Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = filter cake resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4133 KiB  
Article
Preparation, Performance Evaluation and Mechanisms of a Diatomite-Modified Starch-Based Fluid Loss Agent
by Guowei Zhou, Xin Zhang, Weijun Yan and Zhengsong Qiu
Processes 2025, 13(8), 2427; https://doi.org/10.3390/pr13082427 - 31 Jul 2025
Viewed by 222
Abstract
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This [...] Read more.
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This study innovatively introduces for the first time diatomite as an inorganic material in the modification process of starch-based fluid loss additives. Through synergistic modification with acrylamide and acrylic acid, we successfully resolved the longstanding challenge of balancing temperature resistance with viscosity control in existing modification methods. The newly developed fluid loss additive demonstrates remarkable performance: It remains effective at 160 °C when used independently. When added to a 4% sodium bentonite base mud, it achieves an 80% fluid loss reduction rate—significantly higher than the 18.95% observed in conventional starch-based products. The resultant filter cake exhibits thin and compact characteristics. Moreover, this additive shows superior contamination resistance, tolerating 30% NaCl and 0.6% calcium contamination, outperforming other starch-based treatments. With starch content exceeding 75%, the product not only demonstrates enhanced performance but also achieves significant cost reduction compared to conventional starch products (typically containing < 50% starch content). Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 393
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4119 KiB  
Article
The Development of an Alginate Drilling Fluid Treatment Agent for Shale and a Study on the Mechanism of Wellbore Stability Sealing
by Cheng Huang, Liping Mu and Xuefeng Gong
Processes 2025, 13(4), 1250; https://doi.org/10.3390/pr13041250 - 21 Apr 2025
Viewed by 570
Abstract
In order to prevent and control the problem of wellbore instability during the drilling process in shale formations, this study, based on the unique rheological properties, water solubility, and thermal stability of sodium alginate (SA), systematically investigated the rheological properties, filtration properties, and [...] Read more.
In order to prevent and control the problem of wellbore instability during the drilling process in shale formations, this study, based on the unique rheological properties, water solubility, and thermal stability of sodium alginate (SA), systematically investigated the rheological properties, filtration properties, and temperature resistance of sodium alginate-based drilling fluids before and after salt contamination. Additionally, it explored the wellbore stability and plugging mechanism of these drilling fluids in shale formations. The research shows that the BF + 0.4 wt% SA system significantly improves the rheological properties of the drilling fluid, effectively reduces the filtration loss, and exhibits good stability under the conditions of salt contamination and a high temperature of 100 °C. Sodium alginate binds to clay particles through hydrogen bonds and ionic bonds, enhancing the hydration and dispersion ability of the particles. The absolute value of its zeta potential reaches 39 mV and 37 mV before and after salt contamination, respectively, which is better than that of the control group, thus improving the colloidal stability of the drilling fluid. At the same time, through the moderate flocculation of clay particles, low-permeability filter cakes with filtration losses of 14 mL and 25 mL before and after salt contamination are formed, realizing a wellbore stability mechanism that combines physical plugging and chemical inhibition. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

