Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (99)

Search Parameters:
Keywords = fired clay bricks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3421 KB  
Article
Design and Characterization of Ceramic Bricks with Industrial Waste and Silica–Carbon-Based Additives
by Aidar Kengesbekov, Alfira Sabitova, Moldir Bayandinova, Zhanna Sharipkhan, Diana Bexoltanova and Nurlan Mukhamediarov
Buildings 2026, 16(1), 20; https://doi.org/10.3390/buildings16010020 - 19 Dec 2025
Viewed by 314
Abstract
This study investigates ceramic bricks produced by partially replacing clay with Pb–Zn metallurgical residues (lead furnace dust and cyclone dust), fly ash, and carbonaceous additives. The novelty lies in the integrated multi-waste formulation and the combined FTIR–TGA–XRD analytical approach used to elucidate phase-formation [...] Read more.
This study investigates ceramic bricks produced by partially replacing clay with Pb–Zn metallurgical residues (lead furnace dust and cyclone dust), fly ash, and carbonaceous additives. The novelty lies in the integrated multi-waste formulation and the combined FTIR–TGA–XRD analytical approach used to elucidate phase-formation mechanisms. The results show that firing promotes the development of quartz, mullite, iron oxides, and an extensive Fe–Pb–Zn–Si–O amorphous network, while higher residue contents enhance amorphization and suppress mullite crystallization. These microstructural changes correlate with reduced compressive strength (1.6–3.1 MPa) and high water absorption (32–36%), although all samples completed 15 freeze–thaw cycles. Heavy-metal leaching assessed by atomic absorption spectroscopy (AAS) revealed very low Pb (0.08–0.20 mg/L) and Zn (0.25–0.45 mg/L) release, well below international safety limits, demonstrating effective immobilization of hazardous ions within the glassy matrix. Overall, the study provides new insight into multi-waste interactions during sintering and confirms that controlled residue incorporation enables environmentally safe, non-load-bearing ceramic materials with reduced clay consumption. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 2862 KB  
Article
Sustainable Concrete Hollow Blocks Using Composite Waste Replacing Fired Clay Bricks—An Experimental Study
by Mohammad Nadeem Akhtar and Dima A. Husein Malkawi
Sustainability 2025, 17(24), 10963; https://doi.org/10.3390/su172410963 - 8 Dec 2025
Viewed by 340
Abstract
The removal of topsoil from agricultural land and the use of low-quality fuel to produce fired clay bricks affect the environment, disturbing the ecological balance and contributing to climate change. This study has attempted to produce sustainable concrete hollow blocks by replacing OPC [...] Read more.
The removal of topsoil from agricultural land and the use of low-quality fuel to produce fired clay bricks affect the environment, disturbing the ecological balance and contributing to climate change. This study has attempted to produce sustainable concrete hollow blocks by replacing OPC with a combination of supplementary cementitious materials (SCMs) (5–25% fly ash) optimally (10% silica fume and 5% recycled aggregate fine dust). Furthermore, 100% of the developed sustainable sand was added instead of natural sand. Based on the results, the highest compressive strength, 7.6 MPa, was achieved in the mix 15FASFRAHB with the combination SCMs (15% fly ash + 10% silica fume + 5% recycled aggregate fine dust), slightly higher (2.7%) than that of the reference mix NAHB*’s value of 7.4 MPa. All hollow block mixes also satisfied the tensile strength criterion (10–15% of f’c of NAHB*). This showed that they reached the acceptable strength limit for building hollow blocks. In addition, the SCMs effectively reduce the permeability coefficient (k) of sustainable concrete hollow block mixes. However, a direct correlation between the permeability coefficient (k) and compressive strength was not maintained. Finally, the best overall mix from this study, 15FASFRAHB, was with an optimal 30% SCMs and 100% sustainable sand. By using developed sustainable concrete hollow blocks in place of fired clay bricks (6.48 × 107 tons of CO2 emission), 1.2 × 109 tons of natural sand can be saved. Full article
(This article belongs to the Special Issue Application of Sustainable Materials in the Construction Industry)
Show Figures

