Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique
Abstract
:1. Introduction
2. Methodology
2.1. AD of ZnO Films
2.2. Characterizations of AD ZnO Films
3. Results and Discussion
3.1. Structure and Morphology of the ZnO Films Deposited Using the AD Process
3.2. Morphologies and Thickness of the ZnO Films Deposited Using the AD Process
3.3. Optical Properties of the ZnO Films Deposited Using the AD Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pearton, S.; Norton, D.; Ip, K.; Heo, Y.; Steiner, T. RETRACTED: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 2005, 50, 293–340. [Google Scholar] [CrossRef]
- Hutson, A.R. Hall effect studies of doped zinc oxide single crystals. Phys. Rev. 1957, 108, 222. [Google Scholar] [CrossRef]
- Sahu, D.; Lin, S.-Y.; Huang, J.-L. ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Appl. Surf. Sci. 2006, 252, 7509–7514. [Google Scholar] [CrossRef]
- Bagnall, D.; Chen, Y.; Shen, M.; Zhu, Z.; Goto, T.; Yao, T. RT excitonic stimulated emission from zinc oxide epilayers grown by plasma assisted MBE. In Nanoelectronics and Nanotechnology; University of Southampton: Iskandar Puteri, Malaysia, 1998. [Google Scholar]
- Shimizu, T.; Nakada, M.; Tsuda, H.; Akedo, J.; Nishi, K.; Ohashi, K. Optical Characteristics of a PZT Waveguide Fabricated Using Aerosol Deposition for Optical Modulators on LSI Chips. In Proceedings of the 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, Nara, Japan, 27–31 May 2007; pp. 831–833. [Google Scholar]
- Hoffman, R.; Norris, B.J.; Wager, J. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 2003, 82, 733–735. [Google Scholar] [CrossRef]
- Trung, D.; Quang, N.; Tran, M.; Du, N.; Tu, N.; Hung, N.; Viet, D.X.; Anh, D.; Huy, P. Single-composition Al3+-singly doped ZnO phosphors for UV-pumped warm white light-emitting diode applications. Dalton Trans. 2021, 50, 9037–9050. [Google Scholar] [CrossRef]
- Javed, A.H.; Shahzad, N.; Khan, M.A.; Ayub, M.; Iqbal, N.; Hassan, M.; Hussain, N.; Rameel, M.I.; Shahzad, M.I. Effect of ZnO nanostructures on the performance of dye sensitized solar cells. Sol. Energy 2021, 230, 492–500. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Wang, C.-N.; Gong, F.-L.; Chen, J.-L.; Xie, K.-F.; Zhang, H.-L.; Fang, S.-M. Ultra-sensitive triethylamine sensors based on oxygen vacancy-enriched ZnO/SnO2 micro-camellia. J. Mater. Chem. C 2021, 9, 6078–6086. [Google Scholar] [CrossRef]
- Pan, W.; Han, Y.; Wang, Z.; Gong, C.; Guo, J.; Lin, J.; Luo, Q.; Yang, S.; Ma, C.-Q. An efficiency of 14.29% and 13.08% for 1 cm2 and 4 cm2 flexible organic solar cells enabled by sol–gel ZnO and ZnO nanoparticle bilayer electron transporting layers. J. Mater. Chem. A 2021, 9, 16889–16897. [Google Scholar] [CrossRef]
- Shafi, M.A.; Bouich, A.; Fradi, K.; Guaita, J.M.; Khan, L.; Mari, B. Effect of deposition cycles on the properties of ZnO thin films deposited by spin coating method for CZTS-based solar cells. Optik 2022, 258, 168854. [Google Scholar] [CrossRef]
- Toe, M.Z.; Pung, S.-Y.; Yaacob, K.A.B.; Han, S.S. Effect of dip-coating cycles on the structural and performance of ZnO thin film-based DSSC. Arab. J. Sci. Eng. 2021, 46, 6741–6751. [Google Scholar] [CrossRef]
- Purica, M.; Budianu, E.; Rusu, E.; Danila, M.; Gavrila, R. Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 2002, 403, 485–488. [Google Scholar] [CrossRef]
- Mishra, Y.K.; Kaps, S.; Schuchardt, A.; Paulowicz, I.; Jin, X.; Gedamu, D.; Freitag, S.; Claus, M.; Wille, S.; Kovalev, A. Fabrication of Macroscopically Flexible and Highly Porous 3D Semiconductor Networks from Interpenetrating Nanostructures by a Simple Flame Transport Approach. Part. Part. Syst. Charact. 2013, 30, 775–783. [Google Scholar] [CrossRef]
- Lee, J.B.; Kim, H.J.; Kim, S.G.; Hwang, C.S.; Hong, S.-H.; Shin, Y.H.; Lee, N.H. Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator. Thin Solid Films 2003, 435, 179–185. [Google Scholar] [CrossRef]
- Pung, S.-Y.; Choy, K.-L.; Hou, X.; Shan, C. Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology 2008, 19, 435609. [Google Scholar] [CrossRef] [PubMed]
- Andrade, E.; Miki-Yoshida, M. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 1999, 350, 192–202. [Google Scholar]
- Shukla, R.; Srivastava, A.; Srivastava, A.; Dubey, K. Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition. J. Cryst. 2006, 294, 427–431. [Google Scholar] [CrossRef]
- Chen, S.; Wilson, R.M.; Binions, R. Synthesis of highly surface-textured ZnO thin films by aerosol assisted chemical vapour deposition. J. Mater. Chem. A 2015, 3, 5794–5797. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.K.; Shigeta, Y.; Yokoi, A.; Kawamura, G.; Matsuda, A.; Muto, H. Investigation of the anchor layer formation on different substrates and its feasibility for optical properties control by aerosol deposition. Appl. Surf. Sci. 2019, 483, 212–218. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Shah, S.S.; Basha, S.I.; Hakeem, A.S.; Aziz, M.A. Recent Advances in Processing and Applications of Heterobimetallic Oxide Thin Films by Aerosol-assisted Chemical Vapor Deposition. Chem. Rec. 2021, 22, e202100278. [Google Scholar] [CrossRef]
- Al Jarrah, R.M.; Kadhem, E.M.; Alkhayatt, A.H.O. Annealing and operating temperatures effect on spray-deposited nanocrystalline ZnO thin-film gas sensor. Appl. Phys. A 2022, 128, 527. [Google Scholar] [CrossRef]
- Abd-Alghafour, N.; Kadhim, I.H.; Naeem, G.A. UV detector characteristics of ZnO thin film deposited on Corning glass substrates using low-cost fabrication method. J. Mater. Sci. Mater. Electron. 2021, 1–12. [Google Scholar] [CrossRef]
- Akedo, J. Room temperature impact consolidation and application to ceramic coatings: Aerosol deposition method. J. Ceram. Soc. Jpn. 2020, 128, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Imanaka, Y.; Amada, H.; Kumasaka, F.; Takahashi, N.; Yamasaki, T.; Ohfuchi, M.; Kaneta, C. Nanoparticulated Dense and Stress-F ree Ceramic Thick Film for Material Integration. Adv. Eng. Mater. 2013, 15, 1129–1135. [Google Scholar] [CrossRef]
- Akedo, J. Aerosol Deposition (AD) Process: The Basic and Applications—Novel Ceramic Coating Technology with Room Temperature Impact Consolidation (RTIC); CMC Publishing Co., Ltd.: Tokyo, Japan, 2008. [Google Scholar]
- Abbas, M.; Mehran, M.T.; Moon, M.-W.; Byun, J.Y.; Kim, S.H. Wettability Control of Modified Stainless Steel Surfaces for Oxide Catalyst Carrier Slurry Coating. J. Ind. Eng. Chem. 2020, 91, 330–339. [Google Scholar] [CrossRef]
- Hanft, D.; Glosse, P.; Denneler, S.; Berthold, T.; Oomen, M.; Kauffmann-Weiss, S.; Weis, F.; Häßler, W.; Holzapfel, B.; Moos, R. The aerosol deposition method: A modified aerosol generation unit to improve coating quality. Materials 2018, 11, 1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, H.; Miyamoto, Y.; Umetsu, M.; Uchikoshi, T.; Okubo, T.; Naito, M.; Hotta, Y.; Kasuga, T.; Suda, A.; Mori, H. Nanoparticle Technology Handbook; Elsevier: London, UK, 2008; pp. 177–265. [Google Scholar]
- Debanath, M.; Karmakar, S. Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 2013, 111, 116–119. [Google Scholar] [CrossRef]
- Das, D.; Mondal, P. Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. Rsc Adv. 2014, 4, 35735–35743. [Google Scholar] [CrossRef]
- Fedorov, A.; Baranov, A.; Inoue, K. Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering. Phys. Rev. B 1997, 56, 7491. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Lu, Y.; Zhang, J.; Shen, D.; Fan, X. Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies. J. Cryst. Growth 2006, 289, 55–58. [Google Scholar] [CrossRef]
- Zhang, R.; Yin, P.-G.; Wang, N.; Guo, L. Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 2009, 11, 865–869. [Google Scholar] [CrossRef]
- Spanhel, L.; Anderson, M.A. Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J. Am. Chem. Soc. 1991, 113, 2826–2833. [Google Scholar] [CrossRef]
- Wu, X.; Siu, G.; Fu, C.; Ong, H. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 2001, 78, 2285–2287. [Google Scholar] [CrossRef]
Deposition Parameters | |
---|---|
Raw material | ZnO (<100 nm) commercial powder |
Carrier gas flow rate (L/min) | 30, 40, and 50 |
Deposition time (min) | 4 min 15 s per film |
Carrier gas | Nitrogen |
Pressure (Pa) | 20 |
Substrate | FTO (20 mm × 30 mm, thickness: 1.6 mm) |
Working distance (mm) | 10 |
Deposition temperature | Room temperature |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toe, M.Z.; Tan, W.K.; Muto, H.; Kawamura, G.; Matsuda, A.; Yaacob, K.A.B.; Pung, S.-Y. Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique. Electron. Mater. 2022, 3, 332-343. https://doi.org/10.3390/electronicmat3040027
Toe MZ, Tan WK, Muto H, Kawamura G, Matsuda A, Yaacob KAB, Pung S-Y. Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique. Electronic Materials. 2022; 3(4):332-343. https://doi.org/10.3390/electronicmat3040027
Chicago/Turabian StyleToe, May Zin, Wai Kian Tan, Hiroyuki Muto, Go Kawamura, Atsunori Matsuda, Khatijah Aisha Binti Yaacob, and Swee-Yong Pung. 2022. "Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique" Electronic Materials 3, no. 4: 332-343. https://doi.org/10.3390/electronicmat3040027
APA StyleToe, M. Z., Tan, W. K., Muto, H., Kawamura, G., Matsuda, A., Yaacob, K. A. B., & Pung, S. -Y. (2022). Effect of Carrier Gas Flow Rates on the Structural and Optical Properties of ZnO Films Deposited Using an Aerosol Deposition Technique. Electronic Materials, 3(4), 332-343. https://doi.org/10.3390/electronicmat3040027