19 pages, 6014 KiB  
Article
Preparation of Temperature Resistant Terpolymer Fracturing Fluid Thickener and Its Working Mechanism Study via Simulation Methods
by Bo Zhang, Bumin Guo, Guang’ai Wu, Shuan Li, Jinwei Shen, Susu Xing, Yujie Ying, Xiaoling Yang, Xinyang Zhang, Miaomiao Hu and Jintang Guo
Materials 2025, 18(5), 1171; https://doi.org/10.3390/ma18051171 - 6 Mar 2025
Viewed by 715
Abstract
To enhance oil and gas recovery, a novel hydrophobic terpolymer was synthesized via free radical polymerization. The terpolymer consists of acrylamide, acrylic acid, and hydrophobic monomers, and is used as a hydraulic fracturing fluid thickener for freshwater environments. Hydrophobic groups were introduced into [...] Read more.
To enhance oil and gas recovery, a novel hydrophobic terpolymer was synthesized via free radical polymerization. The terpolymer consists of acrylamide, acrylic acid, and hydrophobic monomers, and is used as a hydraulic fracturing fluid thickener for freshwater environments. Hydrophobic groups were introduced into terpolymer to improve its tackiness and temperature resistance. The conformation and key parameters of hydrophobic monomers at different temperatures were investigated through a combination of experiments and molecular dynamics simulations. These methods were employed to elucidate the mechanism behind its high-temperature resistance. The experiment results show that, at concentrations between 0.2% and 0.4%, significant intermolecular aggregation occurs, leading to a substantial increase in solution viscosity. Configuring the base fluid of synthetic polymer fracturing fluid with 1% doping, the apparent viscosities of the base fluid were 129.23 mPa·s and 133.11 mPa·s, respectively. The viscosity increase rate was 97%. The base fluid was crosslinked with 1.5% organozirconium crosslinker to form a gel. The controlled loss coefficient and loss velocity of the filter cake were C3 = 0.84 × 10−3 m/min1/2 and vc = 1.40 × 10−4 m/min at 90 °C, meeting the technical requirements for water-based fracturing fluid. Molecular dynamics simulations revealed that the radius of gyration of the hydrophobically linked polymer chain segments decreases as the temperature increases. This is due to the increased thermal motion of the polymer chain segments, resulting in less stretching and intertwining of the chains. As a result, the polymer chains move more freely, which decreases the viscosity of the solution. In conclusion, the proposed fracturing fluid thickener system demonstrates excellent overall performance and shows significant potential for application in oil and gas recovery. Full article
Show Figures

Figure 1

16 pages, 2610 KiB  
Article
Plant-Based Flocculants as Sustainable Conditioners for Enhanced Sewage Sludge Dewatering
by Yosra Hadj Mansour, Bouthaina Othmani, Faouzi Ben Rebah, Wissem Mnif, Moncef Khadhraoui and Mongi Saoudi
Water 2024, 16(20), 2949; https://doi.org/10.3390/w16202949 - 16 Oct 2024
Cited by 4 | Viewed by 2141
Abstract
With the aim to establish clean and sustainable sludge treatment, green conditioning using natural flocculants has recently gained a growing interest. In this study, a variety of plant materials, namely Moringa (Moringa oleifera) seeds, Fenugreek (Trigonella foenum-graecum) seeds, Potato [...] Read more.
With the aim to establish clean and sustainable sludge treatment, green conditioning using natural flocculants has recently gained a growing interest. In this study, a variety of plant materials, namely Moringa (Moringa oleifera) seeds, Fenugreek (Trigonella foenum-graecum) seeds, Potato (Solanum tuberosum) peels, Aloe (Aloe vera) leaves, Cactus (Opuntia ficus indica) cladodes, and Phragmites (Phragmites australis) stems, were evaluated for their potential bioflocculant activity in conditioning sewage sludge. They were thoroughly characterized to determine their active flocculating compounds. Sludge dewaterability was evaluated by assessing various sludge parameters, including specific resistance to filtration (SRF), dryness of filtration cake (DC), and total suspended solid removal (TSS) from sludge filtrate. The collected results from various physicochemical characterizations of plant materials suggest that the main flocculating agents are carbohydrates in Cactus and Fenugreek and proteins in Moringa, Potato, and Phragmites. Additionally, all tested plant-based flocculants demonstrated effective dewatering performance. Interestingly, compared to the chemical flocculant polyaluminum chloride, Moringa and Cactus showed superior conditioning effects, yielding the lowest SRF values and the highest DC. As a result, the use of these natural flocculants improved sewage sludge filterability, leading to a significant removal of total suspended solids from the filtrate. The conditioning properties of Moringa and Cactus can be attributed to their high protein and sugar content, which facilitates the effective separation of bound water from solids through charge neutralization and bridging mechanisms. Thus, green conditioning using plant-based flocculants, particularly Moringa and Cactus materials, presents a promising and eco-friendly approach to enhance sewage sludge dewatering for safer disposal and valorization. Full article
(This article belongs to the Special Issue Monitoring and Remediation of Contaminants in Soil and Water)
Show Figures

