Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = fin cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 123
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 257
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

23 pages, 5813 KiB  
Article
Integrated Lighting and Solar Shading Strategies for Energy Efficiency, Daylighting and User Comfort in a Library Design Proposal
by Egemen Kaymaz and Banu Manav
Buildings 2025, 15(15), 2669; https://doi.org/10.3390/buildings15152669 - 28 Jul 2025
Viewed by 189
Abstract
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades [...] Read more.
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades (77% southwest, 81% northeast window-to-wall ratio), an open-plan layout, and situated within an unobstructed low-rise campus environment. Trade-offs between daylight availability, heating, cooling, lighting energy use, and visual and thermal comfort are evaluated through integrated lighting (DIALux Evo), climate-based daylight (CBDM), and energy simulations (DesignBuilder, EnergyPlus, Radiance). Fifteen solar shading configurations—including brise soleil, overhangs, side fins, egg crates, and louvres—are evaluated alongside a daylight-responsive LED lighting system that meets BS EN 12464-1:2021. Compared to the reference case’s unshaded glazing, optimal design significantly improves building performance: a brise soleil with 0.4 m slats at 30° reduces annual primary energy use by 28.3% and operational carbon emissions by 29.1% and maintains thermal comfort per ASHRAE 55:2023 Category II (±0.7 PMV; PPD < 15%). Daylight performance achieves 91.5% UDI and 2.1% aSE, with integrated photovoltaics offsetting 129.7 kWh/m2 of grid energy. This integrated strategy elevates the building’s energy class under national benchmarks while addressing glare and overheating in the original design. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

18 pages, 4285 KiB  
Article
Application of a Phase-Change Material Heat Exchanger to Improve the Efficiency of Heat Pumps at Partial Loads
by Koharu Tani, Sayaka Kindaichi, Keita Kawasaki and Daisaku Nishina
Energies 2025, 18(14), 3694; https://doi.org/10.3390/en18143694 - 12 Jul 2025
Viewed by 346
Abstract
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the [...] Read more.
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the heat pump by using a phase-change material (PCM). Cooling and heating experiments were conducted with a PCM heat exchanger, which comprised aluminum plates and fins filled with paraffinic PCM. The result indicated a high heat transfer coefficient of >70 W/(m2·K). A simplified numerical model of the PCM heat exchanger as a lumped constant system was created based on the experiment. The calculations generally reproduced the experimental results, with root mean squared errors of 0.39 K for cooling and 0.84 K for heating, confirming their accuracy. Simulations were then conducted to evaluate the energy performance of the proposed system for the cooling season. While low load operation accounted for 39% of the total AC time for a non-PCM system, it was reduced to 2.7% for the proposed system. The proposed system demonstrated load ratios of 50–60% for most of the season, achieving an energy reduction of 11.4% owing to the improved efficiency at partial load ratios. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 2961 KiB  
Article
Thermo-Hydrodynamic Features of Grooved Heat Sink with Droplet-Shaped Fins Based on Taguchi Optimization and Field Synergy Analysis
by Lin Zhong, Jingli Shi, Yifan Li and Zhipeng Wang
Energies 2025, 18(13), 3396; https://doi.org/10.3390/en18133396 - 27 Jun 2025
Viewed by 257
Abstract
In recent years, the number of transistors on electronic chips has surpassed Moore’s law, resulting in overheating and energy consumption problems in data centers (DCs). Chip-level microchannel cooling is expected to address these challenges. Grooved heat sinks with droplet-shaped fins were introduced to [...] Read more.
In recent years, the number of transistors on electronic chips has surpassed Moore’s law, resulting in overheating and energy consumption problems in data centers (DCs). Chip-level microchannel cooling is expected to address these challenges. Grooved heat sinks with droplet-shaped fins were introduced to modify the overall capability of the cooling system. The degree of impact of the distribution of grooves and fins was analyzed and optimized using the Taguchi method. Moreover, the coupling effect of flow and temperature fields was explained using the field synergy theory. The key findings are as follows: for thermal resistance, pump power, and overall efficiency, the influence degree is the number of combined units > number of fins in each unit > distribution of the combined units. The optimal configuration of 21 combined units arranged from dense to sparse with one fin in each unit achieves 14.05% lower thermal resistance and 8.5% higher overall efficiency than the initial heat sink. The optimal configuration of five combined units arranged from sparse to dense with one fin in each unit reduces the power energy consumption by 27.61%. After optimization, the synergy angle between the velocity vector and temperature gradient is reduced by 4.29% compared to the smooth heat sink. The coupling effect between flow and heat transport is strengthened. The optimized configuration can better balance heat dissipation and energy consumption, improve the comprehensive capability of cooling system, provide a feasible solution to solve the problems of local overheating and high energy consumption in DCs. Full article
Show Figures

