Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = film bulk acoustic resonator (FBAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3388 KiB  
Article
Fabrication of Air Cavity Structures Using DRIE for Acoustic Signal Confinement in FBAR Devices
by Raju Patel, Manoj Singh Adhikari, Deepak Bansal and Tanmoy Majumder
Micromachines 2025, 16(6), 647; https://doi.org/10.3390/mi16060647 - 29 May 2025
Viewed by 2658
Abstract
Acoustic energy penetrates into the Si substrate at cavity boundaries. Due to this, the air cavity-based bulk acoustic resonators experience higher harmonic mode, parasitic resonance, and spurious mode. To overcome these effects and enhance the performance parameters, a backside air cavity is fabricated [...] Read more.
Acoustic energy penetrates into the Si substrate at cavity boundaries. Due to this, the air cavity-based bulk acoustic resonators experience higher harmonic mode, parasitic resonance, and spurious mode. To overcome these effects and enhance the performance parameters, a backside air cavity is fabricated using the deep reactive ion etching (DRIE) method. The DRIE method helps to achieve the optimized active area of the resonator. SiO2 film on a silicon substrate as the support layer and ZnO as the piezoelectric (PZE) film are used for the resonator. The crystal growth and surface morphology of ZnO film were investigated with X-ray diffraction, scanning electron microscopy, and atomic force microscopy. FBAR is modeled in a 1-D modified Butterworth–Van Dyke (mBVD) equivalent circuit. As RF measurement results, we successfully demonstrated a FBAR with optimized active area of 320 × 320 μm2, center frequency of 1.261 GHz, having a quality factor of 583.8. Overall, this suppression of higher harmonic mode shows the great potential for improving the selectivity of the sensor and also in RF filter design applications. This integration of DRIE-based cavity formation with ZnO-based FBAR architecture not only enables compact design but also effectively suppresses spurious and higher-order modes, which demonstrates a performance-enhancing fabrication strategy not fully explored in the current literature. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 4832 KiB  
Article
Enhancement of Quality Factors in a 6.5 GHz Resonator Using Mo/SiC Composite Microstructures
by Binghui Lin, Yupeng Zheng, Haiyang Li, Yuqi Ren, Tingting Yang, Zekai Wang, Yao Cai, Qinwen Xu and Chengliang Sun
Micromachines 2025, 16(5), 529; https://doi.org/10.3390/mi16050529 - 29 Apr 2025
Viewed by 458
Abstract
This study addresses the critical challenge of lateral acoustic wave energy leakage in high-frequency film bulk acoustic resonators (FBARs) and elucidates the reflection mechanism of acoustic waves at acoustic reflection boundaries. Based on the theory of acoustic impedance mismatch, a novel Mo/SiC composite [...] Read more.
This study addresses the critical challenge of lateral acoustic wave energy leakage in high-frequency film bulk acoustic resonators (FBARs) and elucidates the reflection mechanism of acoustic waves at acoustic reflection boundaries. Based on the theory of acoustic impedance mismatch, a novel Mo/SiC composite microstructure is designed to strategically establish multiple acoustic reflection boundaries along the lateral acoustic wave leakage paths. Finite element simulations reveal that SiC microstructures effectively suppress vibration amplitudes in non-resonant regions, thereby preventing acoustic wave leakage. By integrating Mo and SiC microstructures, the proposed composite structure significantly enhances the resonator’s acoustic confinement and energy retention capabilities. A resonator incorporating this Mo/SiC composite microstructure is fabricated, achieving a series resonance frequency of 6.488 GHz and a remarkable quality factor (Q) of 310. This represents a substantial 51.2% improvement in Q compared to the basic FBAR, confirming the effectiveness of the proposed design in mitigating lateral acoustic wave leakage and enhancing resonator performance for high-frequency, low-loss applications. This work offers valuable insights into the design of next-generation RF resonators for advanced wireless communication systems. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

