Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = film-forming aerosol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13475 KiB  
Article
Low Thermal Stress and Instant Efficient Atomization of Narrow Viscous Microfluid Film Using a Paper Strip Located at the Edge of a Surface Acoustic Wave Atomizer
by Yulin Lei, Yusong Li, Jia Ning, Yu Gu, Chenhui Gai, Qinghe Ma, Yizhan Ding, Benzheng Wang and Hong Hu
Micromachines 2025, 16(6), 628; https://doi.org/10.3390/mi16060628 - 27 May 2025
Viewed by 410
Abstract
A traditional SAW (surface acoustic wave) atomizer directly supplies liquid to the surface of the atomized chip through a paper strip located in the path of the acoustic beam, resulting in irregular distribution of the liquid film, which generates an aerosol with an [...] Read more.
A traditional SAW (surface acoustic wave) atomizer directly supplies liquid to the surface of the atomized chip through a paper strip located in the path of the acoustic beam, resulting in irregular distribution of the liquid film, which generates an aerosol with an uneven particle size distribution and poor directional controllability, and a high heating phenomenon that can easily break the chip in the atomization process. This paper presents a novel atomization method: a paper strip located at the edge of the atomizer (PSLEA), which forms a micron-sized narrow liquid film at the junction of the atomization chip edge and the paper strip under the effect of acoustic wetting. By using this method, physical separation of the atomized aerosol and jetting droplets can be achieved at the initial stage of atomizer startup, and an ideal aerosol plume with no jetting of large droplets, a uniform particle size distribution, a vertical and stable atomization direction, and good convergence of the aerosol beam can be quickly formed. Furthermore, the effects of the input power, and different paper strips and liquid supply methods on the atomization performance, as well as the heating generation capacity of the liquid in the atomization zone during the atomization process were explored through a large number of experiments, which highlighted the advantages of PSLEA atomization. The experiments demonstrated that the maximum atomization rate under the PSLEA atomization mode reached 2.6 mL/min initially, and the maximum thermal stress was 45% lower compared with that in the traditional mode. Additionally, a portable handheld atomizer with stable atomization performance and a median aerosol particle size of 3.95 μm was designed based on the proposed PSLEA atomization method, showing the great potential of SAW atomizers in treating respiratory diseases. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

10 pages, 4617 KiB  
Article
Aerosol Deposited Polycrystalline PbZr0.53Ti0.47O3 Thick Films with a Large Transverse Piezoelectric Coefficient
by Long Teng, Juan Yang, Yongguang Xiao, Hongbo Cheng, Shibo Gong, Gao Luo, Jinlin Yang, Wenjia Zhang, Zhenwei Shen and Jun Ouyang
Crystals 2025, 15(2), 159; https://doi.org/10.3390/cryst15020159 - 5 Feb 2025
Viewed by 2856
Abstract
The aerosol deposition (AD) method utilizes high kinetic-energy submicron powders to impact and form a film on a substrate. It is a highly efficient deposition method, capable of producing films or coatings with a strong interfacial bonding and a dense nano-grain structure without [...] Read more.
The aerosol deposition (AD) method utilizes high kinetic-energy submicron powders to impact and form a film on a substrate. It is a highly efficient deposition method, capable of producing films or coatings with a strong interfacial bonding and a dense nano-grain structure without thermal assistance. In this work, PbZr0.53Ti0.47O3 (PZT53/47) films (~1.2 μm thick) were deposited on Pt/Ti/Si(100) substrates via the AD method. After a conventional annealing process (700 °C for 1 h), these PZT53/47 films displayed a dense, crack-free, nano-grained morphology, corresponding to an optimal electrical performance. A large maximum polarization (Pmax = 70 μC/cm2) and a small coercive field (Ec = 104 kV/cm) were achieved under the maximum applicable electric field of 1.6 MV/cm. The PZT53/47 films also exhibited a large small-field dielectric constant of ~984, a high tunability of 72%, and a low leakage current of ~3.1 × 10−5 A/cm2 @ 40 V. Moreover, the transverse piezoelectric coefficient (e31.f) of these AD-processed films was as high as −4.6 C/m2, comparable to those of sputter-deposited PZT53/47 films. These high-quality PZT53/47 thick films have broad applications in piezoelectric micro-electromechanical systems. Full article
Show Figures