Figure 1

26 pages, 5033 KiB  
Article
Laminar Natural Convection in a Square Cavity with a Horizontal Fin on the Heated Wall: A Numerical Study of Fin Position and Thermal Conductivity Effects
by Saleh A. Bawazeer
Energies 2025, 18(13), 3335; https://doi.org/10.3390/en18133335 - 25 Jun 2025
Cited by 1 | Viewed by 320
Abstract
This study numerically examines laminar natural convection within a square cavity that has a horizontally attached adiabatic fin on its heated vertical wall. The analysis employed the finite element method to investigate how fin position, length, thickness, and thermal conductivity affect heat transfer [...] Read more.
This study numerically examines laminar natural convection within a square cavity that has a horizontally attached adiabatic fin on its heated vertical wall. The analysis employed the finite element method to investigate how fin position, length, thickness, and thermal conductivity affect heat transfer behavior over a broad spectrum of Rayleigh numbers (Ra = 10 to 106) and Prandtl numbers (Pr = 0.1 to 10). The findings indicate that the geometric configuration and the properties of the fluid largely influence the thermal disturbances caused by the fin. At lower Ra values, conduction is the primary mechanism, resulting in minimal impact from the fin. However, as Ra rises, convection becomes increasingly significant, with the fin positioned at mid-height (Yfin = 0.5), significantly improving thermal mixing and flow symmetry, especially for high-Pr fluids. Extending the fin complicates vortex dynamics, whereas thickening the fin improves conductive heat transfer, thereby enhancing convection to the fluid. A new fluid-focused metric, the normalized Nusselt ratio (NNR), is introduced to evaluate the true thermal contribution of fin geometry beyond area-based scaling. It exhibits a non-monotonic response to geometric changes, with peak enhancement observed at high Ra and Pr. The findings provide practical guidance for designing passive thermal management systems in sealed enclosures, such as electronics housings, battery modules, and solar thermal collectors, where active cooling is infeasible. This study offers a scalable reference for optimizing natural convection performance in laminar regimes by characterizing the interplay between buoyancy, fluid properties, and fin geometry. Full article
Show Figures