Figure 1

26 pages, 3895 KiB  
Article
Landfill Leachate and Coagulants Addition Effects on Membrane Bioreactor Mixed Liquor: Filterability, Fouling, and Pollutant Removal
by Rodrigo Almeria Ragio, Ana Carolina Santana and Eduardo Lucas Subtil
Membranes 2024, 14(10), 212; https://doi.org/10.3390/membranes14100212 - 2 Oct 2024
Cited by 2 | Viewed by 2043
Abstract
Urban wastewater (UWW) and landfill leachate (LL) co-treatment using membrane bioreactors (MBRs) is a valuable method for managing LL in cities. Coagulants can enhance the filterability of mixed liquor (ML), but the assessment of fouling is still needed. This research aimed to investigate [...] Read more.
Urban wastewater (UWW) and landfill leachate (LL) co-treatment using membrane bioreactors (MBRs) is a valuable method for managing LL in cities. Coagulants can enhance the filterability of mixed liquor (ML), but the assessment of fouling is still needed. This research aimed to investigate the effects of co-treating synthetic wastewater (SWW) and real LL on an MBR, as well as the impact of adding poly-aluminum chloride (PACl) and Tanfloc SG. Cell-ultrafiltration experiments were conducted with four different feeds: synthetic wastewater, co-treatment with LL (20% v/v), and co-treatment with the addition of 30 mg L−1 coagulants (either PACl or Tanfloc). Co-treatment aggravated flux loss and reduced the recovery rate; however, Tanfloc and PACl improved recovery after cleaning (by 11% and 9%, respectively). Co-treatment also increased cake and irrecoverable/irremovable inorganic resistances, though coagulants reduced the latter, despite a lower fit of the Hermia models during the first hour of filtration. Co-treatment reduced the removal efficiencies of almost all pollutants analyzed, with the most significant impacts observed on the organic fraction. Coagulants, particularly Tanfloc, enhanced overall performance by improving flux recovery and reducing irreversibility, thus benefiting membrane lifespan. In conclusion, Tanfloc addition yielded the best results in terms of filterability and pollutant removal. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

17 pages, 4415 KiB  
Article
Reverse Solute Diffusion Enhances Sludge Dewatering in Dead-End Forward Osmosis
by Da-Qi Cao, Shi-Cheng Lei, Hui Liu, Yan Jin, Yun-Feng Wu, Yuehua Cui and Rongling Wu
Membranes 2024, 14(9), 196; https://doi.org/10.3390/membranes14090196 - 18 Sep 2024
Viewed by 1752
Abstract
Wastewater treatment plants produce high quantities of excess sludge. However, traditional sludge dewatering technology has high energy consumption and occupies a large area. Dead-end forward osmosis (DEFO) is an efficient and energy-saving deep dewatering technology for sludge. In this study, the reverse osmosis [...] Read more.
Wastewater treatment plants produce high quantities of excess sludge. However, traditional sludge dewatering technology has high energy consumption and occupies a large area. Dead-end forward osmosis (DEFO) is an efficient and energy-saving deep dewatering technology for sludge. In this study, the reverse osmosis of salt ions in the draw solution was used to change the sludge cake structure and further reduce its moisture content in cake by releasing the bound water in cell. Three salts, NaCl, KCl, and CaCl2, were added to the excess sludge feed solution to explore the roles of the reverse osmosis of draw solutes in DEFO. When the added quantities of NaCl and CaCl2 were 15 and 10 mM, respectively, the moisture content of the sludge after dewatering decreased from 98.1% to 79.7% and 67.3%, respectively. However, KCl did not improve the sludge dewatering performance because of the “high K and low Na” phenomenon in biological cells. The water flux increased significantly for the binary draw solute involving NaCl and CaCl2 compared to the single draw solute. The extracellular polymer substances in the sludge changed the structure of the filter cake to improve the formation of water channels and decrease osmosis resistance, resulting in an increase in sludge dewatering efficiency. These findings provide support for improving the sludge dewatering performance of DEFO. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

16 pages, 6787 KiB  
Article
Influence of Particle Surface Energy and Sphericity on Filtration Performance Based on FLUENT-EDEM Coupling Simulation
by Qing Wu, Zhenqiang Xing, Dejun Chen, Jianwu Chen, Bin Yang, Jianfang Zhong, Hong Huang, Zhifei Ma, Shan Huang, Da You, Jianlong Li and Daishe Wu
Atmosphere 2024, 15(7), 787; https://doi.org/10.3390/atmos15070787 - 29 Jun 2024
Cited by 2 | Viewed by 1682
Abstract
The adhesion of dust particles on the surface of the dust collector tends to cause great resistance to the dust collector and affects the operating efficiency. In order to visualize particles in the filtration process and to grasp the mechanism of particle viscosity [...] Read more.
The adhesion of dust particles on the surface of the dust collector tends to cause great resistance to the dust collector and affects the operating efficiency. In order to visualize particles in the filtration process and to grasp the mechanism of particle viscosity and sphericity on filtration performance, a numerical simulation study was conducted to investigate the deposition behavior of particles during filtration, employing FLUENT-EDEM coupling technology. By examining the deposition process, the role of particle characteristics on dust behavior within the entire filtration system was elucidated. The effects of varying particle surface energy and particle sphericity on filtration pressure drop and cake porosity were analyzed. The findings reveal that under the force of the air, particles on the surface of the filter membrane experience compaction, leading to a reduction in the porosity of the formed cake layer. The diminution of porosity serves to impede the air, consequently augmenting the pressure drop across the filtration system and hindering the operational efficacy of the dust collector. As the surface energy of the particles increases, the adhesive forces between particles are intensified, leading to an elevation in the porosity of the cake layer and a subsequent decrease in the pressure drop. When the surface energy of the particles is increased from 0.01 J/m2 to 0.04 J/m2, the porosity experiences a modest increase of only 9.1%, yet the pressure drop is significantly reduced by half, amounting to a decrease of 1594 Pa. Under high particle surface energy, as filtration air velocity increases, particles are compressed, resulting in a decrease in cake porosity and an increase in pressure drop. Concurrently, our findings indicate that as the sphericity of particles increases, their surfaces become increasingly smooth which in turn results in a decreased porosity of the cake layer and, consequently, an elevation in the filtration pressure drop. Full article
(This article belongs to the Special Issue Characteristics and Control of Particulate Matter)
Show Figures

Figure 1

17 pages, 3378 KiB  
Article
Preparation of Ultra-High Temperature Resistant Cyclodextrin-Based Filtration Loss Reducer for Water-Based Drilling Fluids
by Yilin Liu, Lesly Dasilva Wandji Djouonkep, Boyang Yu, Chenyang Li and Chao Ma
Molecules 2024, 29(12), 2933; https://doi.org/10.3390/molecules29122933 - 20 Jun 2024
Cited by 3 | Viewed by 1640
Abstract
In the development of ultra-deep wells, extremely high temperatures can lead to inefficiency of additives in drilling fluids. Hence, there is a need to prepare additives with a simple preparation process and good effects at ultra-high temperatures to ensure stable drilling fluid performance. [...] Read more.
In the development of ultra-deep wells, extremely high temperatures can lead to inefficiency of additives in drilling fluids. Hence, there is a need to prepare additives with a simple preparation process and good effects at ultra-high temperatures to ensure stable drilling fluid performance. In this study, a high temperature resistant filtration loss polymer (LY-2) was prepared using γ-methacryloyloxypropyltrimethoxysilane (KH570), N,N-dimethylallyl ammonium chloride (DMDAAC), sodium p-styrenesulfonate (SSS), and β-cyclodextrin (β-CD). The impact of the different monomer ratios on particle size, rheology, and filtration performance was systematically investigated. Infrared spectroscopy afforded the structural features. Thermogravimetric Analysis detected the temperature stability, and scanning electron microscopy characterized the polymer micromorphology. LY-2 was completely decomposed at a temperature above 600 °C. Experiments showed FLAPI of the drilling fluid containing 3% LY-2 aged at 260 °C/16 h was only 5.1 mL, which is 85.4% lower compared to the base fluid. This is attributed to the synergistic effect of the polymer adsorption through chemical action at high temperatures and the blocking effect of carbon nanoparticles on the filter cake released by cyclodextrin carbonization at high temperatures. Comparing LY-2 with commercial filter loss reducers shows that LY-2 has excellent temperature resistance, which exhibited five times higher filtration performance and relatively low cost, making it possible to be applied to ultra-high temperature drilling operations in an industrial scale-up. Full article
Show Figures

Graphical abstract

20 pages, 5210 KiB  
Article
Preparation and Properties of Reversible Emulsion Drilling Fluid Stabilized by Modified Nanocrystalline Cellulose
by Fei Liu, Yongfei Li, Xuewu Wang and Zhizeng Xia
Molecules 2024, 29(6), 1269; https://doi.org/10.3390/molecules29061269 - 13 Mar 2024
Cited by 7 | Viewed by 1732
Abstract
Reversible emulsion drilling fluids can concentrate the advantages of water-based drilling fluids and oil-based drilling fluids. Most of the existing reversible emulsion drilling fluid systems are surfactant-based emulsifier systems, which have the disadvantage of poor stability. However, the use of modified nanoparticles as [...] Read more.
Reversible emulsion drilling fluids can concentrate the advantages of water-based drilling fluids and oil-based drilling fluids. Most of the existing reversible emulsion drilling fluid systems are surfactant-based emulsifier systems, which have the disadvantage of poor stability. However, the use of modified nanoparticles as emulsifiers can significantly enhance the stability of reversible emulsion drilling fluids, but ordinary nanoparticles have the disadvantages of high cost and easily causing environmental pollution. In order to solve the shortcomings of the existing reversible emulsion drilling fluid system, the modified nanocrystalline cellulose was considered to be used as an emulsifier to prepare reversible emulsion drilling fluid. After research, the modified nanocrystalline cellulose NWX-3 can be used to prepare reversible emulsions, and on this basis, reversible emulsion drilling fluids can be constructed. Compared with the reversible emulsion drilling fluid stabilized by HRW-DMOB (1.3 vol.% emulsifier), the reversible emulsion drilling fluid stabilized by the emulsifier NWX-3 maintained a good reversible phase performance, filter cake removal, and oily drill cuttings treatment performance with less reuse of emulsifier (0.8 vol.%). In terms of temperature resistance (150 °C) and stability (1000 V < W/O emulsion demulsification voltage), it is significantly better than that of the surfactant system (temperature resistance 120 °C, 600 V < W/O emulsion demulsification voltage < 650 V). The damage of reservoir permeability of different types of drilling fluids was compared by physical simulation, and the damage order of core gas permeability was clarified: water-based drilling fluid > reversible emulsion drilling fluid > oil-based drilling fluid. Furthermore, the NMR states of different types of drilling fluids were compared as working fluids, and the main cause of core permeability damage was the retention of intrusive fluids in the core. Full article
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Performance of a Double-Filter-Medium Tandem Membrane Bioreactor with Low Operating Costs in Domestic Wastewater Treatment
by Qiang Liu, Chen Li, Minglei Zhao, Ying Li, Yangyang Yang, Yuxuan Li and Siyuan Ma
Water 2024, 16(2), 361; https://doi.org/10.3390/w16020361 - 22 Jan 2024
Viewed by 2157
Abstract
To reduce the operating costs of conventional membrane bioreactors (MBRs) and improve the stability and quality of the dynamic membrane bioreactor (DMBR) effluent, a homemade inexpensive filter cloth assembly was connected to an up-flow ultra-lightweight-medium filter (UUF) in lieu of expensive membrane modules [...] Read more.
To reduce the operating costs of conventional membrane bioreactors (MBRs) and improve the stability and quality of the dynamic membrane bioreactor (DMBR) effluent, a homemade inexpensive filter cloth assembly was connected to an up-flow ultra-lightweight-medium filter (UUF) in lieu of expensive membrane modules to form a double-filter-medium tandem (DT)-MBR. DT-MBR was used to treat domestic wastewater, and its removal efficiencies for chemical oxygen demand, ammonia nitrogen, total nitrogen, and total phosphorus were similar to those of aerobic MBR, with average removal rates of 91.1%, 98.4%, 15.1%, and 50.7%, respectively. The average suspended solid (SS) of the final effluent was 5.6 mg∙L−1, and the filter cloth assembly played a leading role in SS removal, with an average removal rate of 86.0% and a relatively stable removal effect with little impact via backwashing. The activated sludge zeta potential, flocculation and sedimentation properties, particle size distribution, microbial compositions, extracellular polymeric substances (EPS), and filtration resistance of the cake layer were analyzed; it was found that the cake layer, which can also be called the dynamic membrane (DM), had an excellent filtration performance. However, the DM theory could not reasonably explain why the effluent quality of the filter cloth assembly maintained good stability even after backwashing. The real reason must be related to the sieving of cloth pores. Therefore, the concept of an in situ autogenous static membrane (ISASM) was proposed. With low operating costs and good and stable effluent quality, DT-MBR is a desirable alternative to the traditional MBR. Full article
(This article belongs to the Special Issue Innovative Membrane Processes in Low-Carbon Wastewater Treatment)
Show Figures

Figure 1

22 pages, 8010 KiB  
Article
Alkaline Hydrolysis of Waste Acrylic Fibers Using the Micro-Water Method and Its Application in Drilling Fluid Gel Systems
by Wenjun Long, Zhongjin Wei, Fengshan Zhou, Shaohua Li, Kang Yin, Yu Zhao, Siting Yu and Hang Qi
Gels 2023, 9(12), 974; https://doi.org/10.3390/gels9120974 - 13 Dec 2023
Cited by 3 | Viewed by 2512
Abstract
Filtrate reducer is a drilling fluid additive that can effectively control the filtration loss of drilling fluid to ensure the safe and efficient exploitation of oilfields. It is the most widely used treatment agent in oilfields. Due to its moderate conditions and controllable [...] Read more.
Filtrate reducer is a drilling fluid additive that can effectively control the filtration loss of drilling fluid to ensure the safe and efficient exploitation of oilfields. It is the most widely used treatment agent in oilfields. Due to its moderate conditions and controllable procedure, alkaline hydrolysis of high-purity waste polyacrylonitrile has been utilized for decades to produce filtrate reducer on a large scale in oilfields. However, the issues of long hydrolysis time, high viscosity of semi-finished products, high drying cost, and tail gas pollution have constrained the development of the industry. In this study, low-purity waste acrylic fiber was first separated and purified using high-temperature hydroplastization, and the hydrolyzed product was obtained using alkaline hydrolysis with the micro-water method, which was called MW−HPAN. The hydrolysis reaction was characterized using X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis, and the elemental analysis showed a hydrolysis degree of 73.21%. The experimental results showed that after aging at 180 °C for 16 h, the filtration volume of the freshwater base slurry with 0.30% dosage and 4% brine base slurry with 1.20% dosage was 12.7 mL and 18.5 mL, respectively. The microstructure and particle size analysis of the drilling fluid gel system showed that MW−HPAN could prevent the agglomeration of clay and maintain a reasonable particle size distribution even under the combined deteriorating effect of high temperature and inorganic cations, thus forming a dense filter cake and achieving a low filtrate volume of the drilling fluid gel system. Compared with similar commercially available products, MW−HPAN has better resistance to temperature and salt in drilling fluid gel systems, and the novel preparation method is promising to be extended to practical production. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (2nd Edition))
Show Figures