Figure 1

16 pages, 2282 KB  
Article
Analytic Hierarchy Process–Based Evaluation and Experimental Assessment of the Optimal Interlocking Compressed Earth Block Geometry for Seismic Applications
by Junaid Shah Khan, Azam Khan and Faisal Alhassani
Buildings 2025, 15(23), 4234; https://doi.org/10.3390/buildings15234234 - 24 Nov 2025
Viewed by 485
Abstract
Interlocking Compressed Earth Blocks (ICEBs) offer a sustainable alternative to conventional fired-clay bricks but remain hindered by inconsistent geometric designs and limited standardization. This study develops a stakeholder-weighted Analytic Hierarchy Process (AHP) framework to evaluate and select the most suitable ICEB geometry for [...] Read more.
Interlocking Compressed Earth Blocks (ICEBs) offer a sustainable alternative to conventional fired-clay bricks but remain hindered by inconsistent geometric designs and limited standardization. This study develops a stakeholder-weighted Analytic Hierarchy Process (AHP) framework to evaluate and select the most suitable ICEB geometry for sustainable and seismic-ready construction in developing regions. Five evaluation criteria—size, weight, interlocking effectiveness, reinforcement/grout provision, and handling ergonomics—were prioritized based on expert input from masons, engineers, architects, and researchers. The synthesized results ranked the HiLo-Tec-type geometry highest, followed by Thai-Rhino, Auram, and Hydraform designs. Unit weight (0.289) and reinforcement capacity (0.261) emerged as dominant decision factors. Sensitivity analysis confirmed the robustness of rankings under varying weight perturbations. The AHP framework identifies the top-ranked geometry, whose structural performance was examined experimentally through a full-scale cyclic test on a grouted double-wythe ICEB wall, revealing enhanced ductility and residual strength compared with traditional brick masonry. The proposed framework demonstrates that selected ICEB geometry can balance ergonomic and structural performance while meeting seismic resilience demands. Beyond geometry selection, the model provides a replicable decision-support tool adaptable for regional material innovations in sustainable construction. Full article
Show Figures

Figure 1

21 pages, 3880 KB  
Article
Utilizing Recycled PET and Mining Waste to Produce Non-Traditional Bricks for Sustainable Construction
by Gonzalo Díaz-García, Piero Diaz-Miranda and Christian Tineo-Villón
Sustainability 2025, 17(19), 8841; https://doi.org/10.3390/su17198841 - 2 Oct 2025
Viewed by 2517
Abstract
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included [...] Read more.
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included particle size distribution, Atterberg limits, and moisture content. Physical and mechanical tests evaluated dimensional variability, void percentage, warping, water absorption, suction, unit compressive strength (fb), and prism compressive strength (fm). Statistical analysis (Shapiro–Wilk, p < 0.05) validated the results. PET addition improved physical properties—reducing water absorption, suction, and voids—while slightly compromising mechanical strength. The 15% PET mix showed the best overall performance (fb = 24.00 kg/cm2; fm = 20.40 kg/cm2), with uniform deformation and lower absorption (18.7%). Recycled PET enhances key physical attributes of clay bricks, supporting its use in eco-friendly construction. However, reduced compressive strength limits its structural applications. Optimizing PET particle size, clay type, and firing conditions is essential to improve load-bearing capacity. Current formulations are promising for non-structural uses, contributing to circular material strategies. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

29 pages, 7735 KB  
Article
Preparation of Ecological Refractory Bricks from Phosphate Washing By-Products
by Mariem Hassen, Raja Zmemla, Mouhamadou Amar, Abdalla Gaboussa, Nordine Abriak and Ali Sdiri
Appl. Sci. 2025, 15(19), 10647; https://doi.org/10.3390/app151910647 - 1 Oct 2025
Viewed by 667
Abstract
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using [...] Read more.
This research is to assess the potential use of phosphate sludge from the Gafsa (Tunisia) phosphate laundries as an alternative raw material for the manufacture of ecological refractory bricks. Feasibility was evaluated through comprehensive physico-chemical and mineralogical characterizations of the raw materials using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermal analysis (TGA-DTA). Bricks were formulated by substituting phosphate sludge with clay and diatomite, then activated with potassium silicate solution to produce geopolymeric materials. Specific formulations exhibited mechanical performance ranging from 7 MPa to 26 MPa, highlighting the importance of composition and minimal water absorption values of approximately 17.8% and 7.7%. The thermal conductivity of the bricks was found to be dependent on the proportions of diatomite and clay, reflecting their insulating potential. XRD analysis indicated the formation of an amorphous aluminosilicate matrix, while FTIR spectra confirmed the development of new chemical bonds characteristic of geopolymerization. Thermal analysis revealed good stability of the materials, with mass losses mainly related to dehydration and dehydroxylation processes. Environmental assessments showed that most samples are inert or non-hazardous, though attention is required for those with elevated chromium content. Overall, these findings highlight the viability of incorporating phosphate sludge into fired brick production, offering a sustainable solution for waste valorization in accordance with the circular economy. Full article
Show Figures

Figure 1

20 pages, 3258 KB  
Article
Sustainable Use of Taveiro (Portugal) Red Clays for Structural Ceramic Applications: Mineralogical and Technological Assessment
by Carla Candeias, Helena Santos and Fernando Rocha
Minerals 2025, 15(9), 910; https://doi.org/10.3390/min15090910 - 27 Aug 2025
Viewed by 901
Abstract
The technological potential and sustainability of red clays from the Taveiro region (Coimbra, Portugal) for structural ceramic applications have been investigated. Thirteen representative samples granulometric, mineralogical, chemical analysis, and technological characterization were conducted to determine the suitability for extrusion-based ceramics, aligned with circular [...] Read more.
The technological potential and sustainability of red clays from the Taveiro region (Coimbra, Portugal) for structural ceramic applications have been investigated. Thirteen representative samples granulometric, mineralogical, chemical analysis, and technological characterization were conducted to determine the suitability for extrusion-based ceramics, aligned with circular economy and climate goals (e.g., PNEC2030, RNC2050). The samples exhibited a high fine fraction content (<0.002 mm up to 76%) and plasticity index (PI; up to 41%), associated with significant smectite, illite, and kaolinite content. Bulk mineralogy was dominated by Σ phyllosilicates (up to 77%) and quartz (12%–29%), while chemical analyses showed high SiO2 and Al2O3 content, moderate Fe2O3, and low CaO/MgO, typical of aluminosilicate clays for red ceramics. High cation exchange capacity (CEC; up to 49 meq/100 g) and specific surface area (SSA; up to 83 m2/g) reflected smectite-rich samples. Firing tests at 900 and 1000 °C demonstrated decreasing water absorption and shrinkage with increased temperature, with some samples yielding lower porosity and higher strength (~12 MPa), confirming suitability for bricks and tiles. Two samples showed higher plasticity but greater shrinkage and porosity, suggesting applicability in porous ceramics or blends. This work highlights the role of mineralogical and technological indicators in guiding the eco-efficient use of georesources for ceramic manufacturing. Full article
(This article belongs to the Special Issue From Clay Minerals to Ceramics: Progress and Challenges)
Show Figures

Figure 1

19 pages, 2688 KB  
Article
Red Clay as a Raw Material for Sustainable Masonry Composite Ceramic Blocks
by Todorka Samardzioska, Igor Peshevski, Valentina Zileska Pancovska, Bojan Golaboski, Milorad Jovanovski and Sead Abazi
Sustainability 2025, 17(15), 6852; https://doi.org/10.3390/su17156852 - 28 Jul 2025
Cited by 1 | Viewed by 2035
Abstract
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests [...] Read more.
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests were conducted to evaluate the physical, mechanical, and chemical properties of the material. The tested samples show that it is a porous material with low density, high water absorption, and compressive strength in range of 29.85–38.32 MPa. Samples of composite wall blocks were made with partial replacement of natural aggregate with red clay aggregate. Two types of blocks were produced with dimensions of 390 × 190 × 190 mm, with five and six holes. The average compressive strength of the blocks ranges from 3.1 to 4.1 MPa, which depends on net density and the number of holes. Testing showed that these blocks have nearly seven-times-lower thermal conductivity than conventional concrete blocks and nearly twice-lower conductivity than full-fired clay bricks. The general conclusion is that the tested red clay is an economically viable and sustainable material with favourable physical, mechanical, and thermal parameters and can be used as a granular aggregate in the production of composite ceramic blocks. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