Figure 1

16 pages, 6056 KiB  
Article
Heat Transfer Enhancement in Turbine Blade Internal Cooling Channels with Hybrid Pin-Fins and Micro V-Ribs Turbulators
by Longbing Hu, Qiuru Zuo and Yu Rao
Energies 2025, 18(13), 3296; https://doi.org/10.3390/en18133296 - 24 Jun 2025
Viewed by 569
Abstract
To improve the convective heat transfer in internal cooling channels of heavy-duty gas turbine blades, this study experimentally and numerically investigates the thermal performance of rectangular channels with hybrid pin-fins and micro V-ribs turbulators. The transient thermochromic liquid crystal (TLC) technique and ANSYS [...] Read more.
To improve the convective heat transfer in internal cooling channels of heavy-duty gas turbine blades, this study experimentally and numerically investigates the thermal performance of rectangular channels with hybrid pin-fins and micro V-ribs turbulators. The transient thermochromic liquid crystal (TLC) technique and ANSYS 2019 R3 (ICEM CFD 2019 R3, Fluent 2019 R3, CFD-Post 2019 R3) were employed under Reynolds numbers ranging from 10,000 to 50,000, with the numerical model rigorously validated against experimental data (the maximum RMSE is 2.5%). It is found that hybrid pin-fins and continuous V-ribs configuration exhibits the maximum heat transfer enhancement of 27.6%, with an average friction factor increase of 13.3% and 21.9% improvement in thermal performance factor (TPF) compared to the baseline pin-fin channel. In addition, compared to the baseline pin-fin channel, hybrid pin-fins and broken V-ribs configuration exhibits average heat transfer enhancement (Nu/Nu0) of 24.4%, an average friction factor increase of 7.2% and 22.5% improvement across the investigated Reynolds number range (10,000~50,000) based on computational results. The synergistic effects of hybrid pin-fin and micro V-rib structures demonstrate superior coolant flow control, offering a promising solution for next-generation turbine blade cooling designs. This work provides actionable insights for high-efficiency gas turbine thermal management. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

40 pages, 57486 KiB  
Review
Review of Automotive Thermoelectric Generator Structure Design and Optimization for Performance Enhancement
by Yue Wang, Ruochen Wang, Ruiqian Chai, Renkai Ding, Qing Ye, Zeyu Sun, Xiangpeng Meng and Dong Sun
Processes 2025, 13(6), 1931; https://doi.org/10.3390/pr13061931 - 18 Jun 2025
Viewed by 673
Abstract
Thermoelectric generator (TEG) has emerged as a critical technology for automotive exhaust energy recovery, yet there is still a lack of reviews analyzing automotive TEG structure design and optimization methods simultaneously. Therefore, this review consolidates structure design and methods for improving thermoelectric conversion [...] Read more.
Thermoelectric generator (TEG) has emerged as a critical technology for automotive exhaust energy recovery, yet there is still a lack of reviews analyzing automotive TEG structure design and optimization methods simultaneously. Therefore, this review consolidates structure design and methods for improving thermoelectric conversion efficiency, focusing on three core components: thermoelectric module (TEM), heat exchanger (HEX), and heat sink (HSK). For TEM, research and development efforts have primarily centered on material innovation and structural optimization, with segmented, non-segmented, and multi-stage configurations emerging as the three primary structural types. HEX development spans external geometries, including plate, polygonal, and annular designs, and internal enhancements such as fin, heat pipe, metal foam, and baffle to augment heat transfer. HSK leverages active, passive, or hybrid cooling systems, with water-cooling designs prevalent in automotive TEG for cold-side thermal management. Optimization methods encompass theoretical analysis, numerical simulation, experimental testing, and hybrid methods, with strategies devised to balance computational efficiency and accuracy based on system complexity and resource availability. This review provides a systematic framework to guide the design and optimization of automotive TEG. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 8225 KiB  
Article
Numerical Study on the Influence of Cooling-Fin Geometry on the Aero-Thermal Behavior of a Rotating Tire
by Kyoungmi Yu and SangWook Lee
Energies 2025, 18(12), 3133; https://doi.org/10.3390/en18123133 - 14 Jun 2025
Viewed by 391
Abstract
An excessive temperature rise in vehicle tires during driving can degrade dynamic performance, safety, and fuel efficiency by increasing rolling resistance and softening materials. To mitigate these issues, it is essential to enhance the cooling performance of tires without inducing significant aerodynamic penalties. [...] Read more.
An excessive temperature rise in vehicle tires during driving can degrade dynamic performance, safety, and fuel efficiency by increasing rolling resistance and softening materials. To mitigate these issues, it is essential to enhance the cooling performance of tires without inducing significant aerodynamic penalties. In this study, we propose the use of sidewall-mounted cooling fins and investigate their aero-thermal effects under both ground-contact and no-ground-contact conditions. Seven fin configurations were tested, with installation angles ranging from −67.5° to 67.5°, with positive angles indicating an orientation opposite to the direction of wheel rotation and negative angles indicating alignment with the direction of rotation. High-fidelity unsteady Reynolds-averaged Navier–Stokes simulations were conducted using the SST k-w turbulence model. The sliding mesh technique was employed to capture the transient flow behavior induced by tire rotation. The results showed that, under no-ground-contact conditions, the 45° configuration achieved a 16.8% increase in convective heat transfer with an increase in drag less than 3%. Under ground-contact conditions, the 22.5° configuration increased heat transfer by over 13% with a minimal aerodynamic penalty (~1.7%). These findings provide valuable guidance for designing passive cooling solutions that improve tire heat dissipation performance without compromising aerodynamic efficiency. Full article
Show Figures