22 pages, 2998 KiB  
Review
Recent Advances in AlN-Based Acoustic Wave Resonators
by Hao Lu, Xiaorun Hao, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Jie Dong and Xiaohua Ma
Micromachines 2025, 16(2), 205; https://doi.org/10.3390/mi16020205 - 11 Feb 2025
Cited by 6 | Viewed by 2235
Abstract
AlN-based bulk acoustic wave (BAW) filters have emerged as crucial components in 5G communication due to their high frequency, wide bandwidth, high power capacity, and compact size. This paper mainly reviews the basic principles and recent research advances of AlN-based BAW resonators, which [...] Read more.
AlN-based bulk acoustic wave (BAW) filters have emerged as crucial components in 5G communication due to their high frequency, wide bandwidth, high power capacity, and compact size. This paper mainly reviews the basic principles and recent research advances of AlN-based BAW resonators, which are the backbone of BAW filters. We begin by summarizing the epitaxial growth of single-crystal, polycrystalline, and doped AlN films, with a focus on single-crystal AlN and ScAlN, which are currently the most popular. The discussion then extends to the structure and fabrication of BAW resonators, including the basic solidly mounted resonator (SMR) and the film bulk acoustic resonator (FBAR). The new Xtended Bulk Acoustic Wave (XBAW) technology is highlighted as an effective method to enhance filter bandwidth. Hybrid SAW/BAW resonators (HSBRs) combine the benefits of BAW and SAW resonators to significantly reduce temperature drift. The paper further explores the application of BAW resonators in ladder and lattice BAW filters, highlighting advancements in their design improvements. The frequency-reconfigurable BAW filter, which broadens the filter’s application range, has garnered substantial attention from researchers. Additionally, optimization algorithms for designing AlN-based BAW filters are outlined to reduce design time and improve efficiency. This work aims to serve as a reference for future research on AlN-based BAW filters and to provide insight for similar device studies. Full article
(This article belongs to the Special Issue RF and Power Electronic Devices and Applications)
Show Figures

Figure 1

11 pages, 3826 KiB  
Article
Design and Fabrication of a Film Bulk Acoustic Wave Filter for 3.0 GHz–3.2 GHz S-Band
by Chao Gao, Yupeng Zheng, Haiyang Li, Yuqi Ren, Xiyu Gu, Xiaoming Huang, Yaxin Wang, Yuanhang Qu, Yan Liu, Yao Cai and Chengliang Sun
Sensors 2024, 24(9), 2939; https://doi.org/10.3390/s24092939 - 5 May 2024
Cited by 5 | Viewed by 2749
Abstract
Film bulk acoustic-wave resonators (FBARs) are widely utilized in the field of radio frequency (RF) filters due to their excellent performance, such as high operation frequency and high quality. In this paper, we present the design, fabrication, and characterization of an FBAR filter [...] Read more.
Film bulk acoustic-wave resonators (FBARs) are widely utilized in the field of radio frequency (RF) filters due to their excellent performance, such as high operation frequency and high quality. In this paper, we present the design, fabrication, and characterization of an FBAR filter for the 3.0 GHz–3.2 GHz S-band. Using a scandium-doped aluminum nitride (Sc0.2Al0.8N) film, the filter is designed through a combined acoustic–electromagnetic simulation method, and the FBAR and filter are fabricated using an eight-step lithographic process. The measured FBAR presents an effective electromechanical coupling coefficient (keff2) value up to 13.3%, and the measured filter demonstrates a −3 dB bandwidth of 115 MHz (from 3.013 GHz to 3.128 GHz), a low insertion loss of −2.4 dB, and good out-of-band rejection of −30 dB. The measured 1 dB compression point of the fabricated filter is 30.5 dBm, and the first series resonator burns out first as the input power increases. This work paves the way for research on high-power RF filters in mobile communication. Full article
Show Figures

Figure 1

10 pages, 3013 KiB  
Article
Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter
by Yu Zhou, Yupeng Zheng, Qinwen Xu, Yuanhang Qu, Yuqi Ren, Xiaoming Huang, Chao Gao, Yan Liu, Shishang Guo, Yao Cai and Chengliang Sun
Micromachines 2024, 15(5), 563; https://doi.org/10.3390/mi15050563 - 25 Apr 2024
Cited by 4 | Viewed by 1891
Abstract
With the development of wireless communication, increasing signal processing presents higher requirements for radio frequency (RF) systems. Piezoelectric acoustic filters, as important elements of an RF front-end, have been widely used in 5G-generation systems. In this work, we propose a Sc0.2Al [...] Read more.
With the development of wireless communication, increasing signal processing presents higher requirements for radio frequency (RF) systems. Piezoelectric acoustic filters, as important elements of an RF front-end, have been widely used in 5G-generation systems. In this work, we propose a Sc0.2Al0.8N-based film bulk acoustic wave resonator (FBAR) for use in the design of radio frequency filters for the 5G mid-band spectrum with a passband from 3.4 to 3.6 GHz. With the excellent piezoelectric properties of Sc0.2Al0.8N, FBAR shows a large Keff2 of 13.1%, which can meet the requirement of passband width. Based on the resonant characteristics of Sc0.2Al0.8N FBAR devices, we demonstrate and fabricate different ladder-type FBAR filters with second, third and fourth orders. The test results show that the out-of-band rejection improves and the insertion loss decreases slightly as the filter order increases, although the frequency of the passband is lower than the predicted ones due to fabrication deviation. The passband from 3.27 to 3.47 GHz is achieved with a 200 MHz bandwidth and insertion loss lower than 2 dB. This work provides a potential approach using ScAlN-based FBAR technology to meet the band-pass filter requirements of 5G mid-band frequencies. Full article
Show Figures

Figure 1

17 pages, 15441 KiB  
Article
Temperature Cycle Reliability Analysis of an FBAR Filter-Bonded Ceramic Package
by Wenchao Tian, Wenbin Li, Shuaiqi Zhang, Liming Zhou and Heng Wang
Micromachines 2023, 14(11), 2132; https://doi.org/10.3390/mi14112132 - 20 Nov 2023
Cited by 2 | Viewed by 1903
Abstract
On the background that the operating frequency of electronic devices tends to the radio frequency (RF) segment, a film bulk acoustic resonator (FBAR) filter is widely used in communication and military fields because of its advantages of high upper frequency, ample power capacity, [...] Read more.
On the background that the operating frequency of electronic devices tends to the radio frequency (RF) segment, a film bulk acoustic resonator (FBAR) filter is widely used in communication and military fields because of its advantages of high upper frequency, ample power capacity, small size, and low cost. However, the complex and harsh working environment puts higher requirements for packaging FBAR filters. Based on the Anand constitutive equation, the stress–strain response of the bonded ceramic package was studied by the finite element method for the FBAR filter-bonded ceramic package, and the thermal fatigue life of the device was predicted. We developed solder models with various spillage morphologies based on the random generation technique to examine the impact of spillage on device temperature reliability. The following are the primary conclusions: (1) Solder undergoes periodic deformation, stress, and strain changes throughout the cycle. (2) The corner of the contact surface between the chip and the solder layer has the largest stress at the end of the cycle, measuring 19.377 MPa. (3) The Engelmaier model predicts that the gadget will have a thermal fatigue life of 1928.67 h. (4) Expanding the layered solder area caused by any solder overflow mode may shorten the device’s thermal fatigue life. The thermal fatigue life of a completely spilled solder is higher than that of a partially spilled solder. Full article
(This article belongs to the Special Issue Advances in Microelectronics Reliability)
Show Figures