Figure 1

20 pages, 4734 KiB  
Article
Design and Characterization of a Melt Electrostatic Precipitator for Advanced Drug Formulations
by Anna Justen, Alina Faye Weltersbach, Gerhard Schaldach and Markus Thommes
Processes 2024, 12(1), 100; https://doi.org/10.3390/pr12010100 - 1 Jan 2024
Cited by 1 | Viewed by 1722
Abstract
Electrostatic precipitators (ESP) are especially known for the efficient separation of micron and submicron particles from aerosols. Wet electrostatic precipitators are particularly suitable for highly resistive materials. Using these, particles can be directly transferred into a liquid for further processing or safer handling, [...] Read more.
Electrostatic precipitators (ESP) are especially known for the efficient separation of micron and submicron particles from aerosols. Wet electrostatic precipitators are particularly suitable for highly resistive materials. Using these, particles can be directly transferred into a liquid for further processing or safer handling, which is advantageous for either hazardous or valuable materials. In this work, a wet ESP, which enables the separation of highly resistive particles into a heated liquid, was designed and investigated. To do this, spray-dried drug particles were embedded in a molten sugar alcohol to enhance the drug dissolution rate. After cooling, the solidified product showed advantageous properties such as a high drug dissolution rate and easy handling for further processing. For the design of the wet ESP, different discharge electrode configurations were tested. A wall film served as the collection electrode, which was generated by a specially designed distributer die. A laminar flow regime was achieved with a homogeneous film serving as the collection electrode, which is particularly important for a high separation efficiency. A prototype was designed and constructed in this respect. The particle separation into hot liquids or onto hot surfaces is challenging due to thermal effects in ESPs. The influence of thermophoresis and drag force on the particle transport was investigated, and optimum operation parameters were found for the present ESP. A broad field of applications can be covered with the presented device, where particles are embedded in even hot liquids to form liquid suspensions or, as it is presented here, solid dispersions. The dissolution of the drug-containing solid dispersion was studied in vitro. A remarkably faster drug dissolution was observed from the solid dispersion, as compared to a powder mixture of the drug and xylitol. Full article
Show Figures

Figure 1

10 pages, 245 KiB  
Article
Effect of the Teeth Whitening Procedure on the Mineral Composition of Oral Fluid
by Elena A. Ryskina, Oksana A. Magsumova, Mikhail A. Postnikov, Tatiana A. Lobaeva, Bahovaddin B. Ahmedzhanov, Anastasia N. Shishparenok and Dmitry D. Zhdanov
Dent. J. 2024, 12(1), 9; https://doi.org/10.3390/dj12010009 - 29 Dec 2023
Viewed by 3203
Abstract
The basis of modern tooth whitening systems is the use of a whitening gel, which usually contains hydrogen peroxide or carbamide peroxide. The study included 81 patients aged 22 to 35 years with a tooth color A2 and a darker color on the [...] Read more.
The basis of modern tooth whitening systems is the use of a whitening gel, which usually contains hydrogen peroxide or carbamide peroxide. The study included 81 patients aged 22 to 35 years with a tooth color A2 and a darker color on the Vita Classic scale. The purpose of our research was to identify a new approach to whitening teeth to improve safety and gentleness. To perform this, we assessed the effect of the tooth whitening procedure on the mineral composition of the oral fluid. A new approach to the teeth whitening procedure was to use a mouth retractor and a tool for aspirating the whitening gel, which we developed. Before the procedure, a protective film-forming aerosol, which included sodium ascorbate, was applied. After the tooth whitening procedure, the enamel was remineralized with a sealing liquid for 14 days. The concentrations of calcium and phosphorus in the oral fluid were determined using a spectrophotometer with a set of reagents (Human). The results obtained indicate that the new approach to the teeth whitening procedure contributed to less pronounced changes in the concentrations of calcium (+29.07, p < 0.001) and phosphorus (−14%, p < 0.001) in the oral fluid immediately after the procedure and in combination with the standard procedure for teeth whitening; immediately after this procedure, the calcium concentration increased by 74.4% (p < 0.001), and the phosphorus concentration decreased by 23.07% (p < 0.001). The use of remineralizing agents led to a faster recovery of the initial levels of calcium and phosphorus in the oral fluid. Full article
(This article belongs to the Special Issue Preventive Dental Care, Chairside and Beyond)
13 pages, 1908 KiB  
Communication
Wearable Biosensor with Molecularly Imprinted Conductive Polymer Structure to Detect Lentivirus in Aerosol
by Jaskirat Singh Batra, Ting-Yen Chi, Mo-Fan Huang, Dandan Zhu, Zheyuan Chen, Dung-Fang Lee and Jun Kameoka
Biosensors 2023, 13(9), 861; https://doi.org/10.3390/bios13090861 - 31 Aug 2023
Cited by 3 | Viewed by 2405
Abstract
The coronavirus disease (COVID-19) pandemic has increased pressure to develop low-cost, compact, user-friendly, and ubiquitous virus sensors for monitoring infection outbreaks in communities and preventing economic damage resulting from city lockdowns. As proof of concept, we developed a wearable paper-based virus sensor based [...] Read more.
The coronavirus disease (COVID-19) pandemic has increased pressure to develop low-cost, compact, user-friendly, and ubiquitous virus sensors for monitoring infection outbreaks in communities and preventing economic damage resulting from city lockdowns. As proof of concept, we developed a wearable paper-based virus sensor based on a molecular imprinting technique, using a conductive polyaniline (PANI) polymer to detect the lentivirus as a test sample. This sensor detected the lentivirus with a 4181 TU/mL detection limit in liquid and 0.33% to 2.90% detection efficiency in aerosols at distances ranging from 30 cm to 60 cm. For fabrication, a mixture of a PANI monomer solution and virus were polymerized together to form a conductive PANI sensing element on a polyethylene terephthalate (PET) paper substrate. The sensing element exhibited formation of virus recognition sites after the removal of the virus via ultrasound sonication. A dry measurement technique was established that showed aerosol virus detection by the molecularly imprinted sensors within 1.5 h of virus spraying. This was based on the mechanism via which dispensing virus droplets on the PANI sensing element induced hybridization of the virus and molecularly imprinted virus recognition templates in PANI, influencing the conductivity of the PANI film upon drying. Interestingly, the paper-based virus sensor was easily integrated with a wearable face mask for the detection of viruses in aerosols. Since the paper sensor with molecular imprinting of virus recognition sites showed excellent stability in dry conditions for long periods of time, unlike biological reagents, this wearable biosensor will offer an alternative approach to monitoring virus infections in communities. Full article
Show Figures

Graphical abstract

13 pages, 2185 KiB  
Article
Atmospheric Pressure Plasma Deposition of Hybrid Nanocomposite Coatings Containing TiO2 and Carbon-Based Nanomaterials
by Regina Del Sole, Chiara Lo Porto, Sara Lotito, Chiara Ingrosso, Roberto Comparelli, Maria Lucia Curri, Gianni Barucca, Francesco Fracassi, Fabio Palumbo and Antonella Milella
Molecules 2023, 28(13), 5131; https://doi.org/10.3390/molecules28135131 - 30 Jun 2023
Cited by 4 | Viewed by 2244
Abstract
Among the different applications of TiO2, its use for the photocatalytic abatement of organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV), which requires UV irradiation for activation, and the fast electron-hole recombination rate of this [...] Read more.
Among the different applications of TiO2, its use for the photocatalytic abatement of organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV), which requires UV irradiation for activation, and the fast electron-hole recombination rate of this n-type semiconductor limit its photocatalytic performance. A strategy to overcome these limitations relies on the realization of a nanocomposite that combines TiO2 nanoparticles with carbon-based nanomaterials, such as rGO (reduced graphene oxide) and fullerene (C60). On the other hand, the design and realization of coatings formed of such TiO2-based nanocomposite coatings are essential to make them suitable for their technological applications, including those in the environmental field. In this work, aerosol-assisted atmospheric pressure plasma deposition of nanocomposite coatings containing both TiO2 nanoparticles and carbon-based nanomaterials, as rGO or C60, in a siloxane matrix is reported. The chemical composition and morphology of the deposited films were investigated for the different types of prepared nanocomposites by means of FT-IR, FEG-SEM, and TEM analyses. The photocatalytic activity of the nanocomposite coatings was evaluated through monitoring the photodegradation of methylene blue (MB) as a model organic pollutant. Results demonstrate that the nanocomposite coatings embedding rGO or C60 show enhanced photocatalytic performance with respect to the TiO2 counterpart. In particular, TiO2/C60 nanocomposites allow to achieve 85% MB degradation upon 180 min of UV irradiation. Full article
(This article belongs to the Special Issue Graphene-Based Nanocomposites for Advanced Applications)
Show Figures

Figure 1

8 pages, 2282 KiB  
Communication
Bithiophene as a Sulfur-Based Promotor for the Synthesis of Carbon Nanotubes and Carbon-Carbon Composites
by Alisa R. Bogdanova, Dmitry V. Krasnikov, Eldar M. Khabushev, Javier A. Ramirez B. and Albert G. Nasibulin
Int. J. Mol. Sci. 2023, 24(7), 6686; https://doi.org/10.3390/ijms24076686 - 3 Apr 2023
Cited by 6 | Viewed by 2162
Abstract
We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under [...] Read more.
We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decomposition make bithiophene an attractive promoter for the production of carbon nanotubes in general and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low bithiophene content, indicating the improvement of the product properties. Moreover, the relatively high concentrations and low temperature stability of bithiophene result in non-catalytical decomposition, leading to the formation of pyrolytic carbon deposits; the deposits appear as few-layer graphene structures. Thus, bithiophene pyrolysis opens a route for the cheap production of hierarchical composite thin films comprising carbon nanotubes and few-layer graphene, which might be of practical use for hierarchical adsorbents, protective membranes, or electrocatalysis. Full article
(This article belongs to the Special Issue Carbon Nanomaterials as Sorbent)
Show Figures

Figure 1

16 pages, 6498 KiB  
Article
Influence of Oil Content on Particle Loading Characteristics of a Two-Stage Filtration System
by Xinjiao Tian, Qisheng Ou, Yajing Lu, Jingxian Liu, Yun Liang, David Y. H. Pui and Hang Yi
Atmosphere 2023, 14(3), 551; https://doi.org/10.3390/atmos14030551 - 14 Mar 2023
Cited by 3 | Viewed by 2481
Abstract
Filter media may encounter aerosols mixed with solid and oil ingredients from various sources, such as industries, transportation, and households, in the air purification process, while the influence such oil content has on the loading performance of single-stage and two-stage filtration systems is [...] Read more.
Filter media may encounter aerosols mixed with solid and oil ingredients from various sources, such as industries, transportation, and households, in the air purification process, while the influence such oil content has on the loading performance of single-stage and two-stage filtration systems is under-reported. Thus, this study aims to evaluate oil fraction effects on the loading performance of single-stage and two-stage filtration systems. First, to reveal the oil–solid mixed particle deposition mechanisms, the filter media parameters, i.e., specific cake resistance ε and cake porosity K2, were tested, indicating that a slight amount of oil can increase the dust holding capacity (DHC) of filters by forming a more porous cake, while an excess of oil results in reduced DHC by forming impermeable liquid films on the solid skeleton. Further two-stage experimental results indicate that the effectiveness of a pre-stage filter can be significantly affected by the properties of incoming aerosol and main-stage filters. The utilization of a pre-stage filter unintentionally deteriorated the service lifetime of the main-stage filter when challenged with contaminants with certain oil particles. This counter-intuitive negative phenomenon is due to the special loading behaviors of oil–solid mixed particles. The existing pre-stage filters allow a higher fine oil particle fraction to reach the main-stage downstream, while the induced cake filtration scenario leading to a film clogging scenario adversely reduced the lifetime of the main-stage filter. The findings suggest that the feasibility of a pre-stage in the filtration system requires compressive evaluations according to the specific oil-coated contaminants. Full article
(This article belongs to the Special Issue Control and Purification of Particulate Matter)
Show Figures

Figure 1

17 pages, 8932 KiB  
Article
Deterioration of Novel Silver Coated Mirrors on Polycarbonate Used for Concentrated Solar Power
by Coraquetzali Magdaleno López, José de Jesús Pérez Bueno, José Antonio Cabello Mendez, Rosalba Hernández Leos, Maria Luisa Mendoza López, Adrián Sosa Domínguez and Yunny Meas Vong
Sustainability 2022, 14(24), 16360; https://doi.org/10.3390/su142416360 - 7 Dec 2022
Cited by 5 | Viewed by 2395
Abstract
The lifetime of mirrors in outdoor conditions is crucial in the correct operation of any concentrating solar power (CSP) installation. In this work, the corrosion behavior of two types of metallized surfaces was studied. The first was made of a flexible polymer having [...] Read more.
The lifetime of mirrors in outdoor conditions is crucial in the correct operation of any concentrating solar power (CSP) installation. In this work, the corrosion behavior of two types of metallized surfaces was studied. The first was made of a flexible polymer having a deposited reflective silver metallic film. The second was made of the same surface type with a dielectric SiO2 protection coating by an atmospheric pressure plasma jet. Polycarbonate sheets were used as substrates on which metallic silver was deposited by the Dynamic Chemical Deposit technique. This electroless technique allowed producing the mirror finishing under environmental conditions by sequentially spraying; as aerosols projected towards the substrate surface, the activation and reducing-oxidizing solutions with rinsing after each one. The silver coatings were about 100 nm thick. Environmental and accelerated weathering degradation and salt and sulfide fogs were carried out. XPS analyses show that the corrosion products formed were Ag2S, AgCl, and Ag2O. It was observed that the tarnishing was initiated locally by the formation of Ag2S columns as eruptions on the surface. Subsequently, the ions diffused through the protective layer and into the silver reflective layer, chemically reacting with the silver. The main atmospheric agents were H2S, chloride particles, and HCl. High reflectance was initially obtained of about 95%. The obtained results suggest mechanisms for the degradation of exposed silver surfaces to moisturized atmospheres with corrosive compounds. Full article
(This article belongs to the Special Issue Renewable Energy Technologies for Sustainable Development)
Show Figures

Graphical abstract

12 pages, 4485 KiB  
Article
Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique
by May Zin Toe, Wai Kian Tan, Hiroyuki Muto, Go Kawamura, Atsunori Matsuda, Khatijah Aisha Binti Yaacob and Swee-Yong Pung
Electron. Mater. 2022, 3(4), 332-343; https://doi.org/10.3390/electronicmat3040027 - 31 Oct 2022
Cited by 5 | Viewed by 2660
Abstract
Aerosol deposition (AD) is a simple, dry raw-powder deposition process in which the targeted film is formed by direct bombardment of accelerated starting powder onto the substrate surface at room temperature. Despite the increased interest in AD film formation, no work has been [...] Read more.
Aerosol deposition (AD) is a simple, dry raw-powder deposition process in which the targeted film is formed by direct bombardment of accelerated starting powder onto the substrate surface at room temperature. Despite the increased interest in AD film formation, no work has been completed to systematically investigate the formation of dense zinc oxide (ZnO) films using the AD method and their optical properties. Therefore, this study was carried out to investigate the effect of AD gas flow rate on the formation of AD films and the optical properties of aerosol-deposited ZnO films. ZnO films with nanosized (<40 nm) crystallites were successfully deposited on FTO substrates at room temperature. A dense and uniform layer of aerosol-deposited ZnO films with a roughened surface was obtained without subsequent heat treatment. With the increase in the AD gas flow rate, the crystal size and the AD film’s thickness were reduced. The Raman spectroscopy verified that the thin film was of a ZnO wurtzite structure. The room temperature photoluminescence of the ZnO thin film produced strong visible emissions. The findings of this work demonstrated that AD can be an alternative technique for the rapid deposition of dense and thick ZnO films for optoelectronic applications. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials II)
Show Figures

Figure 1

25 pages, 11783 KiB  
Article
A New Model Algorithm for Estimating the Inhalation Exposure Resulting from the Spraying of (Semi)-Volatile Binary Liquid Mixtures (SprayEva)
by Martin Tischer and Jessica Meyer
Int. J. Environ. Res. Public Health 2022, 19(20), 13182; https://doi.org/10.3390/ijerph192013182 - 13 Oct 2022
Cited by 1 | Viewed by 2103
Abstract
The spraying of liquid multicomponent mixtures is common in many professional and industrial settings. Typical examples are cleaning agents, additives, coatings, and biocidal products. In all of these examples, hazardous substances can be released in the form of aerosols or vapours. For occupational [...] Read more.
The spraying of liquid multicomponent mixtures is common in many professional and industrial settings. Typical examples are cleaning agents, additives, coatings, and biocidal products. In all of these examples, hazardous substances can be released in the form of aerosols or vapours. For occupational and consumer risk assessment in regulatory contexts, it is therefore important to know the exposure which results from the amount of chemicals in the surrounding air. In this research, a mechanistic mass balance model has been developed that covers the spraying of (semi)-volatile substances, taking into account combined exposure to spray mist, evaporation from droplets, and evaporation from surfaces as well as the nonideal behaviour of components in liquids and backpressure effects. For wall-spraying scenarios, an impaction module has been developed that quantifies the amount of overspray and the amount of material that lands on the wall. Mechanistically, the model is based on the assumption that continuous spraying can be approximated by a number of sequentially released spray pulses, each characterized by a certain droplet size, where the total aerosol exposure is obtained by summation over all release pulses. The corresponding system of differential equations is solved numerically using an extended Euler algorithm that is based on a discretisation of time and space. Since workers typically apply the product continuously, the treated area and the corresponding evaporating surface area grows over time. Time-dependent concentration gradients within the sprayed liquid films that may result from different volatilities of the components are therefore addressed by the proposed model. A worked example is presented to illustrate the calculated exposure for a scenario where aqueous solutions of H2O2 are sprayed onto surfaces as a biocidal product. The results reveal that exposure to H2O2 aerosol reaches relevant concentrations only during the spraying phase. Evaporation from sprayed surfaces takes place over much longer time periods, where backpressure effects caused by large emission sources can influence the shape of the concentration time curves significantly. The influence of the activity coefficients is not so pronounced. To test the plausibility of the developed model algorithm, a comparison of model estimates of SprayExpo, SprayEva, and ConsExpo with measured data is performed. Although the comparison is based on a limited number (N = 19) of measurement data, the results are nevertheless regarded as supportive and acceptable for the plausibility and predictive power of SprayEva. Full article
(This article belongs to the Special Issue Modeling Tools for Occupational Exposure Assessment)
Show Figures

Figure 1

23 pages, 3739 KiB  
Review
Advancements in Solar Desalination of Seawater by Various Ti3C2 MXene Based Morphologies for Freshwater Generation: A Review
by Adem Sreedhar and Jin-Seo Noh
Catalysts 2021, 11(12), 1435; https://doi.org/10.3390/catal11121435 - 25 Nov 2021
Cited by 21 | Viewed by 4484
Abstract
For a few years, we have been witnessing ubiquitous fresh and drinking water scarcity in various countries. To mitigate these problematic situations, many countries relied on non-conventional freshwater generation technologies through solar desalination of seawater. In this manner, we excel the ability of [...] Read more.
For a few years, we have been witnessing ubiquitous fresh and drinking water scarcity in various countries. To mitigate these problematic situations, many countries relied on non-conventional freshwater generation technologies through solar desalination of seawater. In this manner, we excel the ability of new class 2D Ti3C2 MXenes as a photothermal material (solar absorber) for freshwater generation via the solar desalination technique. In this review, the air–water interfacial interaction is highlighted for improving the evaporation efficiency. To provide the dependence of the desalination efficiency on the microstructure of the solar absorbers, we summarized various forms of 2D Ti3C2 MXenes (aerosol, films, foam, hydrogel, membrane, monolith and porous structure) and their characteristics. These microstructures prevailed ultrahigh photoconversion efficiency. In this aspect, we further explained key features such as light absorption, reflection, multiple internal reflection, hydrophilicity, lower thermal conduction, light-to-heat generation, and salt rejection for achieving efficient desalination output throughout the visible and broadband region. Specifically, we targeted to explore the self-floating and salt rejection nature of various state-of-the-art 2D Ti3C2 MXene structures. Further, we highlighted the long-term stability. Among the above morphologies, Ti3C2 MXene in the form of a membrane is believed to be a promising morphology which effectively desalinates seawater into freshwater. Finally, we highlighted the challenges and future perspectives, which can pave a potential path for advancing the sustainable solar desalination of seawater into freshwater. Full article
(This article belongs to the Special Issue Structured Semiconductors in Photocatalysis)
Show Figures

Figure 1

31 pages, 3651 KiB  
Review
Low-Temperature Atmospheric Pressure Plasma Processes for the Deposition of Nanocomposite Coatings
by Antonella Uricchio and Fiorenza Fanelli
Processes 2021, 9(11), 2069; https://doi.org/10.3390/pr9112069 - 18 Nov 2021
Cited by 26 | Viewed by 6302
Abstract
Low-temperature atmospheric pressure (AP) plasma technologies have recently proven to offer a range of interesting opportunities for the preparation of a variety of nanocomposite (NC) coatings with different chemical compositions, structures, and morphologies. Since the late 2000s, numerous strategies have been implemented for [...] Read more.
Low-temperature atmospheric pressure (AP) plasma technologies have recently proven to offer a range of interesting opportunities for the preparation of a variety of nanocomposite (NC) coatings with different chemical compositions, structures, and morphologies. Since the late 2000s, numerous strategies have been implemented for the deposition of this intriguing class of coatings by using both direct and remote AP plasma sources. Interestingly, considerable progress has been made in the development of aerosol-assisted deposition processes in which the use of either precursor solutions or nanoparticle dispersions in aerosol form allows greatly widening the range of constituents that can be combined in the plasma-deposited NC films. This review summarizes the research published on this topic so far and, specifically, aims to present a concise survey of the developed plasma processes, with particular focus on their optimization as well as on the structural and functional properties of the NC coatings to which they provide access. Current challenges and opportunities are also briefly discussed to give an outlook on possible future research directions. Full article
(This article belongs to the Special Issue Micro and Nanotechnology: Application in Surface Modification)
Show Figures

Figure 1

17 pages, 2908 KiB  
Article
High-Resolution Bioprinting of Recombinant Human Collagen Type III
by Rory Gibney, Jennifer Patterson and Eleonora Ferraris
Polymers 2021, 13(17), 2973; https://doi.org/10.3390/polym13172973 - 1 Sep 2021
Cited by 37 | Viewed by 6393
Abstract
The development of commercial collagen inks for extrusion-based bioprinting has increased the amount of research on pure collagen bioprinting, i.e., collagen inks not mixed with gelatin, alginate, or other more common biomaterial inks. New printing techniques have also improved the resolution achievable with [...] Read more.
The development of commercial collagen inks for extrusion-based bioprinting has increased the amount of research on pure collagen bioprinting, i.e., collagen inks not mixed with gelatin, alginate, or other more common biomaterial inks. New printing techniques have also improved the resolution achievable with pure collagen bioprinting. However, the resultant collagen constructs still appear too weak to replicate dense collagenous tissues, such as the cornea. This work aims to demonstrate the first reported case of bioprinted recombinant collagen films with suitable optical and mechanical properties for corneal tissue engineering. The printing technology used, aerosol jet® printing (AJP), is a high-resolution printing method normally used to deposit conductive inks for electronic printing. In this work, AJP was employed to deposit recombinant human collagen type III (RHCIII) in overlapping continuous lines of 60 µm to form thin layers. Layers were repeated up to 764 times to result in a construct that was considered a few hundred microns thick when swollen. Samples were subsequently neutralised and crosslinked using EDC:NHS crosslinking. Nanoindentation and absorbance measurements were conducted, and the results show that the AJP-deposited RHCIII samples possess suitable mechanical and optical properties for corneal tissue engineering: an average effective elastic modulus of 506 ± 173 kPa and transparency ≥87% at all visible wavelengths. Circular dichroism showed that there was some loss of helicity of the collagen due to aerosolisation. SDS-PAGE and pepsin digestion were used to show that while some collagen is degraded due to aerosolisation, it remains an inaccessible substrate for pepsin cleavage. Full article
(This article belongs to the Special Issue Additive Manufacturing of Biopolymers and Their Applications)
Show Figures

Graphical abstract

16 pages, 771 KiB  
Review
Properties of Barium Cerate-Zirconate Thin Films
by Piotr Winiarz, Monica Susana Campos Covarrubias, Mantas Sriubas, Kristina Bockute, Tadeusz Miruszewski, Wojciech Skubida, Daniel Jaworski, Giedrius Laukaitis and Maria Gazda
Crystals 2021, 11(8), 1005; https://doi.org/10.3390/cryst11081005 - 23 Aug 2021
Cited by 7 | Viewed by 3373
Abstract
In this work, we review several experimental results showing the electrical properties of barium cerate-zirconate thin films and discuss them in view of the possible influence of various factors on their properties. Most of the presented Ba(Ce, Zr, Y)O3 thin films were [...] Read more.
In this work, we review several experimental results showing the electrical properties of barium cerate-zirconate thin films and discuss them in view of the possible influence of various factors on their properties. Most of the presented Ba(Ce, Zr, Y)O3 thin films were formed by the pulsed laser deposition (PLD) technique, however thin films prepared using other methods, like RF magnetron sputtering, electron-beam deposition, powder aerosol deposition (PAD), atomic layer deposition (ALD) and spray deposition are also reported. The electrical properties of the thin films strongly depend on the film microstructure. The influence of the interface layers, space-charge layers, and strain-modified layers on the total conductivity is also essential but in many cases is weaker. Full article
Show Figures

Figure 1

Back to TopTop