Advancements in Solar Desalination of Seawater by Various Ti3C2 MXene Based Morphologies for Freshwater Generation: A Review
Abstract
:1. Introduction
2. Desalination
3. Key Factors for Achieving Superior Solar Desalination
3.1. Control on Heat Loss
3.2. Reduced Light Reflection, Transmission, and Improved Broadband Light Absorption
3.3. Localized Surface Plasmon Resonance (LSPR)
3.4. Multiple Internal Light Reflection
3.5. Hydrophilic Nature
3.6. Light-to-Heat Generation
3.7. Reduced Salt Blocking or Resistance
4. Equations Determines the Solar Desalination of Photothermal Material
4.1. Solar-to-Vapor Conversion Efficiency (η)
4.2. Photothermal Conversion Ability (E)
4.3. Wettability of Photothermal Material
4.4. Salt Rejection Ratio
4.5. Solar Absorption
4.6. Thermal Conductivity
4.7. Evaporation Rate (ν)
5. Importance of 2D Materials for Solar Desalination
6. Why 2D Ti3C2 MXenes for Solar Desalination?
7. Ti3C2 MXene-Based Composites
7.1. Aerogel
7.2. Foam
7.3. Hydrogel
7.4. Membrane
7.5. Monoliths
7.6. Porous
7.7. Nanocomposite
7.8. Other Morphologies
8. Conclusions and Future Perspectives
- The intrinsic hydrophilic nature and water absorption ability of layer-structured Ti3C2 MXenes determine its applicability in the field of eco-friendly solar desalination of seawater into freshwater.
- In the contest of long-term stability, researchers should pay more attention toward membrane-based Ti3C2 MXenes for understanding efficient solar desalination. Thus, further research is necessary to understand the efficiency of Ti3C2 MXene membranes as a forerunner in solar desalination.
- Due to the limited research on the Ti3C2 MXenes for solar desalination, it is further required to develop the wide band gap semiconductor material interaction with Ti3C2 MXenes for widening the solar light absorption. More research needs to be carried out in this direction.
- The long-term stability of the layer-structured Ti3C2 MXenes is also a major challenge. However, surface modification through the selective termination groups shows great attention on the air–water interface for long-term stability.
- Regarding the all-weather and complex conditions, there is infinite scope and opportunity for researchers to expand the potentiality of Ti3C2 MXenes for freshwater generation.
- The developing of self-floating Ti3C2 MXenes with a hydrophilic nature has not been investigated. Thus, ceaseless efforts are required to accomplish the self-floating nature of Ti3C2 MXenes.
- In addition to the self-floating nature, the salt-blocking nature during the desalination process significantly boosts the light absorption capacity and water transportation toward the top of the absorber. Such configurations are ideal for highly efficient solar desalination and long-term durability.
- The oxidation stability of MXene during interaction with water under solar light illumination needs to be clearly explained.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Niu, B.; Zhang, X.; Lei, Y.; Zhong, P.; Ma, X. Review—Ti3C2Tx MXene: An emerging two-dimensional layered material in water treatment. ECS J. Solid State Sci. Technol. 2021, 10, 47002. [Google Scholar] [CrossRef]
- Hodges, B.C.; Cates, E.L.; Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Prathapaneni, D.R.; Detroja, K. Optimal design of energy sources and reverse osmosis desalination plant with demand side management for cost-effective freshwater production. Desalination 2020, 496, 114741. [Google Scholar] [CrossRef]
- Eljaddi, T.; Mendez, D.L.M.; Favre, E.; Roizard, D. Development of new pervaporation composite membranes for desalination: Theoretical and experimental investigations. Desalination 2021, 507, 115006. [Google Scholar] [CrossRef]
- Liu, G.; Shen, J.; Liu, Q.; Liu, G.; Xiong, J.; Yang, J.; Jin, W. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Memb. Sci. 2018, 548, 548–558. [Google Scholar] [CrossRef]
- Davenport, D.M.; Deshmukh, A.; Werber, J.R.; Elimelech, M. High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: Current status, design considerations, and research needs. Environ. Sci. Technol. Lett. 2018, 5, 467–475. [Google Scholar] [CrossRef]
- Yu, F.; Wang, L.; Wang, Y.; Shen, X.; Cheng, Y.; Ma, J. Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 2019, 7, 15999–16027. [Google Scholar] [CrossRef]
- Lv, B.; Gao, C.; Xu, Y.; Fan, X.; Xiao, J.; Liu, Y.; Song, C. A self-floating, salt-resistant 3D Janus radish-based evaporator for highly efficient solar desalination. Desalination 2021, 510, 115093. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Q.; Zhang, B.; Tian, L.; Li, K.; Zhang, X. Recent advances in transition metal carbide electrocatalysts for oxygen evolution reaction. Catalysts 2020, 10, 1164. [Google Scholar] [CrossRef]
- Ta, Q.T.H.; Tran, N.M.; Noh, J.-S. Rice crust-like ZnO/Ti3C2Tx MXene hybrid structures for improved photocatalytic activity. Catalysts 2020, 10, 1140. [Google Scholar] [CrossRef]
- Hou, T.; Li, Q.; Zhang, Y.; Zhu, W.; Yu, K.; Wang, S.; Xu, Q.; Liang, S.; Wang, L. Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Appl. Catal. B Environ. 2020, 273, 119072. [Google Scholar] [CrossRef]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Man Hong, S.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Kuklin, A.V.; Baev, A.; Ge, Y.; Ågren, H.; Zhang, H.; Prasad, P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. [Google Scholar] [CrossRef]
- Zhao, X.; Peng, L.M.; Tang, C.Y.; Pu, J.H.; Zha, X.J.; Ke, K.; Bao, R.Y.; Yang, M.B.; Yang, W. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Mater. Horizons 2020, 7, 855–865. [Google Scholar] [CrossRef]
- Xie, X.; Chen, C.; Zhang, N.; Tang, Z.-R.; Jiang, J.; Xu, Y.-J. Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2019, 2, 856–862. [Google Scholar] [CrossRef]
- Fan, X.; Yang, Y.; Shi, X.; Liu, Y.; Li, H.; Liang, J.; Chen, Y. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv. Funct. Mater. 2020, 30, 2007110. [Google Scholar] [CrossRef]
- Fan, D.; Lu, Y.; Zhang, H.; Xu, H.; Lu, C.; Tang, Y.; Yang, X. Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catal. B Environ. 2021, 295, 120285. [Google Scholar] [CrossRef]
- Ding, M.; Xu, H.; Chen, W.; Yang, G.; Kong, Q.; Ng, D.; Lin, T.; Xie, Z. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination. J. Memb. Sci. 2020, 600, 117871. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, S.; Fu, Z.; Yu, H.; Quan, X. Temperature-difference-induced electricity during solar desalination with bilayer MXene-based monoliths. Nano Energy 2020, 76, 105060. [Google Scholar] [CrossRef]
- Zhao, X.; Zha, X.-J.; Pu, J.-H.; Bai, L.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 2019, 7, 10446–10455. [Google Scholar] [CrossRef]
- Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.; Qin, Z.; Wu, Z. Monolayer Ti3C2Tx as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2. ACS Appl. Energy Mater. 2019, 2, 4640–4651. [Google Scholar] [CrossRef]
- Cheng, X.; Zu, L.; Jiang, Y.; Shi, D.; Cai, X.; Ni, Y.; Lin, S.; Qin, Y. A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2−x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem. Commun. 2018, 54, 11622–11625. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, A.; Rasool, K.; Nawaz, M.; Miran, W.; Jang, J.; Moztahida, M.; Mahmoud, K.A.; Lee, D.S. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 2018, 349, 748–755. [Google Scholar] [CrossRef]
- Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Qi, M.-Y.; Li, Y.-H.; Tang, Z.-R.; Wang, T.; Gong, J.; Xu, Y.-J. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Rep. Phys. Sci. 2021, 2, 100371. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Wang, L.; Hou, F.; Dou, S.X.; Liang, J. Rational design on photo(electro)catalysts for artificial nitrogen looping. EcoMat 2021, 3, e12096. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, M.; Shi, Q.; Wen, F.; Liu, L.; Dong, B.; Haroun, A.; Yang, Y.; Vachon, P.; Guo, X.; et al. Progress in TENG technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2020, 2, e12058. [Google Scholar] [CrossRef]
- Zhang, M.; Héraly, F.; Yi, M.; Yuan, J. Multitasking tartaric-acid-enabled, highly conductive, and stable MXene/conducting polymer composite for ultrafast supercapacitor. Cell Rep. Phys. Sci. 2021, 2, 100449. [Google Scholar] [CrossRef]
- Saranin, D.; Pescetelli, S.; Pazniak, A.; Rossi, D.; Liedl, A.; Yakusheva, A.; Luchnikov, L.; Podgorny, D.; Gostischev, P.; Didenko, S.; et al. Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy 2021, 82, 105771. [Google Scholar] [CrossRef]
- Bati, A.S.R.; Sutanto, A.A.; Hao, M.; Batmunkh, M.; Yamauchi, Y.; Wang, L.; Wang, Y.; Nazeeruddin, M.K.; Shapter, J.G. Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Rep. Phys. Sci. 2021, 2, 100598. [Google Scholar] [CrossRef]
- Ihsanullah, I. Potential of MXenes in water desalination: Current status and perspectives. Nano-Micro Lett. 2020, 12, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, C.; Feng, K.; Huang, D.; Wang, K.; Li, Y.; Jiang, F. Kesterite Cu2ZnSnS4 thin-film solar water-splitting photovoltaics for solar seawater desalination. Cell Rep. Phys. Sci. 2021, 2, 100468. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Boriskina, S.V.; Chiavazzo, E.; Asinari, P. Solar passive distiller with high productivity and marangoni effect-driven salt rejection. Energy Environ. Sci. 2020, 13, 3646–3655. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Luo, Y.; Wang, W.; Chen, X. Porous evaporators with special wettability for low-grade heat-driven water desalination. J. Mater. Chem. A 2021, 9, 702–726. [Google Scholar] [CrossRef]
- Chaudhuri, K.; Alhabeb, M.; Wang, Z.; Shalaev, V.M.; Gogotsi, Y.; Boltasseva, A. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 2018, 5, 1115–1122. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, T.; Nandakumar, D.K.; Tan, S.C. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 2020, 7, 1903478. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Huang, Z.; Liu, K.; Hu, X.; Zhou, J. Interfacial solar-to-heat conversion for desalination. Adv. Energy Mater. 2019, 9, 1900310. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Xu, J.; Yao, G.; Xie, J.; Cheng, Y.; Miao, Z.; Wang, K. Salt-Rejecting solar interfacial evaporation. Cell Rep. Phys. Sci. 2021, 2, 100310. [Google Scholar] [CrossRef]
- Han, X.; Zang, L.; Zhang, S.; Dou, T.; Li, L.; Yang, J.; Sun, L.; Zhang, Y.; Wang, C. Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination. RSC Adv. 2020, 10, 2507–2512. [Google Scholar] [CrossRef]
- Yao, J.; Yang, G. An efficient solar-enabled 2D layered alloy material evaporator for seawater desalination. J. Mater. Chem. A 2018, 6, 3869–3876. [Google Scholar] [CrossRef]
- Thoai, D.N.; Hoai Ta, Q.T.; Truong, T.T.; Van Nam, H.; Van Vo, G. Review on the recent development and applications of three dimensional (3D) photothermal materials for solar evaporators. J. Clean. Prod. 2021, 293, 126122. [Google Scholar] [CrossRef]
- Fengler, C.; Arens, L.; Horn, H.; Wilhelm, M. Desalination of seawater using cationic poly(acrylamide) hydrogels and mechanical forces for separation. Macromol. Mater. Eng. 2020, 305, 2000383. [Google Scholar] [CrossRef]
- Ying, L.; Zhu, H.; Li, H.; Zhu, Z.; Sun, S.; Wang, X.; Lu, S.; Du, M. Heterostructure design of Cu2O/Cu2S core/shell nanowires for solar-driven photothermal water vaporization towards desalination. Sustain. Energy Fuels 2020, 4, 6023–6029. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, R.; Zhang, T.; Zhao, K.; Xiao, P.; Ma, Y.; Ajayan, P.M.; Shi, G.; Chen, Y. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 2018, 12, 829–835. [Google Scholar] [CrossRef]
- Kospa, D.A.; Ahmed, A.I.; Samra, S.E.; Ibrahim, A.A. High efficiency solar desalination and dye retention of plasmonic/reduced graphene oxide based copper oxide nanocomposites. RSC Adv. 2021, 11, 15184–15194. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 (Adv. Mater. 37/2011). Adv. Mater. 2011, 23, 4207. [Google Scholar] [CrossRef]
- Xie, Z.; Peng, Y.-P.; Yu, L.; Xing, C.; Qiu, M.; Hu, J.; Zhang, H. Solar-inspired water purification based on emerging 2D materials: Status and challenges. Sol. RRL 2020, 4, 1900400. [Google Scholar] [CrossRef]
- Sreedhar, A.; Noh, J.-S. Interfacial engineering insights of promising monolayer 2D Ti3C2 MXene anchored flake-like ZnO thin films for improved PEC water splitting. J. Electroanal. Chem. 2021, 883, 115044. [Google Scholar] [CrossRef]
- Biener, J.; Stadermann, M.; Suss, M.; Worsley, M.A.; Biener, M.M.; Rose, K.A.; Baumann, T.F. Advanced carbon aerogels for energy applications. Energy Environ. Sci. 2011, 4, 656. [Google Scholar] [CrossRef]
- Ming, X.; Guo, A.; Zhang, Q.; Guo, Z.; Yu, F.; Hou, B.; Wang, Y.; Homewood, K.P.; Wang, X. 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon N.Y. 2020, 167, 285–295. [Google Scholar] [CrossRef]
- Zhang, Q.; Yi, G.; Fu, Z.; Yu, H.; Chen, S.; Quan, X. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 2019, 13, 13196–13207. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yu, G. Engineering hydrogels for efficient solar desalination and water purification. Accounts Mater. Res. 2021, 2, 374–384. [Google Scholar] [CrossRef]
- Zhang, B.; Gu, Q.; Wang, C.; Gao, Q.; Guo, J.; Wong, P.W.; Liu, C.T.; An, A.K. Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2Tx MXene janus membrane for dual-functional enabled photothermal desalination. ACS Appl. Mater. Interfaces 2021, 13, 3762–3770. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, Y.; Yang, C.; Tian, Y.; Han, Y.; Liu, J.; Yin, X.; Que, W. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 2018, 6, 16196–16204. [Google Scholar] [CrossRef]
- Li, K.; Chang, T.; Li, Z.; Yang, H.; Fu, F.; Li, T.; Ho, J.S.; Chen, P. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 2019, 9, 1901687. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, K.; Gong, S.; Mao, H.; Huang, R.; Zhu, Z. Cu3BiS3/MXenes with excellent solar–thermal conversion for continuous and efficient seawater desalination. ACS Appl. Mater. Interfaces 2021, 13, 16246–16258. [Google Scholar] [CrossRef]
- Zhao, X.; Zha, X.-J.; Tang, L.-S.; Pu, J.-H.; Ke, K.; Bao, R.-Y.; Liu, Z.; Yang, M.-B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Zhu, K.; Li, C.; Xiao, Y.; Ye, M. Ti3C2/PVDF membrane for efficient seawater desalination based on interfacial solar heating. Water Supply 2021, 21, 918–926. [Google Scholar] [CrossRef]
- Ju, M.; Yang, Y.; Zhao, J.; Yin, X.; Wu, Y.; Que, W. Macroporous 3D MXene architecture for solar-driven interfacial water evaporation. J. Adv. Dielectr. 2019, 9, 1950047. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Wei, N.; Li, Z.; Song, X.; Li, Q.; Sun, K.; Yang, E.; Gong, L.; Sui, Y.; Tian, J.; et al. Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation. J. Colloid Interface Sci. 2021, 584, 125–133. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Q.; Fan, J.; Wang, W.; Yu, D. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep. Purif. Technol. 2021, 254, 117615. [Google Scholar] [CrossRef]
Ti3C2-Based Aerogel, Foam and Hydrogel Morphologies for Solar Desalination | |||||||
---|---|---|---|---|---|---|---|
Ti3C2-Based Composite (Optimized Condition) | Ti3C2 Functional Groups (Etching Process) | Solar Evaporation Efficiency (%) (1 Sun) | Surface Temperature (°C) | Stability | Solar Desalination Rate (Kg/m2h) | Ref. | |
Base Material | Resultant Composite | ||||||
Aerogel | |||||||
GO/Ti3C2Tx (MXene to GO-1:3) | O, OH and/or F (HCl and LiF) | ~90.7 | ~41.9 | 24 h (acid and alkaline environment) | GO-0.88, Ti3C2Tx-1.02 | 1.27 | [53] |
GO/Ti3C2Tx (Ti3C2Tx-90%) | O, OH, and F (HCl and LiF) | ~85.0 | 80 | --- | --- | 1.337 | [15] |
Ti3C2 (Micro-channel size of 15 μm (at Ti3C2-25 mg.mL–1) | --- | 87 | 59.4 (300 s) | 15 days (sea water) | --- | 1.46 | [54] |
Foam | |||||||
Cobalt nanoparticle-carbonaceous nanosheets/MXene | HCl and LiF | 93.06 | 69.8 (60 s) | 10 days | MXene foam-1.306 | 1.393 | [17] |
Hydrogel | |||||||
Ti3C2Tx/La0.5Sr0.5CoO3 (Weight ratio of MXene to La0.5Sr0.5CoO3-1:10) | NH4F and HCl | 92.3 | 40 (10 min) | 10 cycles (Each cycle 60 min) | Ti3C2Tx-2.26, La0.5Sr0.5CoO3-2.24 | 2.73 | [18] |
Ti3C2-Based Membrane, Monolith, and Porous Morphologies for Solar Desalination | |||||||
---|---|---|---|---|---|---|---|
Ti3C2-Based Composite (Optimized Condition) | Ti3C2 Functional Groups (Etching Process) | Solar Evaporation Efficiency (%) (1 Sun) | Surface Temperature (°C) | Stability | Solar Desalination Rate (Kg/m2h) | Ref | |
Base Material | Resultant Composite | ||||||
Membrane | |||||||
Ti3C2 | HCl and LiF | 99.5 | 39 (10 min) | 200 h | 1.41 (hydrophilic) | 1.31 | [58] |
Ti3C2Tx | HCl and LiF | --- | 65.4 (5 min) | --- | --- | 1.33 | [59] |
Cu3BiS3/Ti3C2 (1:1) | (O and OH) HCl and LiF | 87.11 | 62.3 | --- | --- | 1.32 | [60] |
Ti3C2 | HF | 84 | 75 | --- | --- | --- | [39] |
PDA@ MXene | HCl and LiF | 85.2 | 80 | --- | PDA-1.157, Ti3C2Tx-1.095 | 1.276 | [61] |
Fluorinated porphyrin–Ti3C2Tx MXene | HCl and LiF | 86.4 | 66 | --- | --- | 1.41 | [57] |
Ti3C2/PVDF | HF | --- | 43.3 (10 min) | --- | --- | 0.98 | [62] |
Monolith | |||||||
Ti3C2 MXene | --- | 82.9 | 98 (upper surface), 30 (lower surface) | --- | --- | 1.39 | [20] |
Porous | |||||||
Carbonized melamine foam (CMF)@d-Ti3C2 | HCl and LiF | 84.6 | 38.5 (10 min) | --- | Ti3C2-1.41 | 1.60 | [63] |
Ti3C2Tx | HCl and LiF | 88.7 | 39 | --- | --- | 1.41 | [21] |
Nanocomposite | |||||||
Ti3C2/MoS2 | --- | 87.2 | 55.3 (4 min) | --- | --- | 1.36 | [64] |
Other morphologies | |||||||
MXene nanosheets on carbon nanotube coated cotton fabric | -OH, -F and -O (HCl and LiF) | 88.2±0.9 | 40.4 | --- | --- | 1.35 | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sreedhar, A.; Noh, J.-S. Advancements in Solar Desalination of Seawater by Various Ti3C2 MXene Based Morphologies for Freshwater Generation: A Review. Catalysts 2021, 11, 1435. https://doi.org/10.3390/catal11121435
Sreedhar A, Noh J-S. Advancements in Solar Desalination of Seawater by Various Ti3C2 MXene Based Morphologies for Freshwater Generation: A Review. Catalysts. 2021; 11(12):1435. https://doi.org/10.3390/catal11121435
Chicago/Turabian StyleSreedhar, Adem, and Jin-Seo Noh. 2021. "Advancements in Solar Desalination of Seawater by Various Ti3C2 MXene Based Morphologies for Freshwater Generation: A Review" Catalysts 11, no. 12: 1435. https://doi.org/10.3390/catal11121435