Landfill Leachate and Coagulants Addition Effects on Membrane Bioreactor Mixed Liquor: Filterability, Fouling, and Pollutant Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Fouling Analysis
Fouling Investigation
2.3. Analytical Methods
3. Results and Discussion
3.1. Co-Treatment Effect
3.1.1. On Mixed Liquor Characteristics
3.1.2. On Fouling
3.1.3. On Pollutant Removal
3.2. Coagulants Effect
3.2.1. On Mixed Liquor Characteristics
3.2.2. On Fouling
3.2.3. On Pollutant Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasqualini, L.N. Estudo da Oxidação de Matéria Orgânica de Lixiviados de Aterro Sanitário por Meio de Tratamento Com ozônio, Peróxido de Hidrogênio e Radiação Ultravioleta. Master’s Thesis, Universidade de São Paulo, São Carlos, Brazil, 2010. [Google Scholar]
- Ahmed, F.N.; Lan, C.Q. Treatment of Landfill Leachate Using Membrane Bioreactors: A Review. Desalination 2012, 287, 41–54. [Google Scholar] [CrossRef]
- Peng, Y. Perspectives on Technology for Landfill Leachate Treatment. Arab. J. Chem. 2017, 10, S2567–S2574. [Google Scholar] [CrossRef]
- Christensen, T.H.; Kjeldsen, P.; Albrechtsen HJ, R.; Heron, G.; Nielsen, P.H.; Bjerg, P.L.; Holm, P.E. Attenuation of landfill leachate pollutants in aquifers. Crit. Rev. Environ. Sci. Technol. 1994, 24, 119–202. [Google Scholar] [CrossRef]
- Klauson, D.; Kivi, A.; Kattel, E.; Klein, K.; Viisimaa, M.; Bolobajev, J.; Velling, S.; Goi, A.; Tenno, T.; Trapido, M. Combined Processes for Wastewater Purification: Treatment of a Typical Landfill Leachate with a Combination of Chemical and Biological Oxidation Processes: Combined Processes for Landfill Leachate Treatment. J. Chem. Technol. Biotechnol. 2015, 90, 1527–1536. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Huda, N.; Raman, A.A.A.; Bello, M.M.; Ramesh, S. Electrocoagulation Treatment of Raw Landfill Leachate Using Iron-Based Electrodes: Effects of Process Parameters and Optimization. J. Environ. Manag. 2017, 204, 75–81. [Google Scholar] [CrossRef]
- Gomes, L.P. Estudos de Caracterização e Tratabilidade de Lixiviados de Aterros Sanitários Para as Condições Brasileiras; Abes: Rio de Janeiro, Brazil, 2009; ISBN 978-85-7022-163-6. [Google Scholar]
- Ranjan, K.; Chakraborty, S.; Verma, M.; Iqbal, J.; Naresh Kumar, R. Co-Treatment of Old Landfill Leachate and Municipal Wastewater in Sequencing Batch Reactor (SBR): Effect of Landfill Leachate Concentration. Water Qual. Res. J. Can. 2016, 51, 377–387. [Google Scholar] [CrossRef]
- Çeçen, F.; Aktas, Ö. Aerobic Co-Treatment of Landfill Leachate with Domestic Wastewater. Environ. Eng. Sci. 2004, 21, 303–312. [Google Scholar] [CrossRef]
- Campos, F.; Bueno, R.D.F.; Piveli, R.P. Co-Treatment of Leachate and Domestic Sewage and Its Influence on Nitrogen Removal. Braz. J. Chem. Eng. 2019, 36, 763–773. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Ibrahim, A.M.; Al-Sulaiman, A.M.; Okasha, R.A. Landfill Leachate: Sources, Nature, Organic Composition, and Treatment: An Environmental Overview. Ain Shams Eng. J. 2024, 15, 102293. [Google Scholar] [CrossRef]
- Lemos, H.G.; Ragio, R.A.; Conceição, A.C.S.; Venancio, E.C.; Mierzwa, J.C.; Subtil, E.L. Assessment of Mixed Matrix Membranes (MMMs) Incorporated with Graphene Oxide (GO) for Co-Treatment of Wastewater and Landfill Leachate (LFL) in a Membrane Bioreactor (MBR). Chem. Eng. J. 2021, 425, 131772. [Google Scholar] [CrossRef]
- Hasar, H.; Ipek, U.; Kinaci, C. Joint Treatment of Landfill Leachate with Municipal Wastewater by Submerged Membrane Bioreactor. Water Sci. Technol. 2009, 60, 3121–3128. [Google Scholar] [CrossRef] [PubMed]
- Puszczalo, E.; Bohdziewicz, J.; Świerczynka, A. Desalination and Water Treatment the Influence of Percentage Share of Municipal Landfil Leachates in a Mixture with Synthetic Wastewater on the Effectiveness of a Treatment Process with Use of Membrane Bioreactor. Desalination Water Treat. 2012, 14, 16–20. [Google Scholar] [CrossRef]
- Pierangeli, G.M.F.; Ragio, R.A.; Benassi, R.F.; Gregoracci, G.B.; Subtil, E.L. Pollutant Removal, Electricity Generation and Microbial Community in an Electrochemical Membrane Bioreactor during Co-Treatment of Sewage and Landfill Leachate. J. Environ. Chem. Eng. 2021, 9, 106205. [Google Scholar] [CrossRef]
- Thanh, B.X.; Dan, N.P.; Visvanathan, C. Low Flux Submerged Membrane Bioreactor Treating High Strength Leachate from a Solid Waste Transfer Station. Bioresour. Technol. 2013, 141, 25–28. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, H.; Ge, L.; Chen, Z.; Dang, Y.; Sun, D. Comparison of the Performance of Waste Leachate Treatment in Submerged and Recirculated Membrane Bioreactors. Int. Biodeterior. Biodegrad. 2015, 102, 73–80. [Google Scholar] [CrossRef]
- Brito, G.C.B.; Lange, L.C.; Santos, V.L.; Amaral, M.C.S.; Moravia, W.G. Long-Term Evaluation of Membrane Bioreactor Inoculated with Commercial Baker’s Yeast Treating Landfill Leachate: Pollutant Removal, Microorganism Dynamic and Membrane Fouling. Water Sci. Technol. 2019, 79, 398–410. [Google Scholar] [CrossRef]
- Marañón, E.; Castrillón, L.; Fernández-Nava, Y.; Fernández-Méndez, A.; Fernández-Sánchez, A. Coagulation-Flocculation as a Pretreatment Process at a Landfill Leachate Nitrification-Denitrification Plant. J. Hazard. Mater. 2008, 156, 538–544. [Google Scholar] [CrossRef]
- Malamis, S.; Andreadakis, A.; Mamais, D.; Noutsopoulos, C. Comparison of Alternative Additives Used for the Mitigation of Membrane Fouling in Membrane Bioreactors. Desalination Water Treat. 2014, 52, 5740–5747. [Google Scholar] [CrossRef]
- Park, J.; Yamashita, N.; Tanaka, H. Membrane Fouling Control and Enhanced Removal of Pharmaceuticals and Personal Care Products by Coagulation-MBR. Chemosphere 2018, 197, 467–476. [Google Scholar] [CrossRef]
- Kulesha, O.; Maletskyi, Z.; Kvaal, K.; Ratnaweera, H. Strategy for Flux Enhancement in Biofilm Ceramic Membrane Bioreactor Applying Prepolymerized and Non-Prepolymerized Inorganic Coagulants. Water 2019, 11, 446. [Google Scholar] [CrossRef]
- Davis, M. Tratamento de Águas Para Abastecimento e Residuárias—Princípios e Práticas, 1st ed.; Elsevier Brasil: Rio de Janeiro, Brazil, 2017; ISBN 978-85-352-7988-7. [Google Scholar]
- Iorhemen, O.; Hamza, R.; Tay, J. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. Membranes 2016, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; An, Y.; Li, Y.; Wong, F.S. Effect of Adsorption/Coagulation on Membrane Fouling in Microfiltration Process Post-Treating Anaerobic Digestion Effluent. Desalination 2009, 242, 183–192. [Google Scholar] [CrossRef]
- Delhaize, E.; Ryan, P.R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995, 107, 315–321. [Google Scholar] [CrossRef]
- Kawahara, M.; Konoha, K.; Nagata, T.; Sadakane, Y. Aluminum and Human Health: Its Intake, Bioavailability and Neurotoxicity. Biomed. Res. Trace Elem. 2007, 18, 211–220. [Google Scholar] [CrossRef]
- Almeria Ragio, R.; Arantes, C.C.; Lucas Subtil, E. Performance Assessment and Economic Aspects for Water Reclamation from UASB Reactor Effluent: Influence of Coagulant Type and Membrane Pore Size. Sep. Sci. Technol. 2024, 59, 1020–1036. [Google Scholar] [CrossRef]
- Bassani, F. Monitoramento Do Lixiviado Do Aterro Controlado de Maringá, Paraná, e Avaliação Da Tratabilidade Com Coagulantes Naturais, Radiação Ultravioleta (UV) e Ozônio; Universidade Estadual de Maringá: Maringá, Brazil, 2010. [Google Scholar]
- Batista, A.D. Tratamento e Pós-Tratamento de Lixiviado de Aterro Sanitário Por Coagulação-Floculação-Sedimentação Com Diferentes Coagulantes e Auxiliares de Floculação e Avaliação Ecotoxicológica; Universidade Estadual de Londrina: Londrina, Brazil, 2016. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Fan, F.; Zhou, H.; Husain, H. Use of Chemical Coagulants to Control Fouling Potential for Wastewater Membrane Bioreactor Processes. Water Environ. Res. 2007, 79, 952–957. [Google Scholar] [CrossRef]
- Zhou, J.H.; Wu, C.H.; Cheng, G.F.; Hong, Q.K.; Li, Y.Z.; Wang, H.Y. Impact of Poly Dimethyldiallylammonium Chloride on Membrane Fouling Mitigation in a Membrane Bioreactor. Environ. Technol. 2017, 40, 1043–1049. [Google Scholar] [CrossRef]
- Huang, B.; Guan, Y.; Chen, W.; Yu, H. Membrane Fouling Characteristics and Mitigation in a Coagulation-Assisted Microfiltration Process for Municipal Wastewater Pretreatment. Water Res. 2017, 123, 216–223. [Google Scholar] [CrossRef]
- Gkotsis, P.K.; Batsari, E.L.; Peleka, E.N.; Tolkou, A.K.; Zouboulis, A.I. Fouling Control in a Lab-Scale MBR System: Comparison of Several Commercially Applied Coagulants. J. Environ. Manag. 2016, 203, 838–846. [Google Scholar] [CrossRef]
- Lamb, L.H.; Decusati, O.G. Manufacturing Process for Quaternary Ammoniumtannate, a Vegetable Coagulating/Flocculating Agent. U.S. Patent 6478986B1, 12 November 2002. [Google Scholar]
- Franci Gonçalves, R.; Zotele Azeredo, L.; Lucas Subtil, E. Investigating the Use of Coagulants and Ca2+-Rich Steel Residues as an Anti-Fouling Strategy in the Ultrafiltration of Microalgae: Towards Sustainable Resource Recovery from Wastewater. Sep. Purif. Technol. 2024, 349, 127738. [Google Scholar] [CrossRef]
- Lebron, Y.A.R.; Moreira, V.R.; Furtado, T.P.B.; da Silva, S.C.; Lange, L.C.; Amaral, M.C.S. Vinasse Treatment Using Hybrid Tannin-Based Coagulation-Microfiltration-Nanofiltration Processes: Potential Energy Recovery, Technical and Economic Feasibility Assessment. Sep. Purif. Technol. 2020, 248, 117152. [Google Scholar] [CrossRef]
- Ragio, R.A.; Arantes, C.C.; García, J.; Subtil, E.L. Assessment of Natural Tannin-Based Coagulant for Effective Ultrafiltration (UF) of UASB Effluent: Fouling Mechanisms, Pollutant Removal and Water Reclamation Feasibility. J. Environ. Chem. Eng. 2023, 11, 109778. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Li, Q. Fouling of Microfiltration Membranes by Organic Polymer Coagulants and Flocculants: Controlling Factors and Mechanisms. Water Res. 2011, 45, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, C.; Li, Q. Impact of Polymer Flocculants on Coagulation-Microfiltration of Surface Water. Water Res. 2013, 47, 4538–4546. [Google Scholar] [CrossRef]
- Amokrane, A.; Comel, C.; Veron, J. Landfill Leachates Pretreatment by Coagulation-Flocculation. Water Res. 1997, 31, 2775–2782. [Google Scholar] [CrossRef]
- Rukapan, W.; Khananthai, B.; Srisukphun, T.; Chiemchaisri, W.; Chiemchaisri, C. Comparison of Reverse Osmosis Membrane Fouling Characteristics in Full-Scale Leachate Treatment Systems with Chemical Coagulation and Microfiltration Pre-Treatments. Water Sci. Technol. 2015, 71, 580–587. [Google Scholar] [CrossRef]
- Wu, J.; Huang, X. Effect of Mixed Liquor Properties on Fouling Propensity in Membrane Bioreactors. J. Membr. Sci. 2009, 342, 88–96. [Google Scholar] [CrossRef]
- Gao, W.J.; Han, M.N.; Qu, X.; Xu, C.; Liao, B.Q. Characteristics of Wastewater and Mixed Liquor and Their Role in Membrane Fouling. Bioresour. Technol. 2013, 128, 207–214. [Google Scholar] [CrossRef]
- Moochani, M.; Moghadassi, A.; Hosseini, S.M.; Bagheripour, E.; Parvizian, F. Fabrication of Novel Polyethersulfone Based Nanofiltration Membrane by Embedding Polyaniline-Co-Graphene Oxide Nanoplates. Korean J. Chem. Eng. 2016, 32, 2674–2683. [Google Scholar] [CrossRef]
- Subtil, E.L.; Mierzwa, J.C.; Hespanhol, I. Comparison between a Conventional Membrane Bioreactor (C-MBR) and a Biofilm Membrane Bioreactor (BF-MBR) for Domestic Wastewater Treatment. Braz. J. Chem. Eng. 2014, 31, 683–691. [Google Scholar] [CrossRef]
- Juang, L.C.; Tseng, D.H.; Chen, Y.M.; Semblante, G.U.; You, S.J. The Effect Soluble Microbial Products (SMP) on the Quality and Fouling Potential of MBR Effluent. Desalination 2013, 326, 96–102. [Google Scholar] [CrossRef]
- Matsubara, M.E.; Helwig, K.; Hunter, C.; Roberts, J.; Subtil, E.L.; Coelho, L.H.G. Amoxicillin Removal by Pre-Denitrification Membrane Bioreactor (A/O-MBR): Performance Evaluation, Degradation by-Products, and Antibiotic Resistant Bacteria. Ecotoxicol. Environ. Saf. 2020, 192, 110258. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Skoronski, E.; Trevisan, V.; Alves, M.V.; Ely, C.; João, J.J. Aplicação de Tanino Como Coagulante No Reuso da Água de Lavação de Automóveis e a Utilização do Lodo na Agricultura. REDE-Rev. Eletrônica Prodema 2015, 9, 51–61. [Google Scholar]
- Long, Y.; Xu, J.; Shen, D.; Du, Y.; Feng, H. Effective Removal of Contaminants in Landfill Leachate Membrane Concentrates by Coagulation. Chemosphere 2017, 167, 512–519. [Google Scholar] [CrossRef]
- Pelegrino, E.C.F. Emprego de Coagulante À Base de Tanino Em Sistema de Pós-Tratamento de Efluente de Reator UASB Por Flotação. Master’s Thesis, Escola de Engenharia de São Carlos, São Carlos, Brazil, 2011. [Google Scholar]
- Sabouhi, M.; Torabian, A.; Bozorg, A.; Mehrdadi, N. A Novel Convenient Approach toward the Fouling Alleviation in Membrane Bioreactors Using the Combined Methods of Oxidation and Coagulation. J. Water Process Eng. 2020, 33, 101018. [Google Scholar] [CrossRef]
- Park, H.; Chang, I.; Lee, K. Principles of Membrane Bioreactors for Wastewater Treatment; Taylor, F., Ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9781466590380. [Google Scholar]
- Zhang, Z.; Wang, Y.; Leslie, G.L.; Waite, T.D. Effect of Ferric and Ferrous Iron Addition on Phosphorus Removal and Fouling in Submerged Membrane Bioreactors. Water Res. 2015, 69, 210–222. [Google Scholar] [CrossRef]
- Di Bella, G.; Di Trapani, D. A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs). Membranes 2019, 9, 29. [Google Scholar] [CrossRef]
- Subtil, E.L.; Gonçalves, J.; Lemos, H.G.; Venancio, E.C.; Mierzwa, J.C.; dos Santos de Souza, J.; Alves, W.; Le-Clech, P. Preparation and Characterization of a New Composite Conductive Polyethersulfone Membrane Using Polyaniline (PANI) and Reduced Graphene Oxide (rGO). Chem. Eng. J. 2020, 390, 124612. [Google Scholar] [CrossRef]
- Subtil, E.L.; Almeria Ragio, R.; Lemos, H.G.; Scaratti, G.; García, J.; Le-Clech, P. Direct Membrane Filtration (DMF) of Municipal Wastewater by Mixed Matrix Membranes (MMMs) Filled with Graphene Oxide (GO): Towards a Circular Sanitation Model. Chem. Eng. J. 2022, 441, 136004. [Google Scholar] [CrossRef]
- Zuriaga-Agustí, E.; Mendoza-Roca, J.A.; Bes-Piá, A.; Alonso-Molina, J.L.; Muñagorri-Mañueco, F.; Ortiz-Villalobos, G.; Fernández-Giménez, E. Comparison between Mixed Liquors of Two Side-Stream Membrane Bioreactors Treating Wastewaters from Waste Management Plants with High and Low Solids Anaerobic Digestion. Water Res. 2016, 100, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H. Membrane Bioreactor Processes: Principles and Applications. In Advances in Water and Wastewater Transport and Treatment; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–452. ISBN 978-1-4822-5584-3. [Google Scholar]
- Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite. J. Membr. Sci. 2011, 375, 284–294. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, W.; Xu, H.; Yang, W.; Kong, Q.; Wang, A.; Ding, M. Fabrication of a Novel Antifouling Polysulfone Membrane with in Situ Embedment of Mxene Nanosheets. Int. J. Environ. Res. Public Health 2019, 16, 4659. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Peláez, M.; Morgan-Sagastume, J.M.; Noyola, A. Fouling Layer Characterization and Pore-Blocking Mechanisms in an UF Membrane Externally Coupled to a UASB Reactor. Water 2017, 43, 573–580. [Google Scholar] [CrossRef]
- Wang, F.; Tarabara, V.V. Pore Blocking Mechanisms during Early Stages of Membrane Fouling by Colloids. J. Colloid. Interface Sci. 2008, 328, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, J.C. The Simultaneous Analysis of Total Nitrogen and Total Phosphorus in Natural Waters. Mar. Chem. 1981, 10, 109–122. [Google Scholar] [CrossRef]
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2011; ISBN 9781856174817. [Google Scholar]
- Lowry, O.; Rosebrough, N.; Lewis, A.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A New Method for Rapid Determination of Carbohydrate and Total Carbon Concentrations Using UV Spectrophotometry. Carbohydr. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Z.; Zhang, X. New Insight into the Effect of Mixed Liquor Properties Changed by Pre-Ozonation on Ceramic UF Membrane Fouling in Wastewater Treatment. Chem. Eng. J. 2017, 314, 670–680. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, M.; Wang, F.; Meng, F.; Liao, B.Q.; Hong, H.; Chen, J.; Gao, W. A Critical Review of Extracellular Polymeric Substances (EPSs) in Membrane Bioreactors: Characteristics, Roles in Membrane Fouling and Control Strategies. J. Membr. Sci. 2014, 460, 110–125. [Google Scholar] [CrossRef]
- Yao, M.; Nan, J.; Chen, T.; Zhan, D.; Li, Q.; Wang, Z.; Li, H. Influence of Flocs Breakage Process on Membrane Fouling in Coagulation/Ultrafiltration Process-Effect of Additional Coagulant of Poly-Aluminum Chloride and Polyacrylamide. J. Membr. Sci. 2015, 491, 63–72. [Google Scholar] [CrossRef]
- Cho, M.H.; Lee, C.H.; Lee, S. Effect of Flocculation Conditions on Membrane Permeability in Coagulation-Microfiltration. Desalination 2006, 191, 386–396. [Google Scholar] [CrossRef]
- Villain, M.; Bourven, I.; Guibaud, G.; Marrot, B. Bioresource Technology Impact of Synthetic or Real Urban Wastewater on Membrane Bioreactor (MBR) Performances and Membrane Fouling under Stable Conditions. Bioresour. Technol. 2014, 155, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Z.; Zhou, Z.; Yu, G.; Gu, G. Sludge Rheological and Physiological Characteristics in a Pilot-Scale Submerged Membrane Bioreactor. Desalination 2007, 212, 152–164. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Gong, C. Effect of On-Line Ultrasound on the Properties of Activated Sludge Mixed Liquor and the Controlling of Membrane Fouling in SMBR. Desalination Water Treat. 2013, 51, 3938–3947. [Google Scholar] [CrossRef]
- Li, X.; Wang, X. Modelling of Membrane Fouling in a Submerged Membrane Bioreactor. J. Membr. Sci. 2006, 278, 151–161. [Google Scholar] [CrossRef]
- Sun, F.Y.; Li, X.Y. Evaluation of the Importance of Various Operating and Sludge Property Parameters to the Fouling of Membrane Bioreactors. Water Sci. Technol. 2011, 64, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Ozgun, H.; Tao, Y.; Ersahin, M.E.; Zhou, Z.; Gimenez, J.B.; Spanjers, H.; van Lier, J.B. Impact of Temperature on Feed-Flow Characteristics and Filtration Performance of an Upflow Anaerobic Sludge Blanket Coupled Ultrafiltration Membrane Treating Municipal Wastewater. Water Res. 2015, 83, 71–83. [Google Scholar] [CrossRef]