Figure 1

15 pages, 3423 KiB  
Article
Performance-Enhanced Double Serpentine Minichannel Heat Sink for Phased-Array Radar High-Heat-Flux Chip Cooling
by Li Zhang, Yan Ma, Miao Lv, Xinhuai Wang and Xiaowei Shi
Electronics 2025, 14(11), 2246; https://doi.org/10.3390/electronics14112246 - 31 May 2025
Cited by 1 | Viewed by 643
Abstract
Efficient cooling is necessary for the reliability of phased-array radars for a longer life. With the miniaturization and functionalization of microchips, heat flux generated by these chips also rises sharply. Existing liquid cooling techniques are inadequate to meet the ever-increasing cooling requirements. The [...] Read more.
Efficient cooling is necessary for the reliability of phased-array radars for a longer life. With the miniaturization and functionalization of microchips, heat flux generated by these chips also rises sharply. Existing liquid cooling techniques are inadequate to meet the ever-increasing cooling requirements. The present paper examines the potential to enhance the convective heat transfer of minichannel heat sinks (MCHSs). Two types of double serpentine minichannel heat sinks are investigated and compared. The first one is a traditional-design MCHS with plate fins, while the second one is a performance-enhanced MCHS design. Three-dimensional conjugate heat transfer models are developed, and the equations governing flow and energy are solved numerically with ANSYS Icepak. The results indicate that the novel MCHS design is found to significantly reduce both the average pressure drop across the minichannels and the total thermal resistance by up to 51% and 8.5%, respectively. Meanwhile, heat transfer enhancement can be obtained for all the rib oblique angles from 13° to 163°, while lowest average pressure drop can be obtained near 90°. The present study provides a new choice for researchers to design more effective MCHSs for the cooling of modern phased-array radar high-heat-flux chips. Full article
Show Figures

Figure 1

18 pages, 4939 KiB  
Article
Design and Evaluation of an Innovative Thermoelectric-Based Dehumidifier for Greenhouses
by Xiaobei Han, Tianxiang Liu, Yuliang Cai, Dequn Wang, Xiaoming Wei, Yunrui Hai, Rongchao Shi and Wenzhong Guo
Agronomy 2025, 15(5), 1194; https://doi.org/10.3390/agronomy15051194 - 15 May 2025
Viewed by 602
Abstract
Crops in greenhouses located in cold climates are frequently affected by high relative humidity (RH). This study presents the design, testing, and analysis of a dehumidifier based on thermoelectric cooling. Thermoelectric dehumidifiers (TEDs) are capable of dehumidifying greenhouses in cold regions while recovering [...] Read more.
Crops in greenhouses located in cold climates are frequently affected by high relative humidity (RH). This study presents the design, testing, and analysis of a dehumidifier based on thermoelectric cooling. Thermoelectric dehumidifiers (TEDs) are capable of dehumidifying greenhouses in cold regions while recovering heat for indoor air heating. The design of a TED is based on the specific characteristics of thermoelectric coolers (TECs). A TED consists of a cabinet, four heat exchangers, a duct fan, a water pump, and auxiliary components. The TED performance was evaluated in a Chinese solar greenhouse (CSG) with a volume of approximately 160 m3. The input voltage of the TECs, fan airflow rate, and cold-side fin area affected the TED performance, with their influence varying in magnitude. The radar chart results show that the optimal operating parameters are as follows: a fan airflow rate of 300 m3/h, a TEC input voltage of 15 V, and a cold-side fin area of 0.15 m2. With the TED running for 120 min under the optimal parameters, the RH in the CSG decreased by 25.5%, while the air temperature increased by 3.4 °C. The installation of the TED at the bottom of the CSG improved the growing environment of the crops, particularly in the vertical range between 0.2 m and 1.5 m height inside the greenhouse. These findings provide a valuable reference for applying thermoelectric cooling technology in the greenhouse field. Full article
Show Figures

