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Abstract: We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-
walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically
suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decom-
position make bithiophene an attractive promoter for the production of carbon nanotubes in general
and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement
in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low
bithiophene content, indicating the improvement of the product properties. Moreover, the relatively
high concentrations and low temperature stability of bithiophene result in non-catalytical decomposi-
tion, leading to the formation of pyrolytic carbon deposits; the deposits appear as few-layer graphene
structures. Thus, bithiophene pyrolysis opens a route for the cheap production of hierarchical com-
posite thin films comprising carbon nanotubes and few-layer graphene, which might be of practical
use for hierarchical adsorbents, protective membranes, or electrocatalysis.
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1. Introduction

Carbon nanotubes are a class of materials with a wide range of accessible properties [1].
The group of promising and cutting-edge applications of carbon nanotubes heavily depends
on the targeted optimization of a specific set of properties optimized for each case [2–4].
Nevertheless, the industrial production of carbon nanotubes with tailored characteristics
and “affordable” prices is still a challenge due to the high cost of postprocessing to achieve
a specific chirality [5,6] and the lack of a general model for controlled synthesis [7,8].
The challenge results in extensive experimental studies using both classical [9,10] and
machine-learning methods [11,12] to provide a multiparameter optimization for synthesis
productivity (yield), along with purity, quality, conductivity, uniformity, etc. [13–15].

Besides the classical optimization of the reactor geometry, carbon source, catalyst
nature, and temperature profile, relatively small portions of specific species (promotors)
enhance carbon nanotube growth [16]. Sulfur-based volatile species are one of the most
abundant promotors for carbon nanotube synthesis [17]. The sulfur addition accelerates
carbon source decomposition [18] and lowers the melting point of iron-based catalysts [19],
as sulfur usually accumulates in the catalyst’s vicinity [20]. Though the exact role of sulfur is
rather complex and yet to be revealed, it is generally accepted that the introduction of an op-
timal amount of an S-containing compound enhances the yield and increases the nanotube
diameter [17,18,21]. Thiophene, carbon disulfide, and sulfur have already been actively
used as volatile sulfur compounds for carbon nanotube synthesis [16]. Nevertheless, a
deep understanding of sulfur in carbon nanotube growth still poses a challenge, providing
room for further improvement for emerging applications in energy transition [22,23], waste
treatment [24,25], and selective adsorption [26].

Int. J. Mol. Sci. 2023, 24, 6686. https://doi.org/10.3390/ijms24076686 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24076686
https://doi.org/10.3390/ijms24076686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6721-6530
https://orcid.org/0000-0001-9058-4537
https://orcid.org/0000-0002-1684-3948
https://doi.org/10.3390/ijms24076686
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24076686?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 6686 2 of 8

Here, we propose and examine a novel sulfur-based compound—2,2′-bithiophene—as
it provides a few advantages. An extended amount of hydrocarbon residuals (compared
to sulfur and carbon disulfide) might positively contribute to catalyst activation and car-
bon nanotube growth. Indeed, we recently compared Fe-based catalysts with (ferrocene)
and without (spark-discharge generated particles) hydrocarbon residuals [27]. The cata-
lyst derived from ferrocene showed an increased productivity and different pattern for
interaction with an etchant (CO2), most likely due to hydrocarbon residuals. Moreover,
2,2′-bithiophene is a volatile solid compound with a convenient equilibrium vapor pressure
(Figure 1a) comparable to that of ferrocene. Thus, bithiophene can be easily incorporated
into the aerosol CVD reactor based on CO, methane, or ethylene (unlike the need for an
extremely precise dosage of pure thiophene, carbon disulfide, or high-temperature lines for
sulfur) [8]. To the best of our knowledge, bithiophene has never been utilized as a promotor
for carbon nanotube growth.

2. Results

We employ the aerosol (version of a floating catalyst method with an extreme bed
dilution) CVD synthesis [28] (Figure 1b) of single-walled carbon nanotubes (SWCNTs)
based on ethylene catalytic decomposition at 1000 ◦C. Briefly, ferrocene served as a source
for Fe-based catalyst particles, ethylene as a carbon source, carbon dioxide as an etching
agent [29], nitrogen as a carrier gas, and bithiophene as a promotor. Volatile ferrocene and
bithiophene (Figure 1a) were transferred to the hot zone of the reactor with the nitrogen
flow via the cartridges in a thermostat.

To provide a comprehensive assessment, we employed the following set of parameters.
The reactor yield reflects the process productivity and corresponds to the area of SWCNT
films with 90% transmittance at 550 nm per liter of gas [13]. The quality of carbon nanotubes
is a vague parameter comprising a vast set of parameters. We use the generally accepted
ratio of intensities for G and D modes of Raman spectra as a figure of quality (as the G band
corresponds to vibrations of graphitic lattice, while the D band appears only for distortions
in the ideal lattice) [30–33]. The equivalent sheet resistance serves as a key performance
index for transparent conductors [34], indirectly describes the length, defectiveness, and
diameter of carbon nanotubes [35], and corresponds to the sheet resistance of a film with
90% transmittance at 550 nm.
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Figure 1. (a) Equilibrium vapor pressures of 2,2′-bithiophene (C8H6S2; cyan line), thiophene (C4H4S; 
red), sulfur (S; blue), carbon disulfide (CS2; green), and ferrocene (FeC10H10; black), [36]; (b) a scheme 
for the aerosol CVD reactor used in the work (MFC stands for a mass-flow controller; chemical for-
mulas for the vessels/units filled with corresponding species). 

Figure 1. (a) Equilibrium vapor pressures of 2,2′-bithiophene (C8H6S2; cyan line), thiophene (C4H4S;
red), sulfur (S; blue), carbon disulfide (CS2; green), and ferrocene (FeC10H10; black), [36]; (b) a scheme
for the aerosol CVD reactor used in the work (MFC stands for a mass-flow controller; chemical
formulas for the vessels/units filled with corresponding species).

Similar to conventional sulfur-based promotors (acting via changes in the catalyst and
carbon-source decomposition rate), the addition of 2,2′-bithiophene (C8H6S2) dramatically
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increases the yield of the process (Figure 2a). We believe the role of bithiophene to be
close to that of thiophene, as it is one of the main products of decomposition [37]: changes
in the catalyst melting point and carbon-source decomposition yield [18,19]. Moreover,
we observe a slight increase in the nanotube diameter at low concentrations, similar to
the literature [21]. It should be noted that the main feature of the aerosol CVD method—
extreme dilution of the catalyst—limits a direct observation of the process as well as an
assessment of the ppm level of sulfur residuals that might be in the reactor downstream.

It is worth mentioning that at the lowest bithiophene concentrations, the equivalent
sheet resistance demonstrated a two-fold improvement and subsequent increase with the
promoter concentration (Figure 2b). Such a trend for the yield (process productivity) and
equivalent sheet resistance (resistance at a certain film thickness) might be attributed to an
increase in the nanotube length under low concentrations, followed by the enhancement of
the catalyst activation [35]. This hypothesis agrees well to some extent with neglectable
changes in the observed SWCNT diameter (Figure 2c) and a decrease in defectiveness
under the lowest values only (Figure 2d). Nevertheless, the TEM studies proved that the
hypothesis was wrong.
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Figure 2. (a) Influence of bithiophene on SWCNT deposition rate, (b) equivalent sheet resistance,
(c) UV-vis-NIR, and (d) Raman spectra for SWCNTs obtained with different bithiophene contents;
RBM stands for radial breathing modes—a fingerprint of SWCNTs.

TEM images (Figure 3) indicate that the presence of bithiophene results in the forma-
tion of an additional carbon nanomaterial: carbon flakes, i.e., few-layer graphene. The
flake size varies within a wide range: from several nm to sub-micron values. The TEM
observation of the few-layer graphene flakes also coincides with a decrease in the ratio of
intensities of the 2D and G modes of Raman spectra (Figure 2d). Most likely, at a certain
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concentration, bithiophene decomposes non-catalytically (pyrolysis process) to produce
carbon deposits that enhance the apparent yield. Indeed, the surface pyrolysis usually
starts earlier than the volume one due to decreased activation energy [38].Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 9 
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bithiophene is supplied (e) in pure nitrogen and (f) in the ferrocene-CO mixture adjusted for 
SWCNT growth with the same residence time at 1000 °C. 

Figure 3. Typical TEM images of carbon nanotubes produced (a,c) without bithiophene and (b,d) with
0.08 Pa of bithiophene. DMA number size distributions of aerosol particles produced when bithio-
phene is supplied (e) in pure nitrogen and (f) in the ferrocene-CO mixture adjusted for SWCNT
growth with the same residence time at 1000 ◦C.
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It should be noted that most of the observed iron nanoparticles correspond to the
non-activated catalyst particles, while the direct observation of a catalyst on the tip of
SWCNT is limited to size and catalyst abundance [39]. We also predominantly observe
single-walled carbon nanotubes (which coincides with the appearance of radial breathing
modes in the Raman spectra; Figure 2d). At the same time, the direct diameter assessment
is limited due to carbon nanotube bundling.

Interestingly, as it is one of the byproducts of thiophene pyrolysis, 2,2′-bithiophene
appears to be less stable than usual sulfur promotors [37]. Indeed, 2,2′-bithiophene is one
of the dominant byproducts of thiophene pyrolysis under temperatures of ca. 830 ◦C [37].
Nevertheless, it promptly disappears from the group of products at T > 900 ◦C. More-
over, the authors claim that the bithiophene concentration is heavily susceptible to the
concentration of radical chain initiators [37]. As ferrocene is known to decompose at
400–600 ◦C [40–42] and ethylene at T > 800 ◦C, the reaction mixture might serve as such a
radical chain initiator, i.e., hydrocarbon residuals that might promote bithiophene pyrolysis.
Indeed, studies of particle size distributions with DMA clearly show that bithiophene
pyrolysis occurs (Figure 3e) at partial pressures (>1 Pa; we did not observe any pyrolysis at
lower temperatures, while the process is drastically enhanced at 1100 ◦C, even at 0.3 Pa).
This is substantially higher than in the case of the SWCNT synthesis. Interestingly, even
the smallest additions (Figure 3f) of bithiophene result in the formation of small aerosol
particles (~15 nm), while the subsequent increase diminishes both the concentration and ef-
fective size of nanotubes (40–100 nm range) with a certain increase of the indistinguishable
tail of large particles out of the device’s range. Though the use of hydrogen as a carrier gas
might be a possible action to prevent bithiophene pyrolysis, the low-temperature stability
of bithiophene limits its performance as a promotor of SWCNT growth.

We wish to stress that the obtained SWCNT/few-layer graphene composites might be
of significant interest for various applications [43]. For example, such hybrid membranes
should provide increased performance as EUV pellicles [44] or X-ray protective membranes.
The high conductivity of materials combined with their morphology, which usually cor-
responds to an increased amount of surface, might also be attractive for electrocatalytic
applications [45,46].

3. Materials and Methods

We employ the aerosol CVD synthesis (Figure 1b) of single-walled carbon nanotubes
(SWCNTs) based on ethylene catalytic decomposition at 1000 ◦C. Ferrocene (98%, Sigma
Aldrich, St. Louis, MO, USA) was used as a catalyst precursor (0.17 Pa), nitrogen (99.999%)
as a carrier gas, ethylene (99.9%) as a carbon source (0.22 vol%), and small amounts of
CO2 (99.995%) were utilized (0.20 vol%) to enhance the SWCNT synthesis [35]. According
to SEM studies, the synthesis results in SWCNTs with a mean geometric length of 7 µm.
Similar to ferrocene, 2,2′-bithiophene (C8H6S2, 98%, Sigma Aldrich) was carried out with a
nitrogen gas flow out of a thermostat cartridge. The SWCNT aerosol was then collected on
a filter (HAWP, Merck Millipore, Burlington, MA, USA) for the subsequent characterization.
We assessed the SWCNT diameter distribution and yield utilizing UV-vis-NIR spectroscopy
(Perkin Elmer Lambda 1050, Waltham, MA, USA); the latter was described elsewhere [13].
In brief, the yield corresponds to the area of the films with 90% transparency (at 550 nm)
collected by passing a liter of the gas mixture. We examined the quality of the product by
measuring the ratio of G to D mode intensities with Raman spectroscopy (Horiba LabRAM
HR Evolution system, Kyoto, Japan) and by observing the morphology and structure of the
produced material by transmission electron microscopy (FEI Tecnai G2 F20, Hillsboro, OR,
USA). Furthermore, using four-probe measurements (Jandel RM3000, Leighton Buzzard,
UK), we evaluated the equivalent sheet resistance: sheet resistance for a film with 90% trans-
mittance in the middle of the visible region—a key performance indicator for transparent
electrodes. Lastly, we observed the effective number size distributions of aerosols with a
differential mobility analyzer (DMA; Scanning Mobility Particle Sizer Spectrometer 3938,
Shoreview, MN, USA). It should be stressed that, strictly speaking, aerosol spectrometry
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provides the distribution of aerosol particles based on their electrical mobilities. Then, the
mobility is transformed into a size, assuming a spherical shape for aerosol particles and
taking into account the equilibrium charge state of the particle. Though this assumption
is valid to some extent for non-activated catalyst particles (spherical shape or grape-like
agglomerates), carbon nanotubes endure a complex quasi-cylindrical shape (in general, a
nanotube or nanotube agglomerate is at least curved or has an even more complex geome-
try). This is why we refer to the parameter as an effective or mobility diameter. The usual
values for the effective diameter of nanotube aerosols lie in the range of 40–100 nm.

4. Conclusions

In conclusion, for the first time, we assessed 2,2′-bithiophene (C8H6S2) as a novel
sulfur-based promotor for SWCNT growth in an aerosol CVD reactor. We detected an en-
hancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of
films under a low partial pressure of 0.025 Pa (the molar ratio of Fe to S was 3.4), indicating
the improvement of the product properties. Relatively high concentrations and low tem-
perature stability of bithiophene resulted in a non-catalytical decomposition (most likely
owing to the ferrocene/ethylene mixture acting as a chain initiator [37,41]), leading to the
formation of pyrolytic carbon deposits appearing as few-layer graphene structures. Thus,
bithiophene pyrolysis opens a route for the cheap production of hierarchical composite thin
films comprising carbon nanotubes and few-layer graphene, which might be of practical
use for hierarchical adsorbents, protective membranes, or electrocatalysis.
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