

(20)

Proof. This identity is proven by leveraging the self-adjointness and positive-definiteness of
the discrete fractional operator established through Lemma 2. We substitute the definitions
of the averaging and difference operators to express the inner product, which then simplifies
to a difference of norms.

Re
(
∆α

hψ̂∗n, δt̂ψ
∗n) = Re

(
Λαψ̂∗n, Λαδt̂ψ

∗n)
=

1
4τ

(
Λα(ψ∗(n+1) + ψ∗(n−1)), Λα(ψ∗(n+1) − ψ∗(n−1))

)
=

1
4τ

(
∥Λαψ∗(n+1)∥2 − ∥Λαψ∗(n−1)∥2);

According to the definition of finite difference operator, we can obtain:

Re
(
δ2

t ψ∗n, δt̂ψ
∗n) = Re

(ψ∗(n+1) − 2ψ∗n + ψ∗(n−1)

τ2 ,
ψ∗(n+1) − ψ∗(n−1)

2τ

)
=

1
2τ

Re
(
δtψ

∗n − δ
∗(n−1)
t , δtψ

∗n + δ
∗(n+1)
t

)
=

1
2τ

(
∥δtψ

∗n∥2 − ∥δtψ
∗(n−1)∥2);

Similarly, there can also be:

Re
(
ψ̂∗n, δt̂ψ

∗n) = Re
(ψ∗(n+1) + ψ∗(n−1)

2
,

ψ∗(n+1) − ψ∗(n−1)

2τ

)
=

1
4τ

(
∥ψ∗(n+1)∥2 − ∥ψ∗(n−1)∥2);
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Based on the previous preparation, we have

Im
(
δ2

t ψ∗n, ψ̂∗n) = Im
(ψ∗(n+1) − ψ∗n

τ2 − ψ∗n − ψ∗(n−1)

τ2 ,
ψ∗(n+1) + ψ∗(n−1)

2

)
=

1
2τ

Im
(
δtψ

∗n − δtψ
∗(n−1), ψ∗(n+1) + ψ∗(n−1))

=
1

2τ

(
2Im(δtψ

∗n, ψ∗n) + Im(δtψ
∗n, ψ∗(n+1) − ψ∗n)− Im(δtψ

∗n, ψ∗n − ψ∗(n−1))

− Im(δtψ
∗(n−1), ψ∗(n+1) − ψ∗n)− Im(δtψ

∗(n−1), ψ∗n − ψ∗(n−1))− 2Im(δtψ
∗(n−1), ψ∗(n−1))

)
=

1
τ

(
Im(δtψ

∗n, ψ∗n)− Im(δtψ
∗(n−1), ψ∗(n−1))

)
.

Thus, the proof is complete.

Based on the above conclusion, two kinds of conservation laws are proved.

Theorem 1. The discrete scheme (12) satisfies both mass and energy conservation laws:

Mass Conservation : Mn = M0, 0 ≤ n ≤ N,

Energy Conservation : En = E0, 0 ≤ n ≤ N,
(21)

where

Mn := Im
(
δtψ

∗n, ψ∗n)+ γ

4
(
∥ψ∗(n+1)∥2 + ∥ψ∗n∥2),

En := ∥δtψ
∗n∥2 +

1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2)+ β

4
(
∥ψ∗(n+1)∥4

4 + ∥ψ∗n∥4
4
)
.

(22)

Proof. First, computing the discrete inner product of scheme (12) with ψ̂∗n = ψ∗(n+1)+ψ∗(n−1)

2 ,
then taking the imaginary part:

Im
((

δ2
t ψ∗n, ψ̂∗n)+ (

∆α
hψ̂∗n, ψ̂∗n)+ (

iγδt̂ψ
∗n, ψ̂∗n)+ ( β

2
(∥ψ∗(n+1)∥2 + ∥ψ∗(n−1)∥2)ψ̂∗n, ψ̂∗n)) = 0. (23)

Combining Equation (23) with Lemma 3:

1
τ

(
Im(δtψ

∗n, ψ∗n)− Im(δtψ
∗(n−1), ψ∗(n−1))

)
+

γ

4τ

(
∥ψ∗(n+1)∥2 − ∥ψ∗(n−1)∥2) = 0,

then we have:

Im
(
δtψ

∗n, ψ∗n)+ γ

4
(
∥ψ∗(n+1)∥2 + ∥ψ∗n∥2) = Im

(
δtψ

∗(n−1), ψ∗(n−1))+ γ

4
(
∥ψ∗n∥2 + ∥ψ∗(n−1)∥2),

which means Mn = Mn−1 = . . . = M0.
Second, computing the discrete inner product of scheme (12) with δt̂ψ

∗n = ψ∗(n+1)−ψ∗(n−1)

2τ

then taking the real part,

Re
(

δ2
t ψ∗n

j + ∆α
hψ̂∗n

j + iγδt̂ψ
∗n
j +

β

2
(∣∣ψ∗(n−1)

j

∣∣2 + ∣∣ψ∗(n+1)
j

∣∣2)ψ̂∗n
j , δt̂ψ

∗n
)
= 0. (24)

Combining Equation (24) with Lemma 3, we can obtain:

1
2τ

(
∥δtψ

∗n∥2 − ∥δtψ
∗(n−1)∥2)+ 1

4τ

(
∥ψ∗(n+1)∥2 − ∥ψ∗(n−1)∥2)

+
β

8τ

(
|ψ∗(n+1)|2 + |ψ∗(n−1)|2

)(
∥ψ∗(n+1)∥2 − ∥ψ∗(n−1)∥2) = 0,
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then we have:

∥δtψ
∗n∥2 +

1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2)+ β

4
(
∥ψ∗(n+1)∥4

4 + ∥ψ∗n∥4
4
)

=∥δtψ
∗(n−1)∥2 +

1
2
(
∥Λαψ∗n∥2 + ∥Λαψ∗(n−1)∥2)+ β

4
(
∥ψ∗n∥4

4 + ∥ψ∗(n−1)∥4
4
)
,

which means En = En−1 = . . . = E0.
Thus, the proof is complete.

5. Convergence and Stability
In this section, the proposed difference schemes (12) are proven to have second-order

convergence accuracy in both space and time. To illustrate the proof, let us introduce
some theorems.

Lemma 4. If {Φn | n ⩾ 0} is a non-negative sequence, then it satisfies (Gronwall inequality [32]):

Φn+1 ⩽ (1 + cτ)Φn + τσ, n ⩾ 0, (25)

where c and σ are non-negative constants. Φn satisfies

Φn+1 ⩽ ecnτ
(

Φ0 +
σ

c

)
. (26)

Lemma 5. For any discrete functions ψ∗n, there holds:

∥ψ∗n∥2 − ∥ψ∗(n+1)∥2 ⩽ τ
(
∥δtψ

∗n∥2 +
1
2
(∥ψ∗n∥2 + ∥ψ∗(n+1)∥2)

)
. (27)

For the convenience of subsequent proofs, we first proved the boundedness of numer-
ical solutions.

Theorem 2. For ψ∗n ∈ Vh there exists a positive constant C, such that

∥ψ∗n∥ ⩽ C; ∥Λαψ∗n∥ ⩽ C; ∥δtψ
∗n∥ ⩽ C; n = 0, 1, . . . , N. (28)

Proof. Using Theorem 1 yields

En = ∥δtψ
∗n∥2 +

1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2)+ β

4
(
∥ψ∗(n+1)∥4

4 + ∥ψ∗n∥4
4
)
= E0,

and we have

∥δtψ
∗n∥2 +

1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2) = E0 − β

4
(
∥ψ∗(n+1)∥4

4 + ∥ψ∗n∥4
4
)
.

Because of β > 0, it satisfies

∥δtψ
∗n∥2 +

1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2) ⩽ C. (29)

Summing the inequalities (27) of Lemma 5 from 0 to n yields

(1 − τ

2
)∥ψ∗(n+1)∥2 ⩽ (1 +

τ

2
)∥ψ∗0∥2 + τ∥δtψ

∗0∥2 + τ
n

∑
k=1

(∥δtψ
∗k∥2 + ∥ψ∗k∥2). (30)
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Take a sum of (29) and (30) to arrive at

(1 − τ

2
)∥ψ∗(n+1)∥2 + ∥δtψ

∗n∥2 +
1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2) ⩽ C + τ

n

∑
k=1

(∥δtψ
∗k∥2 + ∥ψ∗k∥2).

When τ is sufficiently small (τ < 1), this implies that

1
2
∥ψ∗(n+1)∥2 + ∥δtψ

∗n∥2 +
1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2)

⩽ C + 2τ
n

∑
k=1

(
1
2
∥ψ∗k∥2 + ∥δtψ

∗(k−1)∥2 +
1
2
(
∥Λαψ∗k∥2 + ∥Λαψ∗(k−1)∥2)),

according to the discrete Gronwall’s inequality [33], there is

1
2
∥ψ∗(n+1)∥2 + ∥δtψ

∗n∥2 +
1
2
(
∥Λαψ∗(n+1)∥2 + ∥Λαψ∗n∥2) ⩽ C.

Thus,
∥ψ∗n∥2 ⩽ C; ∥Λαψ∗n∥2 ⩽ C; ∥δtψ

∗n∥2 ⩽ C.

Thus, the proof is completed.

Lemma 6. For any complex functions Φ, Ψ, ϕ, ψ, the following equation is satisfied (see [34])∣∣∣|Φ|2Ψ − |ϕ|2ψ
∣∣∣ ⩽ (max{|Φ|, |Ψ|, |ϕ|, |ψ|})2 · (2|Φ − ϕ|+ |Ψ − ψ|). (31)

Let rn
j be the local truncation error of scheme (12). Then,

rn
j = δ2

t ψn
j + ∆α

hψ̂n
j + iγδt̂ψ

n
j +

β

2
(∣∣ψn−1

j

∣∣2 + ∣∣ψn+1
j

∣∣2)ψ̂n
j . (32)

It follows from Equation (9) and Taylor’s expansion that there exists constant C > 0
such that

|rn
j | ⩽ C(τ2 + h2). (33)

Theorem 3. Suppose that ψ(x, t) is the solution of scheme (1). Let ψ∗n be the solution of the
numerical scheme (12). For sufficiently small steps τ ≲ h, the schemes (12) are convergent in L2

norm, and we have:
∥ϵn∥ = ∥ψn − ψ∗n∥ ≲ τ2 + h2. (34)

Proof. Let ϵn
j = ψn

j − ψ∗n
j , subtracting Equation (32) from Equation (12) leads to

rn
j = δ2

t ϵn
j + ∆α

h ϵ̂n
j + iγδt̂ϵ

n
j + Ĥn

j , (35)

where
Ĥn

j =
β

2
(
|ψn−1

j |2 + |ψn+1
j |2

)
ψ̂n

j −
β

2
(
|ψ∗(n−1)

j |2 + |ψ∗(n+1)
j |2

)
ψ̂∗n

j .

Applying Lemma 6 yields

|Ĥn
j | =

β

2
|
(
|ψn−1

j |2 + |ψn+1
j |2

)
ψ̂n

j −
β

2
(
|ψ∗(n−1)

j |2 + |ψ∗(n+1)
j |2

)
ψ̂∗n

j |

=
β

2

∣∣(ψ̄
∗(n−1)
j ψ̂∗n

j ϵn−1
j + ψn−1

j ψ̂∗n
j ϵ̄n−1

j + |ψn−1
j |2ϵ̂n

j
)

+
(
ψ̄
∗(n+1)
j ψ̂∗n

j ϵn+1
j + ψn+1

j ψ̂∗n
j ϵ̄n+1

j + |ψn+1
j |2ϵ̂n

j
)∣∣

⩽
β

2
(
max|ψn

j |, |ψ∗n
j |, |ψn+1

j |, |ψ∗(n+1)
j |

)2(2|ϵn−1
j |+ 2|ϵn+1

j |+ 2|ϵ̂n
j |
)
.

(36)
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Thanks to Theorem 2, we derive

|Ĥn
j |2 ⩽ C

(
|ϵn−1

j |2 + |ϵn+1
j |2

)
,

and thus,
∥Ĥn

j ∥2 =
∫

Ω
|Ĥn

j |2dx ⩽ C
(
∥ϵn−1

j ∥2 + ∥ϵn+1
j ∥2). (37)

Computing the inner product of Equation (35) with δt̂ϵ
n
j and then taking the real part

results in:

Re
(
rn

j , δt̂ϵ
n
j
)
= Re

(
δ2

t ϵn
j , δt̂ϵ

n
j
)
+ Re

(
∆α

h ϵ̂n
j , δt̂ϵ

n
j
)
+ Re

(
iγδt̂ϵ

n
j , δt̂ϵ

n
j
)
+ Re

(
Ĥn

j , δt̂ϵ
n
j
)
.

Lemma 3 yields:

Re
(
rn

j , δt̂ϵ
n
j
)
=

1
2τ

(
∥δtϵ

n
j ∥2 − ∥δtϵ

n−1
j ∥2)+ 1

4τ

(
∥Λαϵn+1

j ∥2 − ∥Λαϵn−1
j ∥2)+ Re

(
Ĥn

j , δt̂ϵ
n
j
)
.

That is:

1
2τ

(
∥δtϵ

n
j ∥2 − ∥δtϵ

n−1
j ∥2)+ 1

4τ

(
∥Λαϵn+1

j ∥2 − ∥Λαϵn−1
j ∥2) = Re

(
rn

j , δt̂ϵ
n
j
)
− Re

(
Ĥn

j , δt̂ϵ
n
j
)
. (38)

Moreover,

Re
(
rn

j , δt̂ϵ
n
j
)
=

1
2

Re
(
rn

j , δtϵ
n
j + δtϵ

n−1
j

)
⩽

1
2
∥rn

j ∥2∥δtϵ
n
j + δtϵ

n−1
j ∥2

⩽
1
2
(
∥rn

j ∥2 +
1
4
∥δtϵ

n
j + δtϵ

n−1
j ∥2)

⩽
1
2
(
∥rn

j ∥2 + ∥δtϵ
n
j ∥2 + ∥δtϵ

n−1
j ∥2).

(39)

Similarly, Equation (37) yields

Re
(

Ĥn
j , δt̂ϵ

n
j
)
⩽ C

(
∥Ĥn

j ∥2 + ∥δtϵ
n
j ∥2 + ∥δtϵ

n−1
j ∥2)

⩽ C
(
∥ϵn+1

j ∥2 + ∥ϵn−1
j ∥2 + ∥δtϵ

n
j ∥2 + ∥δtϵ

n−1
j ∥2).

(40)

From Lemma 5,

∥ϵn
j ∥2 − ∥ϵn−1

j ∥2 ⩽ τ
(
∥δtϵ

n−1
j ∥2 +

1
2
(∥ϵn

j ∥2 + ∥ϵn−1
j ∥2)

)
. (41)

Substituting Equations (39) and (40) into Equation (38) and using Equations (41) and (33)
leads to

1
2τ

(
∥δtϵ

n
j ∥2 − ∥δtϵ

n−1
j ∥2)+ 1

4τ

(
∥Λαϵn+1

j ∥2 − ∥Λαϵn−1
j ∥2)+ 1

τ

(
∥ϵn

j ∥2 − ∥ϵn−1
j ∥2)

⩽ C
(
(∥ϵn−1

j ∥2 + ∥ϵn
j ∥2 + ∥ϵn+1

j ∥2 + ∥δtϵ
n
j ∥2 + ∥δtϵ

n−1
j ∥2 + (τ2 + h2)2).

(42)

The purpose of this step is to bound the growth of the error by terms of the order of the
truncation error and the errors at previous time levels. The inequalities (39) and (40) are
used to control the inner products involving rn

j and Ĥn
j , while (41) is used to handle the

L2 − norm of the error itself. Then,(1
2
∥δtϵ

n
j ∥2 +

1
4
(
∥Λαϵn+1

j ∥2 + ∥Λαϵn
j ∥2)+ ∥ϵn

j ∥2
)
−(1

2
∥δtϵ

n−1
j ∥2 +

1
4
(
∥Λαϵn

j ∥2 + ∥Λαϵn−1
j ∥2)+ ∥ϵn−1

j ∥2
)

⩽ τC
(
(∥ϵn−1

j ∥2 + ∥ϵn
j ∥2 + ∥ϵn+1

j ∥2 + ∥δtϵ
n
j ∥2 + ∥δtϵ

n−1
j ∥2 + (τ2 + h2)2).

(43)
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Thus, taking the sum of (43) from 1 to n, we have

1
2
∥δtϵ

n
j ∥2 +

1
4
(
∥Λαϵn+1

j ∥2 + ∥Λαϵn
j ∥2)+ ∥ϵn

j ∥2

⩽ τC
n

∑
i=1

(1
2
∥δtϵ

i
j∥2 +

1
4
(
∥Λαϵi+1

j ∥2 + ∥Λαϵi
j∥2)+ ∥ϵi

j∥2
)
+ C(τ2 + h2)2.

(44)

The resulting inequality (44) is now in a form where the discrete Gronwall inequality
(Lemma 4) can be applied to bound the cumulative error growth over all time steps.

Hence, using the discrete Gronwall’s inequality gives

1
2
∥δtϵ

n
j ∥2 +

1
4
(
∥Λαϵn+1

j ∥2 + ∥Λαϵn
j ∥2)+ ∥ϵn

j ∥2 ⩽ C(τ2 + h2)2. (45)

Thus,
∥ϵn

j ∥2 ⩽ C(τ2 + h2)2. (46)

Then, we have
∥ϵn

j ∥ ⩽ C(τ2 + h2). (47)

This completes the proof.

Theorem 4. Under the conditions of the Theorem 3, the solution of the scheme (12) is uncondition-
ally stable with respect to initial values in the discrete l2-norm.

6. Numerical Examples
In this section, we use the proposed implicit difference scheme (12) to solve practical

problem to verify its effectiveness. The L2 − norm sense is defined as

L2 error =
√

h ∑
j
|ψk

j − ψ∗(xj[a − z]k)|2, (48)

then the convergence rates in time and space in the L2 − norm follow the following for-
mula [35]:

Rate =


log(∥e(τ1,N)∥/∥e(τ2,N)∥)

log(τ1/τ2)
in time,

log(∥e(τ,N1)∥/∥e(τ,N2)∥)
log(N1/N2)

in space.

(49)

The relative errors of energy and mass are defined as

RMn = |(Mn − M0)/M0|, REn = |(En − E0)/E0|, (50)

Example 1. The following nonlinear space-fractional Schrödinger Equation [36] with wave operator
is considered.

ψtt(x, t) + (−∆)α/2ψ(x, t) + iψt(x, t) + |ψ(x, t)|2ψ(x, t) = 0, x ∈ (a, b), t ∈ (0, T], (51)

with the following initial condition:

ψ(x, 0) = (1 + i)x · exp(−10(1 − x)2), ψt(x, 0) = 0.

When α = 2, the analytical solution of Equation (51) is:=

ψ(x, t) = sech(x − 4t) · exp(i(2x − 3t)).
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We take (a, b) = (−25, 25), t ∈ (0, 10], and we set ψ(a, t) = ψ(b, t) = 0. Figures 1–4
show the image of the numerical solution when α = 1.1, 1.4, 1.7, and 2, respectively. As
shown in the figure, the value of fractional order α affects the shape contour of the numerical
solution. The smaller the value of the fractional order, the faster the shape of the numerical
solution changes, and the larger the value, the flatter the image of the numerical solution,
similar to the situation of integer order. Figure 1 shows the evolution of the wave function
for α = 1.1. The sub-diffusive nature of the fractional derivative (α = 1.1) leads to a slower
spread and a more pronounced peak of the wave packet compared to the classical case
(α = 2, Figure 4), illustrating the impact of long-range interactions and anomalous diffusion
on quantum wave propagation. Physically, using this characteristic, the fractional order
Schrödinger equation can be used to correct waveforms without changing nonlinearity and
dispersion effects.

Figure 1. Numerical solution for α = 1.1.

Figure 2. Numerical solution for α = 1.4.

Figure 3. Numerical solution for α = 1.7.
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Figure 4. Numerical solution for α = 2.

We calculated the discrete conservation law. Figure 5 (Left) shows the evolution of
the discrete mass. The overlapping curves for different α values confirm that the mass
conservation law holds exactly for our numerical scheme, independent of the fractional
order. This is a critical property for simulating closed quantum systems. Figure 5 (Right)
displays the corresponding relative error, which remains at the level of machine precision,
numerically verifying the conservation property. Figure 6 (Left) depicts the evolution of the
discrete energy. The energy remains constant over time, confirming the energy-conserving
property of the scheme. The value of the conserved energy depends on α as the fractional
Laplacian operator itself is α-dependent. Figure 6 (Right) reveals the corresponding relative
error, which remains very small, demonstrating the scheme’s ability to preserve energy
over long-term simulations.

We established a fixed spatial step, and Table 1 presents the temporal error along
with the convergence order at T = 1. The convergence sequence demonstrates that our
scheme achieves second-order accuracy in time. Subsequently, we maintained a constant
time step τ = 0.001 to evaluate the spatial error of the proposed method. The spatial
errors for the nonlinear fractional Schrödinger equation across various values of α are
illustrated in Table 2, indicating that our difference scheme also attains second-order
accuracy in space.

Figure 5. The conservation of Mn and the error function RMn with different α values. Left: the four
curves overlap with each other.
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Figure 6. The conservation of En and the error function REn with different α values.

Table 1. Errors and convergence orders of scheme (12) for Equation (51) at time t = 1 with M = 4000.

τ
α = 1.1 α = 1.4 α = 1.7 α = 2

Error Rate Error Rate Error Rate Error Rate

0.2 7.69 × 10−1 1.04 1.41 1.89
0.1 2.15 × 10−1 1.84 3.06 × 10−1 1.76 4.56 × 10−1 1.64 6.85 × 10−1 1.46
0.05 5.29 × 10−2 2.02 7.69 × 10−2 1.99 1.19 × 10−1 1.94 1.90 × 10−1 1.85
0.025 1.07 × 10−2 2.31 1.56 × 10−2 2.30 2.43 × 10−2 2.29 3.98 × 10−2 2.25

Table 2. Errors and convergence orders of scheme (12) for Equation (51) at time t = 1 with τ = 0.01.

h
α = 1.1 α = 1.4 α = 1.7 α = 2

Error Rate Error Rate Error Rate Error Rate

0.2 1.17 7.86 × 10−1 6.75 × 10−1 4.64 × 10−1

0.1 3.29 × 10−1 1.83 2.29 × 10−1 1.78 1.83 × 10−1 1.88 1.23 × 10−1 1.91
0.05 7.88 × 10−2 2.06 5.95 × 10−2 1.95 4.75 × 10−2 1.95 2.95 × 10−2 2.06
0.025 1.96 × 10−2 2.01 1.46 × 10−2 2.02 1.22 × 10−2 1.96 7.24 × 10−3 2.03

Example 2. The nonlinear space-fractional Schrödinger equation [37] is considered:

ψtt(x, t) + (−∆)α/2ψ(x, t) + iψt(x, t) + |ψ(x, t)|2ψ(x, t) = 0, x ∈ (−25, 25), t ∈ (0, 10], (52)

with the following initial conditions:

ψ(x, 0) = sech(x)exp(4ix), ψt(x, 0) = −sech(x)tanh(x)exp(4ix).

Figures 7–10 show the images of numerical solutions when α = 1.1, 1.4, 1.7, and 2,
respectively. Because the equation does not have an exact solution, for the convenience of
comparison, the numerical solution of the finite difference method with smaller time and
space steps is taken as the exact solution. When α approaches 2, the numerical solution
of the fractional order equation converges to the solution of the classical non-fractional
order equation.
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Figure 7. Numerical solution for α = 1.1.

Figure 8. Numerical solution for α = 1.4.

Figure 9. Numerical solution for α = 1.7.

Figure 10. Numerical solution for α = 2.
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Figure 11 depicts the evolution of mass and relative errors of mass, and Figure 12
depicts the evolution of energy and relative errors of energy. The results indicate that the
schemes effectively maintain the conservation of mass and energy, and the energy varies
with the change in alpha value. However, the mass conservation is independent of α.
Therefore, the four curves in the left figure of Figure 5 overlap with each other.

Figure 11. The conservation of Mn and the error function RMn with different α values. Left: the four
curves overlap with each other.

Figure 12. The conservation of En and the error function REn with different α values.

We established a fixed spatial step, and Table 3 presents the temporal error along with
the convergence order at T = 1. The convergence sequence demonstrates that our scheme
achieves second-order accuracy in time. Subsequently, we maintained a constant time
step τ = 0.001 to evaluate the spatial error of the proposed method. The spatial errors for
the nonlinear fractional Schrödinger equation across various values of α are illustrated in
Table 4, indicating that our difference scheme also attains second-order accuracy in space.

Table 3. Errors and convergence orders of scheme (12) for Equation (52) at time t = 1 with M = 4000.

τ
α = 1.1 α = 1.4 α = 1.7 α = 2

Error Rate Error Rate Error Rate Error Rate

0.1 3.50 × 10−1 5.31 × 10−1 7.75 × 10−1 8.45 × 10−1

0.05 9.92 × 10−2 1.82 1.52 × 10−1 1.80 2.22 × 10−1 1.80 2.20 × 10−1 1.94
0.025 2.57 × 10−2 1.95 3.65 × 10−2 2.06 5.79 × 10−2 1.94 5.64 × 10−2 1.97
0.0125 6.23 × 10−3 2.05 8.45 × 10−3 2.11 1.45 × 10−2 2.00 1.23 × 10−2 2.20
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Table 4. Errors and convergence orders of scheme (12) for Equation (52) at time t = 1 with τ = 0.01.

h
α = 1.1 α = 1.4 α = 1.7 α = 2

Error Rate Error Rate Error Rate Error Rate

0.1 3.07 × 10−3 9.77 × 10−4 9.92 × 10−4 6.43 × 10−3

0.05 8.30 × 10−4 1.89 2.47 × 10−4 1.99 2.49 × 10−4 2.00 1.62 × 10−3 1.99
0.025 2.16 × 10−4 1.94 5.97 × 10−5 2.05 5.71 × 10−5 2.12 4.18 × 10−4 1.95
0.0125 5.36 × 10−5 2.01 1.42 × 10−5 2.07 1.14 × 10−5 2.33 8.44 × 10−5 2.31

Example 3. Nonlinear space-fractional Schrödinger equation is considered:

ψtt(x, t) + (−∆)α/2ψ(x, t) + iψt(x, t) + |ψ(x, t)|2ψ(x, t) = f (x, t), x ∈ (0, 1), t ∈ [0, 1], (53)

with fractional boundary conditions:

∂α−1ψ(x, t)
∂|x|α−1

∣∣
x=1

=
1
2
(t + 1)3sec

(
(α − 1)π

2

)(
Γ(5)

Γ(6 − α)
− 4Γ(6)

Γ(7 − α)
+

6Γ(7)
Γ(8 − α)

− 4Γ(8)
Γ(9 − α)

+
Γ(9)

Γ(10 − α)

)
,

initial condition:
ψ(x, 0) = x4(1 − x)4, ψt(x, 0) = 3x4(1 − x)4,

and the non-homogeneous part:

f (x, t) = 6(t + 1)x4(1 − x)4 +
1
2
(t + 1)3 sec

(πα

2

){ Γ(5)
Γ(5 − α)

[x4−α + (1 − x)4−α]

− 4Γ(6)
Γ(6 − α)

[x5−α + (1 − x)5−α] +
6Γ(7)

Γ(7 − α)
[x6−α + (1 − x)6−α]

− 4Γ(8)
Γ(8 − α)

[x7−α + (1 − x)7−α] +
Γ(9)

Γ(9 − α)
[x8−α + (1 − x)8−α]

}
+ 3i(t + 1)2x4(1 − x)4 + [(t + 1)3x4(1 − x)4]3.

Figures 13–16 show the cases when α = 1.1, 1.4, 1.7, and 2, respectively, the image of
numerical solution. When α approaches 2, the numerical solution of the fractional order
equation converges to the solution of the classical non-fractional order equation.

Figure 13. Numerical solution for α = 1.1.
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Figure 14. Numerical solution for α = 1.4.

Figure 15. Numerical solution for α = 1.7.

Figure 16. Numerical solution for α = 2.

We established a fixed spatial step, and Table 5 presents the temporal error along with
the convergence order at T = 1. The convergence sequence demonstrates that our scheme
achieves second-order accuracy in time. Subsequently, we maintained a constant time
step τ = 0.005 to evaluate the spatial error of the proposed method. The spatial errors for
the nonlinear fractional Schrödinger equation across various values of α are illustrated in
Table 6, indicating that our difference scheme also attains second-order accuracy in space.
In this place, we are still ready to discuss the conservation of energy and mass, but this
equation no longer satisfies the conservation property due to the source term f (x, t) not
being equivalent to zero.
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Table 5. Errors and convergence orders of scheme (12) for Equation (53) at time t = 1 with M = 1000.

τ
α = 1.1 α = 1.4 α = 1.7 α = 2

Error Rate Error Rate Error Rate Error Rate

0.1 7.52 × 10−4 1.07 × 10−3 1.12 × 10−3 2.85 × 10−4

0.05 1.80 × 10−4 2.07 2.60 × 10−4 2.04 2.73 × 10−4 2.03 6.89 × 10−5 2.05
0.025 4.40 × 10−5 2.03 6.45 × 10−5 2.01 6.80 × 10−5 2.01 1.60 × 10−5 2.11
0.0125 1.09 × 10−5 2.01 1.60 × 10−5 2.01 1.70 × 10−5 2.00 3.99 × 10−6 2.00

Table 6. Errors and convergence orders of scheme (12) for Equation (53) at time t = 1 with τ = 0.005.

h
α = 1.1 α = 1.4 α = 1.7 α = 2

Error Rate Error Rate Error Rate Error Rate

0.1 1.35 × 10−3 4.40 × 10−3 3.92 × 10−3 5.53 × 10−3

0.05 3.08 × 10−4 2.14 1.01 × 10−3 2.13 9.34 × 10−4 2.07 1.29 × 10−3 2.09
0.025 6.97 × 10−5 2.14 2.24 × 10−4 2.17 2.16 × 10−4 2.11 3.13 × 10−4 2.05
0.0125 1.64 × 10−5 2.09 5.32 × 10−5 2.07 4.96 × 10−5 2.13 6.99 × 10−5 2.16

7. Conclusions
In this paper, a conservative difference scheme is constructed for the nonlinear spatial

fractional Schrödinger equation with wave operators. For the spatial Riesz-fractional
derivative, the Crank–Nicolson method is used for discretization; for the time derivative,
the central difference is used for separation. Based on this difference scheme, the energy
and mass conservation formulas under discrete conditions are derived and prove that the
solution is unconditionally stable in this difference method. Using the energy method, this
differential format has been proven to maintain second-order convergence in both time and
space. Finally, through several numerical examples, the accuracy of the scheme and the
effectiveness of discrete conservation law and long-term simulation are verified.

Future work will include a detailed comparative analysis of the computational effi-
ciency of the proposed scheme against other existing methods, leveraging the structure
of the linear systems for optimal performance and investigating advanced precondition-
ing techniques.
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