18 pages, 6310 KB  
Article
Physico-Mechanical Properties and Decay Susceptibility of Clay Bricks After the Addition of Volcanic Ash from La Palma (Canary Islands, Spain)
by María López Gómez and Giuseppe Cultrone
Sustainability 2025, 17(14), 6545; https://doi.org/10.3390/su17146545 - 17 Jul 2025
Cited by 1 | Viewed by 947
Abstract
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal [...] Read more.
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal of part of this natural residue and reduces the depletion of a non-renewable natural resource, clayey soil, which brings some environmental and economic advantages. The pore system, compactness, uniaxial compression strength, thermal conductivity, color and durability of bricks without and with the addition of volcanic ash were evaluated through hydric tests, mercury intrusion porosimetry, ultrasound, uniaxial compression tests, IR thermography, spectrophotometry and salt crystallization tests. The purpose of this research is to determine the feasibility of adding 10, 20 and 30% by weight of volcanic ash from La Palma (Canary Islands, Spain) in two grain sizes to produce bricks fired at 800, 950 and 1100 °C. The novelty of this study is to use two sizes of volcanic ash and fire the samples at 1100 °C, which is close to the liquidus temperature of basaltic magmas and allows a high degree of interaction between the volcanic ash and the brick matrix. The addition of fine volcanic ash was found to decrease the porosity of the bricks, although the use of high percentages of coarse volcanic ash resulted in bricks with almost the same porosity as the control samples. The volcanic ash acted as a filler, reducing the number of small pores in the bricks. The presence of vesicles in the volcanic ash reduced the compressive strength and the compactness of the bricks with additives. This reduction was more evident in bricks manufactured with 30% of coarse volcanic ash and fired at 800 and 950 °C, although they still reached the minimum resistance required for their use in construction. No significant differences in thermal conductivity were noticed between the bricks with and without volcanic ash additives, which is crucial in terms of energy savings and the construction of sustainable buildings. At 1100 °C the volcanic ash changed in color from black to red. As a result, the additive blended in better with the matrix of bricks fired at 1100 °C than in those fired at 800 and 950 °C. The bricks with and without volcanic ash and fired at 1100 °C remained intact after the salt crystallization tests. Less salt crystallized in the bricks with volcanic ash and fired at 800 and 950 °C than in the samples without additives, although their low compressive strength made them susceptible to decay. Full article
(This article belongs to the Special Issue Innovating the Circular Future: Pathways to Sustainable Growth)
Show Figures

Figure 1

29 pages, 13314 KB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 2192
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

27 pages, 21889 KB  
Article
Modulus of Elasticity and Mechanical Properties Assessment of Historical Masonry Elements After Elevated Temperature: Experimental Study and Numerical Analysis
by Ahmet Fazıl Kara, Ferit Cakir and Metehan Calis
Buildings 2025, 15(13), 2324; https://doi.org/10.3390/buildings15132324 - 2 Jul 2025
Viewed by 1892
Abstract
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay [...] Read more.
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay bricks were prepared using HLMs in accordance with material testing standards. Specimens were subjected to high temperatures ranging from 200 °C to 800 °C, followed by flexural–compression tests for mortar and compression tests for masonry prisms. A total of 20 masonry prism specimens, 15 brick specimens, and 15 mortar specimens were tested, including reference specimens at room temperature. Experimental results indicate that masonry prisms, clay bricks, and HLMs progressively lose their mechanical properties as temperature increases. The elastic modulus of masonry prisms was evaluated according to relevant standards, and Finite Element Analysis (FEA) was conducted to validate temperature-dependent material properties. The stress–strain response of M15 HLM masonry prisms was determined, addressing the absence of such data in EN 1996-1-2. Additionally, compression test results were compared with digital image correlation (DIC) analyses to enhance measurement accuracy. This study provides critical insights into the thermal performance of masonry walls with HLMs, contributing to the development of fire-resistant restoration materials. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 8462 KB  
Article
Engineering and Durability Properties of Sustainable Bricks Incorporating Lime Kiln Dust, Ground Granulated Blast Furnace Slag, and Tyre Rubber Wastes
by Joy Ayankop Oke and Hossam Abuel-Naga
Buildings 2025, 15(12), 2079; https://doi.org/10.3390/buildings15122079 - 17 Jun 2025
Cited by 2 | Viewed by 1233
Abstract
This study explores the potential of using sustainable materials in brick manufacturing by designing a novel brick mix in the laboratory, incorporating sand, lime kiln dust (LKD) waste, tyre rubber, and ground granulated blast furnace slag (GGBFS) waste. These cementless bricks blended LKD–GGBFS [...] Read more.
This study explores the potential of using sustainable materials in brick manufacturing by designing a novel brick mix in the laboratory, incorporating sand, lime kiln dust (LKD) waste, tyre rubber, and ground granulated blast furnace slag (GGBFS) waste. These cementless bricks blended LKD–GGBFS wastes as the binder agent and fine crumb rubber from waste tyres as a partial replacement for sand in measured increments of 0%, 5%, and 10% by volume of sand. Ordinary Portland cement (OPC) and fired clay bricks were sourced from the industry, and their properties were compared to those of the laboratory bricks. Tests performed on the industry and laboratory bricks included compressive strength (CS), freeze-thaw (F-T), and water absorption (WA) tests for comparison purposes. Additionally, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed on the bricks to assess the morphological and mineralogical changes responsible for the observed strengths and durability. The CS and WA values of the engineered bricks were 12, 6, and 4 MPa, and 7, 12, and 15%, respectively, for 0, 5, and 10% crumb rubber replacements. The industry bricks’ average CS and WA values were 13 MPa and 8%, respectively. From the results obtained, the green laboratory bricks passed the minimum strength requirements for load-bearing and non-load-bearing bricks, which can be used to construct small houses. Lastly, the engineered bricks demonstrated strength and durability properties comparable to those of the industry-standard bricks, indicating their potential as a sustainable alternative to help divert waste from landfills, reduce the pressure on natural fine sand extraction, and support eco-conscious brick production for a sustainable environment. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 3266 KB  
Review
State of the Art Review on Hempcrete as a Sustainable Substitute for Traditional Construction Materials for Home Building
by Wei Tong and Ali M. Memari
Buildings 2025, 15(12), 1988; https://doi.org/10.3390/buildings15121988 - 9 Jun 2025
Cited by 5 | Viewed by 9311
Abstract
Currently, the construction industry relies mainly on non-environmentally sustainable materials such as fired clay brick, concrete, and steel, which significantly contribute to global carbon dioxide generation, leading to environmental degradation. In response to mounting environmental concerns, there is a growing emphasis on developing [...] Read more.
Currently, the construction industry relies mainly on non-environmentally sustainable materials such as fired clay brick, concrete, and steel, which significantly contribute to global carbon dioxide generation, leading to environmental degradation. In response to mounting environmental concerns, there is a growing emphasis on developing and utilizing low-impact materials that mitigate the ecological footprint of construction activities. This review offers a detailed overview of current formulations and applications of hempcrete and compares the performance of different types of hempcrete as construction materials. Additionally, this paper seeks to evaluate the potential of hempcrete as a sustainable substitute for traditional construction materials with high energy demands and significant CO2 emissions based on life cycle assessment (LCA). Furthermore, this study summarizes current challenges and prospects for composite innovations in hempcrete, emphasizing the need for standardized product control and broader industrial acceptance, thus providing useful insights for practitioners and researchers in the field. Full article
Show Figures

Figure 1

16 pages, 3942 KB  
Article
Utilization of Coal Ash for Production of Refractory Bricks
by Saniya Kaskataevna Arinova, Svetlana Sergeevna Kvon, Vitaly Yurevich Kulikov, Aristotel Zeynullinovich Issagulov and Asem Erikovna Altynova
J. Compos. Sci. 2025, 9(6), 275; https://doi.org/10.3390/jcs9060275 - 29 May 2025
Viewed by 1233
Abstract
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component [...] Read more.
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component in the fabrication of refractory bricks and to investigate the fundamental properties of the resulting experimental products. Ash was incorporated into the batch composition at concentrations ranging from 10% to 40% by weight, blended with clay and water, then shaped through pressing and subjected to firing at 1000 °C and 1100 °C in an air atmosphere for 2 h. After complete cooling, the samples were subjected to compressive strength testing. Samples containing 40 wt% coal ash exhibited insufficient compressive strength and were therefore excluded from subsequent investigations. For the remaining samples, apparent density, open porosity and slag resistance were determined. The microstructural characterization was performed, and the phase composition of the samples was analyzed. The results revealed that the phase composition of the experimental samples differs significantly from that of the reference sample (ShA-grade chamotte brick in accordance with GOST 390-96, currently used as lining in metallurgical furnaces across the country), exhibiting a higher mullite content and the absence of muscovite. A small amount of kaolinite was detected in the experimental samples even after a 2-h firing process. This observation may be attributed to the effect of kaolinite crystallinity on the transformation process from kaolinite to metakaolinite. The mechanical strength of the experimental samples meets the relevant standards, while slag resistance demonstrated an improvement of approximately 15%. Open porosity was found to decrease in the experimental samples. In addition, a change in the pore size distribution was observed. Notably, the proportion of pores larger than 10,000 nm was significantly reduced. These findings confirm the feasibility of incorporating coal ash as a viable raw material component in the formulation of refractory materials. Full article
Show Figures

Figure 1

20 pages, 2051 KB  
Review
Unfired Bricks from Wastes: A Review of Stabiliser Technologies, Performance Metrics, and Circular Economy Pathways
by Yuxin (Justin) Wang and Hossam Abuel-Naga
Buildings 2025, 15(11), 1861; https://doi.org/10.3390/buildings15111861 - 28 May 2025
Cited by 4 | Viewed by 4527
Abstract
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance [...] Read more.
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance metrics, and sustainability indicators across a wide variety of unfired brick systems. It thus provides a coherent reference framework to support further development and industrial translation. Emphasis is placed on the role of stabilisers—including cement, lime, geopolymers, and microbial or bio-based stabilisers—in improving mechanical strength, moisture resistance, and durability. Performance data are analysed in relation to compressive strength, water absorption, drying shrinkage, thermal conductivity, and resistance to freeze–thaw and wet–dry cycles. The findings indicate that properly stabilised unfired bricks can achieve compressive strengths above 20 MPa and water absorption rates below 10%, with notable improvements in insulation and acoustic properties. Additionally, life-cycle comparisons reveal up to 90% reductions in CO2 emissions and energy use relative to fired clay bricks. Despite technical and environmental advantages, broader adoption remains limited due to standardisation gaps and market unfamiliarity. The paper concludes by highlighting the importance of hybrid stabiliser systems, targeted certification frameworks, and waste valorisation policies to support the transition toward low-carbon, resource-efficient construction practices. Full article
(This article belongs to the Special Issue Recycling of Waste in Material Science and Building Engineering)
Show Figures

Figure 1

20 pages, 5406 KB  
Article
Sintering Behavior and Chlorine Volatilization Mechanism of Cl-Containing Solid Waste in Clay Brick Production: Implications for Tunnel Kiln Applications
by Zhu Liu, Shupeng Wen, Jian Wang, Yi Li, Linqiang Mao, Yang Yang and Zhongquan Liu
Constr. Mater. 2025, 5(2), 34; https://doi.org/10.3390/constrmater5020034 - 27 May 2025
Cited by 1 | Viewed by 2134
Abstract
The use of tunnel kiln firing in clay brick production offers a promising approach for disposing of Cl-containing solid waste, with lower chlorine (Cl) and heavy metal volatilization compared to cement kiln processes. However, the effects of Cl salts on brick properties and [...] Read more.
The use of tunnel kiln firing in clay brick production offers a promising approach for disposing of Cl-containing solid waste, with lower chlorine (Cl) and heavy metal volatilization compared to cement kiln processes. However, the effects of Cl salts on brick properties and the volatilization mechanisms remain unclear. This study investigates the behaviors of NaCl, KCl, and CaCl2 during sintering. Adding 15 wt% Cl salts significantly alters pore structure, increasing water absorption by 80–100% and reducing compressive strength by 70–80%. At 1050 °C, 10.8–16.4% of Cl volatilizes mainly as HCl (g), 24.4–26.2% remains in original salt form, and over half is immobilized within the brick matrix. Thermodynamic and TG-MS analyses reveal Cl salts are stable below 800 °C but release HCl (g) at higher temperatures due to lower reaction energy barriers than Cl2 (g). Density functional theory (DFT) calculations show that H+ for HCl (g) formation primarily originates from water vapor (H2O), with organic decomposition having minimal effect. The presence of Cl salts promotes feldspar and silicate phase formation, enhancing densification but increasing porosity from HCl release. To reduce HCl emissions, a two-stage temperature control strategy is proposed: organic decomposition and moisture removal below 600 °C, followed by sintering at 800–1000 °C. This work clarifies the volatilization mechanisms of Cl salts and provides guidance for optimizing industrial brick production using Cl-containing waste. Full article
Show Figures

Figure 1

Back to TopTop