Figure 1

19 pages, 10908 KiB  
Article
Experimental and Numerical Study of the Heat Dissipation of the Electronic Module in an Air Conditioner Outdoor Unit
by Yi Peng, Su Du, Qingfeng Bie, Dechang Wang, Qinglu Song and Sai Zhou
Energies 2025, 18(10), 2439; https://doi.org/10.3390/en18102439 - 9 May 2025
Viewed by 475
Abstract
Effective thermal management of electronic modules is crucial to the reliable operation of variable frequency air conditioners. For this reason, two types of plate-finned heat sinks of electronic modules were selected. The experiments utilized ceramic heating plates to simulate chip heating, conducted in [...] Read more.
Effective thermal management of electronic modules is crucial to the reliable operation of variable frequency air conditioners. For this reason, two types of plate-finned heat sinks of electronic modules were selected. The experiments utilized ceramic heating plates to simulate chip heating, conducted in an enthalpy difference laboratory with controlled environments. Four installation cases were analyzed to evaluate the impact of heat sink orientation, airflow direction, and structural layout. The results showed that when multiple chips were arranged on the same heat dissipation substrate, the heat dissipation process of the chips would be coupled with each other, and the rational layout of the chips played an important role in heat dissipation. In the case of cooling air impacting the jet, the heat dissipation performance of the heat sink was significantly improved, and the heat transfer coefficient of the heat sink was as high as 316.5 W·m−2·°C−1, representing a 6.9% improvement over conventional designs (case I: 296.1 W·m⁻2·°C⁻1). The maximum temperature of the chips could be reduced by 11.1%, which is 10.1 °C lower. This study will provide a reference for the optimization design of the heat sink of the electric control module in inverter air conditioners. Full article
Show Figures

Figure 1

21 pages, 5567 KiB  
Article
Experimental Testing of a Heat Exchanger with Composite Material for Deep Dehumidification
by Valeria Palomba, Antonio Fotia, Fabio Costa, Davide La Rosa and Vincenza Brancato
Energies 2025, 18(10), 2418; https://doi.org/10.3390/en18102418 - 8 May 2025
Viewed by 556
Abstract
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with [...] Read more.
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with lower energy demands. This study experimentally investigates a fixed-bed dehumidification system utilizing a plate-fin heat exchanger filled with a silica gel/calcium chloride composite material. The performance evaluation focuses on the influence of ambient conditions and operating parameters, including air velocity and cooling fluid temperature. Among these, the most influential parameter was the velocity of air. For the tested heat exchanger, an optimum value in the range of 0.4–0.6 m/s was identified. Under optimal conditions, the tested HEX was able to reduce the dew point of air down to −2 °C, achieving a reduction in the humidity ratio up to 13 g/kg. The results indicate that air velocity significantly impacts also heat and mass transfer, with coefficients ranging from 80 to 140 W/(m2 K) and 0.015 to 0.060 kg/(m2 s), respectively. The findings highlight the potential of composite desiccant fixed-bed systems for efficient deep dehumidification, outperforming conventional lab-scale components in heat and mass transfer effectiveness. A comparison with other works in the literature indicated that up to 30% increased mass transfer coefficient was achieved and up to seven times higher heat transfer coefficient was measured. Full article
Show Figures

Figure 1

15 pages, 7149 KiB  
Article
Numerical Improvement of Battery Thermal Management Integrating Phase Change Materials with Fin-Enhanced Liquid Cooling
by Bo Wang, Changzhi Jiao and Shiheng Zhang
Energies 2025, 18(9), 2406; https://doi.org/10.3390/en18092406 - 7 May 2025
Viewed by 653
Abstract
Under high-rate charging and discharging conditions, the coupling of phase change materials (PCMs) with liquid cooling proves to be an effective approach for controlling battery pack operating temperature and performance. To address the inherent low thermal conductivity of PCM and enhance heat transfer [...] Read more.
Under high-rate charging and discharging conditions, the coupling of phase change materials (PCMs) with liquid cooling proves to be an effective approach for controlling battery pack operating temperature and performance. To address the inherent low thermal conductivity of PCM and enhance heat transfer from PCM to cooling plates, numerical simulations were conducted to investigate the effects of installing fins between the upper and lower cooling plates on temperature distribution. The results demonstrated that merely adding cooling plates on battery surfaces and filling PCM in inter-cell gaps had limited effectiveness in reducing maximum temperatures during 4C discharge (8A discharge current), achieving only a 1.8 K reduction in peak temperature while increasing the maximum temperature difference to over 10 K. Cooling plates incorporating optimized flow channel configurations in fins, alternating coolant inlet/outlet arrangements, appropriate increases in coolant flow rate (0.5 m/s), and reduced coolant inlet temperature (293.15 K) could maintain battery pack temperatures below 306 K while constraining maximum temperature differences to approximately 5 K during 4C discharge. Although increased flow rates enhanced cooling efficiency, improvements became negligible beyond 0.7 m/s due to inherent limitations in battery and PCM thermal conductivity. Excessively low coolant inlet temperatures (293.15 K) were found to adversely affect maximum temperature difference control during initial discharge phases. While reducing the inlet temperature from 300.65 K to 293.15 K decreased the maximum temperature by 10.1 K, it concurrently increased maximum temperature difference by 0.44 K. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

25 pages, 1174 KiB  
Article
Parametric Study of a Liquid Cooling Thermal Management System for Hybrid Fuel Cell Aircraft
by Valentine Habrard, Valérie Pommier-Budinger, Ion Hazyuk, Joël Jézégou and Emmanuel Benard
Aerospace 2025, 12(5), 377; https://doi.org/10.3390/aerospace12050377 - 27 Apr 2025
Viewed by 530
Abstract
Hybrid aircraft offer a logical pathway to reducing aviation’s carbon footprint. The thermal management system (TMS) is often neglected in the assessment of hybrid aircraft performance despite it being of major importance. After presenting the TMS architecture, this study performs a sensitivity analysis [...] Read more.
Hybrid aircraft offer a logical pathway to reducing aviation’s carbon footprint. The thermal management system (TMS) is often neglected in the assessment of hybrid aircraft performance despite it being of major importance. After presenting the TMS architecture, this study performs a sensitivity analysis on several parameters of a retrofitted hybrid fuel cell aircraft’s performance considering three hierarchical levels: the aircraft, fuel cell system, and TMS component levels. The objective is to minimize CO2 emissions while maintaining performance standards. At the aircraft level, cruise speed, fuel cell power, and ISA temperature were varied to assess their impact. Lowering cruise speeds can decrease emissions by up to 49%, and increasing fuel cell power from 200 kW to 400 kW cuts emissions by 18%. Higher ambient air temperatures also significantly impact cooling demands. As for the fuel cell, lowering the stack temperature from 80 °C to 60 °C increases the required cooling air mass flow by 49% and TMS drag by 40%. At the TMS component level, different coolants and HEX offset-fin geometries reveal low-to-moderate effects on emissions and payload. Overall, despite some design choice improvements, the conventional aircraft is still able to achieve lower CO2 emissions per unit payload. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop