Effects of Different TiO2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modification of the Membranes
2.2. Functionalization of MWCNT
2.3. Filtration Experiments
2.4. Characterization Methods
2.4.1. Purification Efficiency
2.4.2. Membrane Surface Characterization
2.4.3. Gas Chromatography–Mass Spectrometry (GC-MS) Measurements of Crude Oils
2.4.4. Characterization of Functionalized Carbon Nanotubes
3. Results and Discussion
3.1. FT-IR Characterization of the MWCNTs
3.2. Filtration Performance of the Membranes
3.3. Composition Analysis of Crude Oil Samples by Gas Chromatography
3.4. Filtration Resistances
3.5. Comparison of the Surface Characteristics and the Filtration Properties
3.6. Oil Removal Efficiency
3.7. Comparative Discussion of the Results with Relevant Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Putatunda, S.; Bhattacharya, S.; Sen, D.; Bhattacharjee, C. A Review on the Application of Different Treatment Processes for Emulsified Oily Wastewater. Int. J. Environ. Sci. Technol. 2018, 16, 2525–2536. [Google Scholar] [CrossRef]
- Yu, L.; Han, M.; He, F. A Review of Treating Oily Wastewater. Arab. J. Chem. 2017, 10, S1913–S1922. [Google Scholar] [CrossRef]
- Abuhasel, K.; Kchaou, M.; Alquraish, M.; Munusamy, Y.; Jeng, Y.T. Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. Water 2021, 13, 980. [Google Scholar] [CrossRef]
- Kundu, P.; Mishra, I.M. Treatment and Reclamation of Hydrocarbon-Bearing Oily Wastewater as a Hazardous Pollutant by Different Processes and Technologies: A State-of-the-Art Review. Rev. Chem. Eng. 2018, 35, 73–108. [Google Scholar] [CrossRef]
- Radelyuk, I.; Tussupova, K.; Zhapargazinova, K. Impact of Oily Wastewater for Public Health in Rural Area: A Case Study of Kazakhstan; Copernicus GmbH: Göttingen, Germany, 2020. [Google Scholar]
- Shi, G.; Wu, M.; Zhong, Q.; Mu, P.; Li, J. Superhydrophobic Waste Cardboard Aerogels as Effective and Reusable Oil Absorbents. Langmuir 2021, 37, 7843–7850. [Google Scholar] [CrossRef] [PubMed]
- al deen Atallah Ali, D.; Palaniandy, P.; Feroz, S. Advanced Oxidation Processes (AOPs) to Treat the Petroleum Wastewater. In Advances in Environmental Engineering and Green Technologies; IGI Global: Hershey, PA, USA, 2019; pp. 99–122. [Google Scholar]
- Nascimbén Santos, É.; László, Z.; Hodúr, C.; Arthanareeswaran, G.; Veréb, G. Photocatalytic Membrane Filtration and Its Advantages over Conventional Approaches in the Treatment of Oily Wastewater: A Review. Asia-Pac. J. Chem. Eng. 2020, 15, e2533. [Google Scholar] [CrossRef]
- Gan, S.; Li, H.; Zhu, X.; Liu, X.; Wei, K.; Zhu, L.; Wei, B.; Luo, X.; Zhang, J.; Xue, Q. Constructing Scalable Membrane with Tunable Wettability by Electrolysis-Induced Interface pH for Oil–Water Separation. Adv. Funct. Mater. 2023, early view. [Google Scholar] [CrossRef]
- Otitoju, T.A.; Ahmad, A.L.; Ooi, B.S. Recent Advances in Hydrophilic Modification and Performance of Polyethersulfone (PES) Membrane via Additive Blending. RSC Adv. 2018, 8, 22710–22728. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, W.; Zhang, F.; Xing, T.; Jin, J. Superhydrophilic In-Situ-Cross-Linked Zwitterionic Polyelectrolyte/PVDF-Blend Membrane for Highly Efficient Oil/Water Emulsion Separation. ACS Appl. Mater. Interfaces 2017, 9, 9603–9613. [Google Scholar] [CrossRef]
- Nascimben Santos, E.; Fazekas, Á.; Hodúr, C.; László, Z.; Beszédes, S.; Scheres Firak, D.; Gyulavári, T.; Hernádi, K.; Arthanareeswaran, G.; Veréb, G. Statistical Analysis of Synthesis Parameters to Fabricate PVDF/PVP/TiO2 Membranes via Phase-Inversion with Enhanced Filtration Performance and Photocatalytic Properties. Polymers 2021, 14, 113. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Wu, T. A Superhydrophilic and Underwater Superoleophobic Chitosan–TiO2 Composite Membrane for Fast Oil-in-Water Emulsion Separation. RSC Adv. 2017, 7, 41838–41846. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Q.; Sun, Q.; Xiang, B.; Li, J. Upcycling Waste Pine Nut Shell Membrane for Highly Efficient Separation of Crude Oil-in-Water Emulsion. Langmuir 2022, 38, 3493–3500. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite Membranes for Water Separation and Purification: Fabrication, Modification, and Applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Krishnan, S.A.G.; Sasikumar, B.; Arthanareeswaran, G.; László, Z.; Nascimben Santos, E.; Veréb, G.; Kertész, S. Surface-Initiated Polymerization of PVDF Membrane Using Amine and Bismuth Tungstate (BWO) Modified MIL-100(Fe) Nanofillers for Pesticide Photodegradation. Chemosphere 2022, 304, 135286. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Q.; Pan, X.; Jin, Y.; Lu, W.; Ding, D.; Guo, Q. Graphene Oxide/Polyacrylonitrile Fiber Hierarchical-Structured Membrane for Ultra-Fast Microfiltration of Oil-Water Emulsion. Chem. Eng. J. 2017, 307, 643–649. [Google Scholar] [CrossRef]
- Jianqiang, Z.; Hui, L.; Peizhi, L.; Xilu, L.; Shaopeng, G.; Xiao, C.; Lei, Z.; Baojun, W.; Qingzhong, X. Recyclable Superhydrophilic Meshes with Scalable and Robust Coating for Separating Oily Wastewater. Appl. Surf. Sci. 2022, 602, 154396. [Google Scholar] [CrossRef]
- Chen, P.-C.; Xu, Z.-K. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Sci. Rep. 2013, 3, 2776. [Google Scholar] [CrossRef]
- Kim, J.; Van der Bruggen, B. The Use of Nanoparticles in Polymeric and Ceramic Membrane Structures: Review of Manufacturing Procedures and Performance Improvement for Water Treatment. Environ. Pollut. 2010, 158, 2335–2349. [Google Scholar] [CrossRef]
- Mahdi, N.; Kumar, P.; Goswami, A.; Perdicakis, B.; Shankar, K.; Sadrzadeh, M. Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes for Water Treatment. Nanomaterials 2019, 9, 1186. [Google Scholar] [CrossRef]
- de Oliveira, C.P.M.; Fernandes Farah, I.; Koch, K.; Drewes, J.E.; Viana, M.M.; Amaral, M.C.S. TiO2-Graphene Oxide Nanocomposite Membranes: A Review. Sep. Purif. Technol. 2022, 280, 119836. [Google Scholar] [CrossRef]
- Fekete, L.; Fazekas, Á.F.; Hodúr, C.; László, Z.; Ágoston, Á.; Janovák, L.; Gyulavári, T.; Pap, Z.; Hernadi, K.; Veréb, G. Outstanding Separation Performance of Oil-in-Water Emulsions with TiO2/CNT Nanocomposite-Modified PVDF Membranes. Membranes 2023, 13, 209. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zou, X.; Zhao, Z.; Zhou, J.; Li, S.; Yin, H.; Wang, J. Hydrophilic PAA-g-MWCNT/TiO2@PES Nano-Matrix Composite Membranes: Anti-Fouling, Antibacterial and Photocatalytic. Eur. Polym. J. 2022, 168, 111006. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A. An Electronic Nose Based on Carbon Nanotube -Titanium Dioxide Hybrid Nanostructures for Detection and Discrimination of Volatile Organic Compounds. Sens. Actuators B Chem. 2022, 357, 131418. [Google Scholar] [CrossRef]
- Veréb, G.; Kálmán, V.; Gyulavári, T.; Kertész, S.; Beszédes, S.; Kovács, G.; Hernádi, K.; Pap, Z.; Hodúr, C.; László, Z. Advantages of TiO2/Carbon Nanotube Modified Photocatalytic Membranes in the Purification of Oil-in-Water Emulsions. Water Supply 2018, 19, 1167–1174. [Google Scholar] [CrossRef]
- Veréb, G.; Kassai, P.; Nascimben Santos, E.; Arthanareeswaran, G.; Hodúr, C.; László, Z. Intensification of the Ultrafiltration of Real Oil-Contaminated (Produced) Water with Pre-Ozonation and/or with TiO2, TiO2/CNT Nanomaterial-Coated Membrane Surfaces. Environ. Sci. Pollut. Res. 2020, 27, 22195–22205. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, R.; Wang, Q.; Zheng, Y.; Li, G.; Sun, D.; Wu, T.; Li, Y. Superwetting TiO2-Decorated Single-Walled Carbon Nanotube Composite Membrane for Highly Efficient Oil-in-Water Emulsion Separation. Korean J. Chem. Eng. 2020, 37, 2054–2063. [Google Scholar] [CrossRef]
- Venkatesh, K.; Arthanareeswaran, G.; Chandra Bose, A.; Suresh Kumar, P.; Kweon, J. Diethylenetriaminepentaacetic Acid-Functionalized Multi-Walled Carbon Nanotubes/Titanium Oxide-PVDF Nanofiber Membrane for Effective Separation of Oil/Water Emulsion. Sep. Purif. Technol. 2021, 257, 117926. [Google Scholar] [CrossRef]
- Tian, S.; He, Y.; Zhang, L.; Li, S.; Bai, Y.; Wang, Y.; Wu, J.; Yu, J.; Guo, X. CNTs/TiO2- Loaded Carbonized Nanofibrous Membrane with Two-Type Self-Cleaning Performance for High Efficiency Oily Wastewater Remediation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130306. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Tyler, J.L.; Stretz, H.A.; Wells, M.J.M. Effects of a Dual Nanofiller, Nano-TiO2 and MWCNT, for Polysulfone-Based Nanocomposite Membranes for Water Purification. Desalination 2015, 372, 47–56. [Google Scholar] [CrossRef]
- Moslehyani, A.; Ismail, A.F.; Othman, M.H.D.; Matsuura, T. Design and Performance Study of Hybrid Photocatalytic Reactor-PVDF/MWCNT Nanocomposite Membrane System for Treatment of Petroleum Refinery Wastewater. Desalination 2015, 363, 99–111. [Google Scholar] [CrossRef]
- Nascimben Santos, E.; Ágoston, Á.; Kertész, S.; Hodúr, C.; László, Z.; Pap, Z.; Kása, Z.; Alapi, T.; Krishnan, S.A.G.; Arthanareeswaran, G.; et al. Investigation of the Applicability of TiO2, BiVO4, and WO3 Nanomaterials for Advanced Photocatalytic Membranes Used for Oil-in-water Emulsion Separation. Asia-Pac. J. Chem. Eng. 2020, 15, e2549. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. Oxidative Acid Treatment of Carbon Nanotubes. Surf. Interfaces 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Kovács, I.; Veréb, G.; Kertész, S.; Hodúr, C.; László, Z. Fouling Mitigation and Cleanability of TiO2 Photocatalyst-Modified PVDF Membranes during Ultrafiltration of Model Oily Wastewater with Different Salt Contents. Environ. Sci. Pollut. Res. 2017, 25, 34912–34921. [Google Scholar] [CrossRef]
- Kim, J.Y. Carbon Nanotube-Reinforced Thermotropic Liquid Crystal Polymer Nanocomposites. Materials 2009, 2, 1955–1974. [Google Scholar] [CrossRef]
- Kim, U.J.; Furtado, C.A.; Liu, X.; Chen, G.; Eklund, P.C. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127, 15437–15445. [Google Scholar] [CrossRef]
- Efimov, A.M.; Pogareva, V.G.; Shashkin, A.V. Water-Related Bands in the IR Absorption Spectra of Silicate Glasses. J. Non-Cryst. Solids 2003, 332, 93–114. [Google Scholar] [CrossRef]
- Hastings, S.H.; Watson, A.T.; Williams, R.B.; Anderson, J.A., Jr. Determination of Hydrocarbon Functional Groups by Infrared Spectroscopy. Anal. Chem. 1952, 24, 612–618. [Google Scholar] [CrossRef]
- de Menezes, B.R.C.; Ferreira, F.V.; Silva, B.C.; Simonetti, E.A.N.; Bastos, T.M.; Cividanes, L.S.; Thim, G.P. Effects of Octadecylamine Functionalization of Carbon Nanotubes on Dispersion, Polarity, and Mechanical Properties of CNT/HDPE Nanocomposites. J. Mater. Sci. 2018, 53, 14311–14327. [Google Scholar] [CrossRef]
- Abdolmohammad-Zadeh, H.; Tavarid, K.; Talleb, Z. Determination of Iodate in Food, Environmental, and Biological Samples after Solid-Phase Extraction with Ni-Al-Zr Ternary Layered Double Hydroxide as a Nanosorbent. Sci. World J. 2012, 2012, 145482. [Google Scholar] [CrossRef]
- Zhu, X.; Dudchenko, A.; Gu, X.; Jassby, D. Surfactant-Stabilized Oil Separation from Water Using Ultrafiltration and Nanofiltration. J. Membr. Sci. 2017, 529, 159–169. [Google Scholar] [CrossRef]
- Kokal, S. Crude-Oil Emulsions: A State-Of-The-Art Review. SPE Prod. Facil. 2005, 20, 5–13. [Google Scholar] [CrossRef]
- Martínez-Palou, R.; de Lourdes Mosqueira, M.; Zapata-Rendón, B.; Mar-Juárez, E.; Bernal-Huicochea, C.; de la Cruz Clavel-López, J.; Aburto, J. Transportation of Heavy and Extra-Heavy Crude Oil by Pipeline: A Review. J. Pet. Sci. Eng. 2011, 75, 274–282. [Google Scholar] [CrossRef]
- Cao, G.; Du, T.; Bai, Y.; Yang, T.; Zuo, J. Effects of Surfactant Molecular Structure on the Stability of Water in Oil Emulsion. J. Pet. Sci. Eng. 2021, 196, 107695. [Google Scholar] [CrossRef]
- Varjani, S.J. Microbial Degradation of Petroleum Hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Koshlaf, E.; Ball, A.S. Soil Bioremediation Approaches for Petroleum Hydrocarbon Polluted Environments. AIMS Microbiol. 2017, 3, 25–49. [Google Scholar] [CrossRef]
- Patil, A.; Arnesen, K.; Holte, A.; Farooq, U.; Brunsvik, A.; Størseth, T.; Johansen, S.T. Crude Oil Characterization with a New Dynamic Emulsion Stability Technique. Fuel 2021, 290, 120070. [Google Scholar] [CrossRef]
- Zhao, J.; Lu, J.P.; Han, J.; Yang, C.-K. Noncovalent Functionalization of Carbon Nanotubes by Aromatic Organic Molecules. Appl. Phys. Lett. 2003, 82, 3746–3748. [Google Scholar] [CrossRef]
- Liu, T.; Chen, S.; Liu, H. Oil Adsorption and Reuse Performance of Multi-Walled Carbon Nanotubes. Procedia Eng. 2015, 102, 1896–1902. [Google Scholar] [CrossRef]
- Kayvani Fard, A.; Mckay, G.; Manawi, Y.; Malaibari, Z.; Hussien, M.A. Outstanding Adsorption Performance of High Aspect Ratio and Super-Hydrophobic Carbon Nanotubes for Oil Removal. Chemosphere 2016, 164, 142–155. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, T.; Ma, J. Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsions: Roles Played by Stabilization Surfactants of Oil Droplets. Environ. Sci. Technol. 2015, 49, 4235–4244. [Google Scholar] [CrossRef]
- Abdulazeez, I.; Salhi, B.; Elsharif, A.M.; Ahmad, M.S.; Baig, N.; Abdelnaby, M.M. Hemin-Modified Multi-Walled Carbon Nanotube-Incorporated PVDF Membranes: Computational and Experimental Studies on Oil–Water Emulsion Separations. Molecules 2023, 28, 391. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; He, Y.; Zeng, G.; Zhan, Y.; Pan, Y.; Shi, H.; Chen, Q. Novel Hydrophilic PVDF Ultrafiltration Membranes Based on a ZrO2–Multiwalled Carbon Nanotube Hybrid for Oil/Water Separation. J. Mater. Sci. 2016, 51, 8965–8976. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; Zeng, G.; Chen, X.; Shi, H.; Qing, D.; Li, F.; Chen, Q. Bio-Inspired Method for Preparation of Multiwall Carbon Nanotubes Decorated Superhydrophilic Poly(Vinylidene Fluoride) Membrane for Oil/Water Emulsion Separation. Chem. Eng. J. 2017, 321, 245–256. [Google Scholar] [CrossRef]
- Hudaib, B.; Abu-Zurayk, R.; Waleed, H.; Ibrahim, A.A. Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment. Membranes 2022, 12, 751. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Preparation and Characterization of PVDF–PVP–TiO2composite Hollow Fiber Membranes for Oily Wastewater Treatment Using Submerged Membrane System. Desalination Water Treat. 2015, 53, 1213–1223. [Google Scholar] [CrossRef]
- Chang, Q.; Zhou, J.; Wang, Y.; Liang, J.; Zhang, X.; Cerneaux, S.; Wang, X.; Zhu, Z.; Dong, Y. Application of Ceramic Microfiltration Membrane Modified by Nano-TiO2 Coating in Separation of a Stable Oil-in-Water Emulsion. J. Membr. Sci. 2014, 456, 128–133. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Pan, Y.; Di, H.; Zeng, G.; Zhang, L.; Zhang, C. A Modified Mussel-Inspired Method to Fabricate TiO2 Decorated Superhydrophilic PVDF Membrane for Oil/Water Separation. J. Membr. Sci. 2016, 506, 60–70. [Google Scholar] [CrossRef]
Name of the MWCNT | Functionalization/ Modification | Manufacturer |
---|---|---|
CNTa | - | Nanografi |
CNTa-OH | hydroxyl groups | Nanografi |
CNTa-COOH | carboxyl groups | Nanografi |
CNTb | - | Alfa Aesar |
CNTb-HNO3 | with 15 M HNO3 | Alfa Aesar |
CNTb-H2SO4/HNO3 | with 10 M HNO3/H2SO4 | Alfa Aesar |
Membranes | Jwater (L·m−2·h−1) | Jemulsion at VRR = 1.5 (L·m−2·h−1) | Jemulsion at VRR = 5 (L·m−2·h−1) |
---|---|---|---|
Neat | 5638 | 30 | 24 |
TiO2 | 3608 | 1406 | 37 |
TiO2/CNTa | 3626 | 117 | 104 |
TiO2/CNTa-OH | 3681 | 194 | 104 |
TiO2/CNTa-COOH | 3678 | 455 | 49 |
TiO2/CNTb | 4146 | 333 | 58 |
TiO2/CNTb-HNO3 | 4419 | 774 | 45 |
TiO2/CNTb-HNO3_H2SO4 | 4255 | 678 | 69 |
Membranes | Contact Angles (°) | Zeta Potential at pH ~6 (mV) | FRR (%) | FDR (%) |
---|---|---|---|---|
Neat | 46.6 ± 1.3 | −11 ± 0.7 | 45.5 | 99.6 |
TiO2 | 0 ± 0 | −25 ± 3.4 | 71.3 | 99.0 |
TiO2/CNTa | 20.9 ± 1.9 | −30 ± 5.3 | 58.2 | 97.1 |
TiO2/CNTa-OH | 13.8 ± 0.8 | −22 ± 4.3 | 72.6 | 97.2 |
TiO2/CNTa-COOH | 4.4 ± 0.6 | −40 ± 6.8 | 72.6 | 98.7 |
TiO2/CNTb | 0 ± 0 | −5.0 ± 2.5 | 43.1 | 98.6 |
TiO2/CNTb-HNO3 | 0 ± 0 | −4.5 ± 1.3 | 44.9 | 99.0 |
TiO2/CNTb-HNO3_H2SO4 | 0 ± 0 | −6.5 ± 0.7 | 42.0 | 98.4 |
Ref. | Membrane | Modifier Material | Type of Oil (Concentration) | Pressure | Effluent Flux (Lm−2h−1) | Rejection (%) | Fouling Indicators | Oil Droplet Size (µm) |
---|---|---|---|---|---|---|---|---|
[28] | CA | TiO2/SWCNT–COOH | hexadecane (1500 ppm) | 0.1 MPa (vacuum) | ~1500 (SWCNT) ~4777 (TiO2/SWCNT) | ~98.7 (SWCNT) 99.5 (TiO2/SWCNT) | flux did not decreased after 10 cycle | 1.38–1.91 |
[29] | PVDF | DTPA/MWCNT–COOH/TiO2-PVDF | cooking oil (–) | 0.1 MPa (vacuum) | –(unmodifed) ~814 (modifed) | 97.3 ± 0.6 | flux slightly changed after 10 cycles | 2.7–3.4 |
[32] | PVDF | MWCNTox-MWCNT | synt. refinery oil (100 ppm) | 0.1 MPa | ~500 (MWCNT) ~665 (ox-MWCNT) | ~96 (MWCNT) ~99.8 (ox-MWCNT) | – | 0.47 |
[53] | PVDF | HA-MWCNT | – (200 ppm) | 0.3 Mpa | ~30 (unmodifed) ~60 (modifed) | ~60 (unmodifed) 88.7 (modifed) | (unmodifed) 82% FRR (modifed) | 0.12 |
[54] | PVDF | ZrO2-MWCNT | diesel oil (–) | 0.15 MPa | ~50 (unmodifed) ~150 (modifed) | ~90 (unmodifed) ~95 (modifed) | 76.2% FRR (unmodifed) 90% FRR (modifed) | 1.0–3.0 |
[55] | PVDF | DA/A-MWCNT | diesel oil (–) | 0.09 MPa | –(unmodifed) ~886 (modifed) | –(unmodifed) 99 (modifed) | –(unmodifed) ~90% FRR (modifed) | 1.0–10.0 |
[56] | PVDF | MWCNT-polypyrrole | crude oil (500 ppm) | 0.2 MPa | ~<30 (unmodifed) ~<100 (modifed) | 90 (unmodifed) 99.5 (modifed) | ~50% FRR (unmodifed) ~90% FRR (modifed) | 0.4 |
[57] | PVDF | TiO2 | cutting oil (250 ppm) | (vacuum) | 28 (unmodifed) 72 (modifed) | ~90 (unmodifed) ~97 (modifed) | – | 1.08 |
[58] | Ceramic (Al2O3) | TiO2 | hydraulic oil (–) | 0.16 MPa | ~245 (unmodifed) ~350 (modifed) | – | – | 6 |
[59] | PVDF | D-K/TiO2 | diesel oil (–) | 0.09 (vacuum) | –(unmodifed) ~380 (modifed) | ~99 | almost recovers its initial flux | – |
This study | PVDF | TiO2/ox-MWCNT | crude oil/400 ppm | 0.1 MPa | 24 (unmodifed) 104 (modifed) | >97 | 45.5% FRR(unmodifed) 72.6% FRR (modifed) | 0.08–1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazekas, Á.F.; Gyulavári, T.; Pap, Z.; Bodor, A.; Laczi, K.; Perei, K.; Illés, E.; László, Z.; Veréb, G. Effects of Different TiO2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters. Membranes 2023, 13, 812. https://doi.org/10.3390/membranes13100812
Fazekas ÁF, Gyulavári T, Pap Z, Bodor A, Laczi K, Perei K, Illés E, László Z, Veréb G. Effects of Different TiO2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters. Membranes. 2023; 13(10):812. https://doi.org/10.3390/membranes13100812
Chicago/Turabian StyleFazekas, Ákos Ferenc, Tamás Gyulavári, Zsolt Pap, Attila Bodor, Krisztián Laczi, Katalin Perei, Erzsébet Illés, Zsuzsanna László, and Gábor Veréb. 2023. "Effects of Different TiO2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters" Membranes 13, no. 10: 812. https://doi.org/10.3390/membranes13100812