- Grenier, A.; Meireles, M.; Aimar, P.; Carvin, P. Chemical Engineering Research and Design Analysing Flux Decline in Dead-End Filtration. Chem. Eng. Res. Des. 2008, 86, 1281–1293. [Google Scholar] [CrossRef]
- Brião, V.B.; Tavares, C.R.G. PORE BLOCKING MECHANISM for the RECOVERY of MILK SOLIDS from DAIRY WASTEWATER by ULTRAFILTRATION. Braz. J. Chem. Eng. 2012, 29, 393–407. [Google Scholar] [CrossRef]
- Indok Nurul Hasyimah, M.A.; Mohammad, A.W. Assessment of Fouling Mechanisms in Treating Organic Solutes Synthesizing Glycerin—Water Solutions by Modified Hermia Model. Ind. Eng. Chem. Res. 2014, 53, 15213–15221. [Google Scholar] [CrossRef]
- Wang, X.; Li, X. Accumulation of Biopolymer Clusters in a Submerged Membrane Bioreactor and Its Effect on Membrane Fouling. Water Res. 2008, 42, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wang, X.; Li, X. Visualisation and Characterisation of Biopolymer Clusters in a Submerged Membrane Bioreactor. J. Membr. Sci. 2008, 325, 691–697. [Google Scholar] [CrossRef]
- Ferraz, F.M.; Povinelli, J.; Pozzi, E.; Vieira, E.M.; Tro, J.C. Co-Treatment of Landfill Leachate and Domestic Wastewater Using a Submerged Aerobic Biofilter. J. Environ. Manag. 2014, 141, 9–15. [Google Scholar] [CrossRef]
- Julio, M.; Bernardo, L.D.; Julio, T.S.; Campos, S.X.; Vieira, E.M. Removal of Humic Substances with Different Apparent Molecular Sizes Using Fenton’s Reagent. Desalination Water Treat. 2012, 46, 139–148. [Google Scholar] [CrossRef]
- Gkotsis, P.; Peleka, E.; Zamboulis, D.; Mitrakas, M.; Tolkou, A.; Zouboulis, A. Wastewater Treatment in Membrane Bioreactors: The Use of Polyelectrolytes to Control Membrane Fouling. Environ. Process. 2017, 4, 9–21. [Google Scholar] [CrossRef]
- Yao, M.; Nan, J.; Li, Q.; Zhan, D.; Chen, T.; Wang, Z.; Li, H. Effect of Under-Dosing Coagulant on Coagulation-Ultrafiltration Process for Treatment of Humic-Rich Water with Divalent Calcium Ion. J. Membr. Sci. 2015, 495, 37–47. [Google Scholar] [CrossRef]
- Ji, J.; Qiu, J.; Wai, N.; Wong, F.S.; Li, Y. Influence of Organic and Inorganic Flocculants on Physical-Chemical Properties of Biomass and Membrane-Fouling Rate. Water Res. 2010, 44, 1627–1635. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Li, W.; Wen, Y.; Fu, X.; Chang, J. Variations of Sludge Characteristics during the Advanced Anaerobic Digestion Process and the Dewaterability of the Treated Sludge Conditioning with PFS, PDMDAAC and Synthesized PFS-PDMDAAC. Water Sci. Technol. 2018, 78, 1189–1198. [Google Scholar] [CrossRef]
- Odriozola, M.; Lousada-Ferreira, M.; Spanjers, H.; van Lier, J.B. Effect of Sludge Characteristics on Optimal Required Dosage of Flux Enhancer in Anaerobic Membrane Bioreactors. J. Membr. Sci. 2021, 619, 118776. [Google Scholar] [CrossRef]
- Geng, Z.; Hall, E.R.; Bérubé, P.R. Roles of Various Mixed Liquor Constituents in Membrane Filtration of Activated Sludge. Desalination Water Treat. 2009, 1, 139–149. [Google Scholar] [CrossRef]
- Yu, W.; Liu, M.; Zhang, X.; Graham, N.; Qu, J. Effect of Pre-Coagulation Using Different Aluminium Species on Crystallization of Cake Layer and Membrane Fouling. npj Clean. Water 2019, 2, 17. [Google Scholar] [CrossRef]
- Yue, X.; Koh, Y.K.K.; Ng, H.Y. Effects of Dissolved Organic Matters (DOMs) on Membrane Fouling in Anaerobic Ceramic Membrane Bioreactors (AnCMBRs) Treating Domestic Wastewater. Water Res. 2015, 86, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Kim, P.; Kim, H.G.; Kim, J.H. Membrane Fouling Mechanisms in Combined Microfiltration-Coagulation of Algal Rich Water Applying Ceramic Membranes. Membranes 2019, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, X. Effect of Dosing Polymeric Ferric Sulfate on Fouling Characteristics, Mixed Liquor Properties and Performance in a Long-Term Running Membrane Bioreactor. Sep. Purif. Technol. 2008, 63, 45–52. [Google Scholar] [CrossRef]
- Gkotsis, P.; Zouboulis, A.; Mitrakas, M. Using Additives for Fouling Control in a Lab-Scale MBR. Comparing the Anti-Fouling Potential of Coagulants, PAC and Bio-Film Carriers. Membranes 2020, 10, 42. [Google Scholar] [CrossRef]
- Silva, N.C.M.; Moravia, W.G.; Amaral, M.C.S.; Figueiredo, K.C.D.S. Evaluation of Fouling Mechanisms in Nanofiltration as a Polishing Step of Yeast MBR-Treated Landfill Leachate. Environ. Technol. 2018, 40, 3611–3621. [Google Scholar] [CrossRef]
- Lin, Y. Effects of Organic, Biological and Colloidal Fouling on the Removal of Pharmaceuticals and Personal Care Products by Nanofiltration and Reverse Osmosis Membranes. J. Membr. Sci. 2017, 542, 342–351. [Google Scholar] [CrossRef]
- Castrillón, L.; Fernández-Nava, Y.; Ulmanu, M.; Anger, I.; Marañón, E. Physico-Chemical and Biological Treatment of MSW Landfill Leachate. Waste Manag. 2010, 30, 228–235. [Google Scholar] [CrossRef]
- Macruz, P.D. Avaliação do Tratamento do Chorume de Aterro Sanitário por Processo de Coagulação/Floculação com o Coagulante Tanino e Policloreto de Aluminio (Pac); Universidade Federal Tecnológica do Paraná (Uftpr): Curitiba, Brazil, 2015. [Google Scholar]
- Ferreira, D.S. Estudo Comparativo da Coagulação/Floculação e Eletrocoagulação no Tratamento de Lixiviado de Aterro; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Sun, G.; Zhang, C.; Li, W.; Yuan, L.; He, S.; Wang, L. Effect of Chemical Dose on Phosphorus Removal and Membrane Fouling Control in a UCT-MBR. Front. Environ. Sci. Eng. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Gonçalves, J.; Baldovi, A.; Chyoshi, B.; Zanata, L.; Moyano, A.; Subtil, E.L.; Coelho, L.H. Effect of Aluminum Sulfate and Cationic Polymer Addition in Single-Stage Submerged Membrane Bioreactors (SMBRs): Orthophosphate Removal and Sludge Filterability Improvement. Braz. J. Chem. Eng. 2019, 36, 210–222. [Google Scholar] [CrossRef]
- Arismendi, W.A.; Ortiz-Ardila, A.E.; Delgado, C.V.; Lugo, L.; Sequeda-Castañeda, L.G.; Celis-Zambrano, C.A. Modified Tannins and Their Application in Wastewater Treatment. Water Sci. Technol. 2018, 78, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.R. Tratamento de Lixiviado de Aterro Sanitário Por Coagulação/Floculação; Universidade Federal do Mato Grosso: Cuiabá, Brazil, 2017. [Google Scholar]
- Pedroso, K.; Tavares, C.R.G.; Janeiro, V.; Silva, T.L.; Dias, P.Z. Avaliação do Tratamento do Lixiviado do Aterro Sanitário de Maringá, Paraná, por Processo de Coagulação/Floculação Com Tanfloc SG. Rev. Eng. Tecnol. 2012, 4, 87–98. [Google Scholar]
- Dassanayake, K.B.; Jayasinghe, G.Y.; Surapaneni, A.; Hetherington, C. A Review on Alum Sludge Reuse with Special Reference to Agricultural Applications and Future Challenges. Waste Manag. 2015, 38, 321–335. [Google Scholar] [CrossRef]
- Dela Justina, M.; Skoronski, E. Environmental and Agronomical Aspects of Sludge Produced from Tannin-Based Coagulants in Dairy Industry Wastewater Treatment. Waste Biomass Valorization 2020, 11, 1385–1392. [Google Scholar] [CrossRef]
Sample | Mixed Liquor Affluent | Coagulant Dosage |
---|---|---|
1 | Synthetic wastewater | 0 |
2 | Synthetic wastewater + LL 20 % (v/v) | 0 |
3 | Synthetic wastewater + LL 20 % (v/v) | 30 mgPACl 1 L−1 |
4 | Synthetic wastewater + LL 20 % (v/v) | 30 mgTanfloc 2 L−1 |
Affluent | Jw0 (LMH) | J (LMH) | FL (%) | FRR (%) | |||||
---|---|---|---|---|---|---|---|---|---|
FLt | FLr | FLio | FLir | FRRT | FRRPC | FRRCC | |||
sWW | 27.3 | 8.1 | 70 | 23 | 37 | 11 | 89 | 53 | 37 |
sWW + LL | 35.8 | 10.7 | 70 | 31 | 18 | 21 | 79 | 61 | 18 |
Affluent | Resistance (1012 m−1) | |||||
---|---|---|---|---|---|---|
Total (Rt) | Membrane (Rm) | Fouling (Rf) | Fouling Type | |||
Cake Layer (Rc) | Internal Organic (Rio) | Irrecoverable + Internal Inorganic (Rir) | ||||
sWW | 3.92 | 1.32 | 2.60 | 1.41 | 1.03 | 0.16 |
(34%) | (66%) | (54%) | (40%) | (6%) | ||
sWW + LL | 3.13 | 1.00 | 2.12 | 1.48 | 0.38 | 0.27 |
(32%) | (68%) | (70%) | (18%) | (13%) |
Affluent | Linear Correlation Coefficient R2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–30 min | 30–60 min | 60–120 min | ||||||||||
CB | IB | SB | CF | CB | IB | SB | CF | CB | IB | SB | CF | |
sWW | 0.976 | 0.993 | 0.993 | 0.996 | 0.720 | 0.834 | 0.834 | 0.831 | 0.909 | 0.932 | 0.932 | 0.938 |
sWW + LL | 0.911 | 0.943 | 0.943 | 0.947 | 0.638 | 0.687 | 0.687 | 0.686 | 0.974 | 0.983 | 0.983 | 0.986 |
Affluent | Jw0 (LMH) | J (LMH) | FL (%) | FRR (%) | |||||
---|---|---|---|---|---|---|---|---|---|
FLt | FLr | FLio | FLir | FRRT | FRRPC | FRRCC | |||
sWW + LL | 35.8 | 10.7 | 70 | 31 | 18 | 21 | 79 | 61 | 18 |
sWW + LL + PACl | 25.7 | 7.5 | 71 | 48 | 9 | 14 | 86 | 77 | 9 |
sWW + LL + Tanfloc | 30.9 | 7.6 | 75 | 34 | 30 | 12 | 88 | 58 | 30 |
Affluent | Resistance (1012 m−1) | |||||
---|---|---|---|---|---|---|
Total (Rt) | Membrane (Rm) | Fouling (Rf) | Fouling Type | |||
Cake Layer (Rc) | Internal Organic (Rio) | Irrecoverable + Internal Inorganic (Rir) | ||||
sWW + LL | 3.13 | 1.00 | 2.12 | 1.48 | 0.38 | 0.27 |
(32%) | (68%) | (70%) | (18%) | (13%) | ||
sWW + LL + PACl | 4.24 | 1.40 | 2.85 | 2.43 | 0.19 | 0.25 |
(33%) | (67%) | (86%) | (7%) | (8%) | ||
sWW + LL + Tanfloc | 4.28 | 1.16 | 3.11 | 2.28 | 0.65 | 0.19 |
(27%) | (73%) | (73%) | (21%) | (6%) |
Affluent | Linear Correlation Coefficient (R2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–30 min | 30–60 min | 60–120 min | ||||||||||
CB | IB | SB | CF | CB | IB | SB | CF | CB | IB | SB | CF | |
sWW + LL | 0.911 | 0.943 | 0.943 | 0.947 | 0.638 | 0.687 | 0.687 | 0.686 | 0.974 | 0.983 | 0.983 | 0.986 |
sWW + LL + PACl | 0.945 | 0.974 | 0.974 | 0.979 | 0.998 | 0.951 | 0.951 | 0.955 | 0.971 | 0.932 | 0.932 | 0.924 |
sWW + LL + Tanfloc | 0.362 | 0.105 | 0.105 | 0.101 | 0.564 | 0.601 | 0.601 | 0.598 | 0.977 | 1.000 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragio, R.A.; Santana, A.C.; Subtil, E.L. Landfill Leachate and Coagulants Addition Effects on Membrane Bioreactor Mixed Liquor: Filterability, Fouling, and Pollutant Removal. Membranes 2024, 14, 212. https://doi.org/10.3390/membranes14100212
Ragio RA, Santana AC, Subtil EL. Landfill Leachate and Coagulants Addition Effects on Membrane Bioreactor Mixed Liquor: Filterability, Fouling, and Pollutant Removal. Membranes. 2024; 14(10):212. https://doi.org/10.3390/membranes14100212
Chicago/Turabian StyleRagio, Rodrigo Almeria, Ana Carolina Santana, and Eduardo Lucas Subtil. 2024. "Landfill Leachate and Coagulants Addition Effects on Membrane Bioreactor Mixed Liquor: Filterability, Fouling, and Pollutant Removal" Membranes 14, no. 10: 212. https://doi.org/10.3390/membranes14100212
APA StyleRagio, R. A., Santana, A. C., & Subtil, E. L. (2024). Landfill Leachate and Coagulants Addition Effects on Membrane Bioreactor Mixed Liquor: Filterability, Fouling, and Pollutant Removal. Membranes, 14(10), 212. https://doi.org/10.3390/membranes14100212