Figure 1

11 pages, 5783 KiB  
Communication
A 3.4–3.6 GHz High-Selectivity Filter Chip Based on Film Bulk Acoustic Resonator Technology
by Qinghua Yang, Yao Xu, Yongle Wu, Weimin Wang and Zhiguo Lai
Electronics 2023, 12(4), 1056; https://doi.org/10.3390/electronics12041056 - 20 Feb 2023
Cited by 14 | Viewed by 3391
Abstract
The development of mobile 5G technology poses new challenges for high-frequency and high-performance filters. However, current commercial acoustic wave filters mainly focus on 4G LTE, which operates below 3 GHz. It is necessary to accelerate research on high-frequency acoustic wave filters. A high-selectivity [...] Read more.
The development of mobile 5G technology poses new challenges for high-frequency and high-performance filters. However, current commercial acoustic wave filters mainly focus on 4G LTE, which operates below 3 GHz. It is necessary to accelerate research on high-frequency acoustic wave filters. A high-selectivity film bulk acoustic resonator (FBAR) filter chip for the 3.4–3.6 GHz range was designed and fabricated in this paper. The design procedure includes FBAR parameter fitting, filter schematic analysis, and the generation principle of transmission zeros (TZs). The measured results show that the filter chip is of high roll-off and stopband suppression. Most of the stopband suppression is better than 35 dB. Finally, error analysis was conducted, and FBAR parameters were modified after testing for future filter design work. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

13 pages, 2897 KiB  
Article
Flexible Film Bulk Acoustic Resonator Based on Low-Porosity β-Phase P(VDF-TrFE) Film for Human Vital Signs Monitoring
by Zhentao Yu, Feng Gao, Xiangyu He, Hao Jin, Shurong Dong, Zhen Cao and Jikui Luo
Sensors 2023, 23(4), 2136; https://doi.org/10.3390/s23042136 - 14 Feb 2023
Cited by 5 | Viewed by 2832
Abstract
P(VDF-TrFE) is a promising material for flexible acoustic devices owing to its good piezoelectric performance and excellent stretchability. However, the high density of internal pores and large surface roughness of the conventional P(VDF-TrFE) results in a high propagation attenuation for acoustic waves, which [...] Read more.
P(VDF-TrFE) is a promising material for flexible acoustic devices owing to its good piezoelectric performance and excellent stretchability. However, the high density of internal pores and large surface roughness of the conventional P(VDF-TrFE) results in a high propagation attenuation for acoustic waves, which limits its use in flexible acoustic devices. In this paper, a novel method based on two-step annealing is proposed to effectively remove the pores inside the P(VDF-TrFE) film and reduce its surface roughness. The obtained P(VDF-TrFE) film possesses excellent characteristics, including a high breakdown strength of >300 kV/mm, a high-purity β-phase content of more than 80%, and high piezoelectric coefficients (d33) of 42 pm/V. Based on the low-porosity β-phase P(VDF-TrFE) film, we fabricated flexible film bulk acoustic resonators (FBARs) which exhibit high sharp resonance peaks. The pressure sensor was made by sandwiching the FBARs with two PDMS microneedle patches. Heartbeat and respiration rate monitoring were achieved using the pressure sensor. This work demonstrates the feasibility of high-performance flexible piezoelectric acoustic resonators based on low-porosity P(VDF-TrFE) films, which could see wider applications in the wearable sensors for both physical and chemical sensing. Full article
(This article belongs to the Special Issue Biosensors and Electrochemical Sensors)
Show Figures