Graphical abstract

17 pages, 4421 KiB  
Article
Application of a Core-Shell Structure Nano Filtration Control Additive in Salt-Resistant Clay-Free Water-Based Drilling Fluid
by Gang Wang, Wanjun Li, Shixin Qiu, Jitong Liu, Zhiting Ou, Xiaogang Li, Fei Ji, Liang Zhang, Shanshan Liu, Lili Yang and Guancheng Jiang
Polymers 2023, 15(21), 4331; https://doi.org/10.3390/polym15214331 - 6 Nov 2023
Cited by 5 | Viewed by 1966
Abstract
When drilling into a reservoir, the drilling fluid containing bentonite is prone to solid phase invasion, causing serious damage to the reservoir, and the conventional API barite suspension stability is poor, which makes it easy to cause sedimentation and blockage. Therefore, in order [...] Read more.
When drilling into a reservoir, the drilling fluid containing bentonite is prone to solid phase invasion, causing serious damage to the reservoir, and the conventional API barite suspension stability is poor, which makes it easy to cause sedimentation and blockage. Therefore, in order to avoid accidents, we use ultrafine barite to obtain a good suspension stability. More importantly, the method of modifying zwitterionic polymers on the surface of nano-silica is used to develop a temperature-resistant and salt-resistant fluid loss reducer FATG with a core-shell structure, and it is applied to ultra-fine clay-free water-based drilling fluid (WBDF). The results show that the filtration loss of clay-free drilling fluid containing FATG can be reduced to 8.2 mL, and AV can be reduced to 22 mPa·s. Although the viscosity is reduced, FATG can reduce the filter loss by forming a dense mud cake. The clay-free drilling fluid system obtained by further adding sepiolite can reduce the filtration loss to 3.8 mL. After aging at 220 °C for 15 d, it still has significant salt tolerance, the filtration loss is only 9 mL, the viscosity does not change much, a thinner and denser mud cake is formed, and the viscosity coefficient of the mud cake is smaller. The linear expansion test and permeability recovery evaluation were carried out. The hydration expansion inhibition rate of bentonite can reach 72.5%, and the permeability recovery rate can reach 77.9%, which can meet the long-term drilling fluid circulation work in the actual drilling process. This study can provide guidance for technical research in related fields such as reservoir protection. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 2199 KiB  
Article
Effects of Different TiO2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters
by Ákos Ferenc Fazekas, Tamás Gyulavári, Zsolt Pap, Attila Bodor, Krisztián Laczi, Katalin Perei, Erzsébet Illés, Zsuzsanna László and Gábor Veréb
Membranes 2023, 13(10), 812; https://doi.org/10.3390/membranes13100812 - 27 Sep 2023
Cited by 2 | Viewed by 2332
Abstract
Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including –OH or/and –COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the [...] Read more.
Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including –OH or/and –COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the membranes coated with functionalized CNT-containing composites provided significantly higher fluxes than the non-functionalized ones, proving the beneficial effect of the surface modifications of the CNTs. Additionally, until the end of the filtration experiments (VRR = 5), notable flux enhancements were achieved with both TiO2 (~50%) and TiO2/CNT-coated membranes (up to ~300%), compared to the uncoated membrane. The irreversible filtration resistances of the membranes indicated that both the hydrophilicity and surface charge (zeta potential) played a crucial role in membrane fouling. However, a sharp and significant flux decrease (~90% flux reduction ratio) was observed for all membranes until reaching a VRR of 1.1–1.8, which could be attributed to the chemical composition of the oil. Gas chromatography measurements revealed a lack of hydrocarbon derivatives with polar molecular fractions (which can act as natural emulsifiers), resulting in significant coalescent ability (and less stable emulsion). Therefore, this led to a more compact cake layer formation on the surface of the membranes (compared to a previous study). It was also demonstrated that all membranes had excellent purification efficiency (97–99.8%) regarding the turbidity, but the effectiveness of the chemical oxygen demand reduction was slightly lower, ranging from 93.7% to 98%. Full article
(This article belongs to the Special Issue Advance in Photocatalytic Membrane Reactor (2nd Edition))
Show Figures

Figure 1

14 pages, 8513 KiB  
Article
Effect of Low Gravity Solids on Weak Gel Structure and the Performance of Oil-Based Drilling Fluids
by Haokun Shen, Jinsheng Sun, Kaihe Lv, Meichun Li, Yuan Geng, Zheng Yang, Xianbin Huang, Hongyan Du and Muhammad Arqam Khan
Gels 2023, 9(9), 729; https://doi.org/10.3390/gels9090729 - 8 Sep 2023
Cited by 6 | Viewed by 2791
Abstract
Drilling cuttings from the rock formation generated during the drilling process are generally smashed to fine particles through hydraulic cutting and grinding using a drilling tool, and then are mixed with the drilling fluid during circulation. However, some of these particles are too [...] Read more.
Drilling cuttings from the rock formation generated during the drilling process are generally smashed to fine particles through hydraulic cutting and grinding using a drilling tool, and then are mixed with the drilling fluid during circulation. However, some of these particles are too small and light to be effectively removed from the drilling fluid via solids-control equipment. These small and light solids are referred to as low gravity solids (LGSs). This work aimed to investigate the effect of LGSs on the performance of oil-based drilling fluid (OBDF), such as the rheological properties, high-temperature and high-pressure filtration loss, emulsion stability, and filter cake quality. The results show that when the content of LGSs reached or even exceeded the solid capacity limit of the OBDF, the rheological parameters including the plastic viscosity, gel strength, and thixotropy of OBDF increased significantly. Furthermore, the filtration of OBDF increases, the filter cake becomes thicker, the friction resistance becomes larger, and the stability of emulsion of OBDF also decreases significantly when the concentration of LGSs reached the solid capacity limit of OBDF (6–9 wt% commonly). It was also found that LGSs with a smaller particle size had a more pronounced negative impact on the drilling fluid performance. This work provides guidance for understanding the impact mechanism of LGSs on drilling fluid performance and regulating the performance of OBDF. Full article
(This article belongs to the Special Issue Gel for Oil-Based Drilling Fluid)
Show Figures

Graphical abstract

Back to TopTop