Figure 1

9 pages, 5927 KiB  
Communication
Design and Fabrication of a Flexible Gravimetric Sensor Based on a Thin-Film Bulk Acoustic Wave Resonator
by Giovanni Niro, Ilaria Marasco, Francesco Rizzi, Antonella D’Orazio, Marco Grande and Massimo De Vittorio
Sensors 2023, 23(3), 1655; https://doi.org/10.3390/s23031655 - 2 Feb 2023
Cited by 5 | Viewed by 2712
Abstract
Sensing systems are becoming less and less invasive. In this context, flexible materials offer new opportunities that are impossible to achieve with bulky and rigid chips. Standard silicon sensors cannot be adapted to curved shapes and are susceptible to big deformations, thus discouraging [...] Read more.
Sensing systems are becoming less and less invasive. In this context, flexible materials offer new opportunities that are impossible to achieve with bulky and rigid chips. Standard silicon sensors cannot be adapted to curved shapes and are susceptible to big deformations, thus discouraging their use in wearable applications. Another step forward toward minimising the impacts of the sensors can be to avoid the use of cables and connectors by exploiting wireless transmissions at ultra-high frequencies (UHFs). Thin-film bulk acoustic wave resonators (FBARs) represent the most promising choice among all of the piezoelectric microelectromechanical system (MEMS) resonators for the climbing of radio frequencies. Accordingly, the fabrication of FBARs on flexible and wearable substrates represents a strategic step toward obtaining a new generation of highly sensitive wireless sensors. In this work, we propose the design and fabrication of a flexible gravimetric sensor based on an FBAR on a polymeric substrate. The resonator presents one of the highest electromechanical coupling factors in the category of flexible AlN-based FBARs, equal to 6%. Moreover, thanks to the polymeric support layer, the presence of membranes can be avoided, which leads to a faster and cheaper fabrication process and higher robustness of the structure. The mass sensitivity of the device was evaluated, obtaining a promising value of 23.31 ppm/pg. We strongly believe that these results can pave the way to a new class of wearable MEMS sensors that exploit ultra-high-frequency (UHF) transmissions. Full article
(This article belongs to the Special Issue Piezoelectric Resonator-Based Sensors)
Show Figures

Figure 1

9 pages, 1641 KiB  
Communication
Fabrication of a New Air-Gap FBAR on an Organic Sacrificial Layer through an Innovative Design Algorithm
by Giovanni Niro, Ilaria Marasco, Francesco Rizzi, Antonella D’Orazio, Marco Grande and Massimo De Vittorio
Appl. Sci. 2023, 13(3), 1295; https://doi.org/10.3390/app13031295 - 18 Jan 2023
Cited by 2 | Viewed by 2694
Abstract
Realizing thin-film acoustic wave resonators presents many design and fabrication challenges. Actual material specifications always differ from nominal material properties employed in simulations, as they depend on the deposition technique and parameters used and on equipment type and status. Moreover, each deposition process [...] Read more.
Realizing thin-film acoustic wave resonators presents many design and fabrication challenges. Actual material specifications always differ from nominal material properties employed in simulations, as they depend on the deposition technique and parameters used and on equipment type and status. Moreover, each deposition process introduces a degree of uncertainty regarding the thicknesses of the layers. All these factors have a substantial impact on the resonance frequency, which often differs from the designed value. This work details the design and fabrication of an aluminum nitride (AlN)-based thin-Film Bulk Acoustic wave Resonator (FBAR) showing one of the highest products of Q-factor and electromechanical coupling of 6895. The design process is based on an innovative, fast, and scalable design and fabrication approach that considers fabrication tolerances. The algorithm returns very fast results on the order of seconds, and successfully estimates the resonance of a designed stack at 2.55 GHz with a very low error of 0.005 GHz (about 0.2%). The FBAR layer stack is suspended on a polymeric membrane and an innovative rapid dissolving sacrificial layer made of Lift-Off Resist (LOR). This new fabrication protocol obtains resonators with an electromechanical coupling factor of 4.7% and a maximum quality factor of 1467, respectively. Full article
Show Figures

Figure 1

9 pages, 4506 KiB  
Article
Aluminum Nitride-Based Adjustable Effective Electromechanical Coupling Coefficient Film Bulk Acoustic Resonator
by Yuanhang Qu, Tiancheng Luo, Zhiwei Wen, Min Wei, Xiyu Gu, Xiang Chen, Yang Zou, Yao Cai, Yan Liu and Chengliang Sun
Micromachines 2023, 14(1), 157; https://doi.org/10.3390/mi14010157 - 7 Jan 2023
Cited by 11 | Viewed by 2812
Abstract
The arrival of the 5G era has promoted the need for filters of different bandwidths. Thin-film bulk acoustic resonators have become the mainstream product for applications due to their excellent performance. The Keff2 of the FBAR greatly influences the bandwidth of [...] Read more.
The arrival of the 5G era has promoted the need for filters of different bandwidths. Thin-film bulk acoustic resonators have become the mainstream product for applications due to their excellent performance. The Keff2 of the FBAR greatly influences the bandwidth of the filter. In this paper, we designed an AlN-based adjustable Keff2 FBAR by designing parallel capacitors around the active area of the resonator. The parallel capacitance is introduced through the support column structure, which is compatible with conventional FBAR processes. The effects of different support column widths on Keff2 were verified by finite element simulation and experimental fabrication. The measured results show that the designed FBAR with support columns can achieve a Keff2 value that is 25.9% adjustable. Full article
Show Figures

Figure 1

21 pages, 4059 KiB  
Review
Trends and Applications of Surface and Bulk Acoustic Wave Devices: A Review
by Yang Yang, Corinne Dejous and Hamida Hallil
Micromachines 2023, 14(1), 43; https://doi.org/10.3390/mi14010043 - 24 Dec 2022
Cited by 51 | Viewed by 8643
Abstract
The past few decades have witnessed the ultra-fast development of wireless telecommunication systems, such as mobile communication, global positioning, and data transmission systems. In these applications, radio frequency (RF) acoustic devices, such as bulk acoustic waves (BAW) and surface acoustic waves (SAW) devices, [...] Read more.
The past few decades have witnessed the ultra-fast development of wireless telecommunication systems, such as mobile communication, global positioning, and data transmission systems. In these applications, radio frequency (RF) acoustic devices, such as bulk acoustic waves (BAW) and surface acoustic waves (SAW) devices, play an important role. As the integration technology of BAW and SAW devices is becoming more mature day by day, their application in the physical and biochemical sensing and actuating fields has also gradually expanded. This has led to a profusion of associated literature, and this article particularly aims to help young professionals and students obtain a comprehensive overview of such acoustic technologies. In this perspective, we report and discuss the key basic principles of SAW and BAW devices and their typical geometries and electrical characterization methodology. Regarding BAW devices, we give particular attention to film bulk acoustic resonators (FBARs), due to their advantages in terms of high frequency operation and integrability. Examples illustrating their application as RF filters, physical sensors and actuators, and biochemical sensors are presented. We then discuss recent promising studies that pave the way for the exploitation of these elastic wave devices for new applications that fit into current challenges, especially in quantum acoustics (single-electron probe/control and coherent coupling between magnons and phonons) or in other fields. Full article
(This article belongs to the Special Issue Micro/Nano Resonators, Actuators, and Their Applications)
Show Figures

Figure 1

9 pages, 2802 KiB  
Article
Demonstration of Thin Film Bulk Acoustic Resonator Based on AlN/AlScN Composite Film with a Feasible Keff2
by Laixia Nian, Yang Zou, Chao Gao, Yu Zhou, Yuchen Fan, Jian Wang, Wenjuan Liu, Yan Liu, Jeffrey Bowoon Soon, Yao Cai and Chengliang Sun
Micromachines 2022, 13(12), 2044; https://doi.org/10.3390/mi13122044 - 22 Nov 2022
Cited by 8 | Viewed by 3753
Abstract
Film bulk acoustic resonators (FBARs) with a desired effective electromechanical coupling coefficient (Keff2) are essential for designing filter devices. Using AlN/AlScN composite film with the adjustable thickness ratio can be a feasible approach to obtain the required [...] Read more.
Film bulk acoustic resonators (FBARs) with a desired effective electromechanical coupling coefficient (Keff2) are essential for designing filter devices. Using AlN/AlScN composite film with the adjustable thickness ratio can be a feasible approach to obtain the required Keff2. In this work, we research the resonant characteristics of FBARs based on AlN/AlScN composite films with different thickness ratios by finite element method and fabricate FBAR devices in a micro-electromechanical systems process. Benefiting from the large piezoelectric constants, with a 1 μm-thick Al0.8Sc0.2N film, Keff2 can be twice compared with that of FBAR based on pure AlN films. For the composite films with different thickness ratios, Keff2 can be adjusted in a relatively wide range. In this case, a filter with the specific N77 sub-band is demonstrated using AlN/Al0.8Sc0.2N composite film, which verifies the enormous potential for AlN/AlScN composite film in design filters. Full article
Show Figures

Figure 1

13 pages, 3599 KiB  
Article
Nondestructive Wafer Level MEMS Piezoelectric Device Thickness Detection
by Yongxin Zhou, Yuandong Gu and Songsong Zhang
Micromachines 2022, 13(11), 1916; https://doi.org/10.3390/mi13111916 - 5 Nov 2022
Cited by 1 | Viewed by 2354
Abstract
This paper introduces a novel nondestructive wafer scale thin film thickness measurement method by detecting the reflected picosecond ultrasonic wave transmitting between different interfacial layers. Unlike other traditional approaches used for thickness inspection, this method is highly efficient in wafer scale, and even [...] Read more.
This paper introduces a novel nondestructive wafer scale thin film thickness measurement method by detecting the reflected picosecond ultrasonic wave transmitting between different interfacial layers. Unlike other traditional approaches used for thickness inspection, this method is highly efficient in wafer scale, and even works for opaque material. As a demonstration, we took scandium doped aluminum nitride (AlScN) thin film and related piezoelectric stacking layers (e.g. Molybedenum/AlScN/Molybdenum) as the case study to explain the advantages of this approach. In our experiments, a laser with a wavelength of 515 nm was used to first measure the thickness of (1) a single Molybdenum (Mo) electrode layer in the range of 100–300 nm, and (2) a single AlScN piezoelectric layer in the range of 600–1000 nm. Then, (3) the combined stacking layers were measured. Finally, (4) the thickness of a standard piezoelectric composite structure (Mo/AlScN/Mo) was characterized based on the conclusions and derivation extracted from the aforementioned sets of experiments. This type of standard piezoelectric composite has been widely adopted in a variety of Micro-electromechanical systems (MEMS) devices such as the Piezoelectric Micromachined Ultrasonic Transducer (PMUT), the Film Bulk Acoustic Resonator (FBAR), the Surface Acoustic Wave (SAW) and more. A comparison between measurement data from both in-line and off-line (using Scanning Electron Microscope) methods was conducted. The result from such in situ 8-inch wafer scale measurements was in a good agreement with the SEM data. Full article
(This article belongs to the Special Issue Design, Fabrication, Testing of MEMS/NEMS)
Show Figures

Figure 1

11 pages, 2635 KiB  
Communication
High-Order Harmonic Film Bulk Acoustic Resonator Based on a Polymer Reflector
by Yuxuan Hu, Bo Dong, Liang Lei, Zhizhong Wang and Shuangchen Ruan
Sensors 2022, 22(19), 7439; https://doi.org/10.3390/s22197439 - 30 Sep 2022
Cited by 7 | Viewed by 2827
Abstract
A film bulk acoustic resonator (FBAR), based on a polymer air cavity, is presented. The polymer reflective layer on the polymer air cavity can serve both as the reflective layer and the function layer for inducing the high-order mode resonance. With the aluminum [...] Read more.
A film bulk acoustic resonator (FBAR), based on a polymer air cavity, is presented. The polymer reflective layer on the polymer air cavity can serve both as the reflective layer and the function layer for inducing the high-order mode resonance. With the aluminum nitride as the piezoelectric layer, the resonance frequency of the FBAR can reach 6.360 GHz, based on the finite element method. The product of the corresponding frequency and the quality factor, f × Q is more than 2 × 1013. This design model provides a good solution for the high-frequency filters and high-sensitivity sensor designs. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop