Design and Fabrication of a Flexible Gravimetric Sensor Based on a Thin-Film Bulk Acoustic Wave Resonator
Abstract
:1. Introduction
2. Design of the Resonator
3. Fabrication Protocol
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 590–603. [Google Scholar] [CrossRef]
- Kant, N.; Peters, G.M.; Voorthuis, B.J.; Groothuis-Oudshoorn, C.G.; Koning, M.V.; Witteman, B.P.; Rinia-Feenstra, M.; Doggen, C.J. Continuous vital sign monitoring using a wearable patch sensor in obese patients: A validation study in a clinical setting. J. Clin. Monit. Comput. 2022, 36, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Windmiller, J.R.; Wang, J. Wearable Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2013, 25, 29–46. [Google Scholar] [CrossRef]
- Zhang, H.; Lan, Y.; Qiu, S.; Min, S.; Jang, H.; Park, J.; Gong, S.; Ma, Z. Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Adv. Mater. Technol. 2021, 6, 2000759. [Google Scholar] [CrossRef]
- Natta, L.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Rizzi, F.; Scarpa, E.; Qualtieri, A.; Todaro, M.T.; Sallustio, V.; De Vittorio, M. Conformable AlN Piezoelectric Sensors as a Non-invasive Approach for Swallowing Disorder Assessment. ACS Sens. 2021, 6, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jang, D.G.; Park, J.W.; Youm, S.K. Wearable sensing of in-ear pressure for heart rate monitoring with a piezoelectric sensor. Sensors 2015, 15, 3402. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, S.; Zhu, R. A Wearable Multifunctional Pulse Monitor Using Thermosensation-Based Flexible Sensors. IEEE Trans. Biomed. Eng. 2018, 66, 1412–1421. [Google Scholar] [CrossRef]
- Ma, L.Y.; Soin, N. Recent Progress in Printed Physical Sensing Electronics for Wearable Health-Monitoring Devices: A Review. IEEE Sensors J. 2022, 22, 3844–3859. [Google Scholar] [CrossRef]
- Marasco, I.; Niro, G.; Rizzi, F.; Vittorio, M.; D’Orazio, A.; Grande, M. Design of a PEN-Based Flexible PIFA Antenna Operating in the sub-6GHz Band for 5G Applications. In Proceedings of the International Conference on Transparent Optical Networks ICTON 2020, Bari, Italy, 19–23 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Marasco, I.; Niro, G.; Rizzi, F.; Vittorio, M.; D’Orazio, A.; Grande, M. A compact evolved antenna for 5G communications. Sci. Rep. 2022, 12, 10327. [Google Scholar] [CrossRef]
- Gao, J.; Liu, G.; Li, J.; Li, G. Recent developments of film bulk acoustic resonators. Funct. Mater. Lett. 2016, 9, 1630002. [Google Scholar] [CrossRef]
- Fang, Z.; Jin, H.; Dong, S.; Lu, L.; Xuan, W.; Luo, J. Ultrathin single-crystalline LiNbO3 film bulk acoustic resonator for 5G communication. Electron. Lett. 2020, 56, 586–589. [Google Scholar] [CrossRef]
- Kadota, M.; Suzuki, Y.; Ito, Y. FBAR using LiNbO3 thin film deposited by CVD. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Liu, M.; Li, T. An experimental study on the dielectric properties of rubber materials. Polymers 2021, 13, 2908. [Google Scholar] [CrossRef] [PubMed]
- Fraghavan, R.V.; Qin, J.; Yeo, L.Y.; Friend, J.R.; Takemura, K.; Yokota, S.; Edamura, K. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: A review. Sens. Actuators B Chem. 2010, 140, 287–294. [Google Scholar] [CrossRef]
- Scarpa, E.; Mastronardi, V.; Guido, F.; Algieri, L.; Qualtieri, A.; Fiammengo, R.; Rizzi, F.; Vittorio, M.D. Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring. Sci. Rep. 2020, 10, 10854. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Luo, J.; Nguyen, N.; Walton, A.; Flewitt, A.; tao Zu, X.; Li, Y.; McHale, G.; Matthews, A.; Iborra, E.; et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 2017, 89, 31–91. [Google Scholar] [CrossRef]
- Kari, T.; Arto, R.; Nirschl, M.; Pitzer, D.; Huber, T.; Schreiter, M. Fully integrated FBAR sensor matrix for mass detection. Procedia Chem. 2009, 1, 1051–1054. [Google Scholar] [CrossRef]
- Zheng, D.; Xiong, J.; Guo, P.; Wang, S.; Gu, H. AlN-based film buck acoustic resonator operated in shear mode for detection of carcinoembryonic antigens. RSC Adv. 2016, 4908–4913. [Google Scholar] [CrossRef]
- Liu, W.; Qu, H.; Hu, J.; Pang, W.; Zhang, H.; Duan, X. A highly sensitive humidity sensor based on ultrahigh-frequency microelectromechanical resonator coated with nano-assembled polyelectrolyte thin films. Micromachines 2017, 8, 116. [Google Scholar] [CrossRef]
- Kang, Y.R.; Kang, S.C.; Paek, K.K.; Kim, Y.K.; Kim, S.W.; Ju, B.K. Air-gap type film bulk acoustic resonator using flexible thin substrate. Sens. Actuators A Phys. 2005, 117, 62–70. [Google Scholar] [CrossRef]
- Khine, L.; Wong, L.Y.; Soon, J.B.; Tsai, J.M. FBAR resonators with sufficient high Q for RF filter implementation. In Advanced Materials Research; Trans Tech Publications Ltd.: Bach, Switzerland, 2011; Volume 254. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, Y.; Zhang, L.; Liu, B.; Li, Q.; Zhang, M.; Pang, W. Flexible Film Bulk Acoustic Wave Filters toward Radiofrequency Wireless Communication. Small 2018, 14, 1310–1319. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, M.; Duan, X.; Zhang, H.; Pang, W. A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit. Appl. Phys. Lett. 2017, 111, 023505. [Google Scholar] [CrossRef]
- Zhou, C.; Shu, Y.; Yang, Y.; Jin, H.; Dong, S.R.; Chan, M.; Ren, T.L. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics. J. Micromech. Microeng. 2015, 25, 055003. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, X.; Wang, X.; Jin, H.; Li, S.; Dong, S.; Flewitt, A.J.; Milne, W.I.; Luo, J.K. Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Niro, G.; Marasco, I.; Lamanna, L.; Rizzi, F.; D’Orazio, A.; de Vittorio, M.; Grande, M. Fabrication of a Flexible Film Bulk Acoustic Resonator for Wireless Sensor Networks. In Proceedings of the 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 9–13 May 2022; pp. 1–4. [Google Scholar] [CrossRef]
PMMA | Polyimide | |
---|---|---|
Spin Velocity [RPM] | 1500 | 1500 |
First Curing Temperature [°C] | 180 | 130 |
First Curing Time | 0 h:2′0″ | 1 h:0′0″ |
Second Curing Temperature [°C] | - | 200 |
Second Curing Time | - | 2h:00′0″ |
Interlayer | Bottom | Piezo | Top | |
---|---|---|---|---|
Sputtering Deposition | ||||
Base Pressure [mBar] | ||||
Power [W] | 1000 | 200 | 1250 | 400 |
Time | 8.30′ | 27′ | 46′ | 7′20″ |
Optical Lithography | ||||
Spin velocity [rpm] | - | 2000 | 2000 | 2000 |
Temperature of the Pre-Exposure Bake [°C] | - | 110 | 110 | 110 |
Time of the Pre-Exposure Bake | - | 1′ | 1′ | 1′ |
First exposure [mJ/cm2] | - | 140 | 140 | 100 |
Temperature of the Post-Exposure Bake [°C] | - | - | - | 120 |
Flood Exposure [mJ/cm2] | - | - | - | 700 |
Developing | - | 1.30′ | 1.30′ | 30″ |
ICP etching | ||||
Gas Concentrations [sccm]: BCl, Ar2 | 1001, 252 | 451, 202 | 1001, 252 | - |
Time | 5′ | 5′ | 25′ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niro, G.; Marasco, I.; Rizzi, F.; D’Orazio, A.; Grande, M.; De Vittorio, M. Design and Fabrication of a Flexible Gravimetric Sensor Based on a Thin-Film Bulk Acoustic Wave Resonator. Sensors 2023, 23, 1655. https://doi.org/10.3390/s23031655
Niro G, Marasco I, Rizzi F, D’Orazio A, Grande M, De Vittorio M. Design and Fabrication of a Flexible Gravimetric Sensor Based on a Thin-Film Bulk Acoustic Wave Resonator. Sensors. 2023; 23(3):1655. https://doi.org/10.3390/s23031655
Chicago/Turabian StyleNiro, Giovanni, Ilaria Marasco, Francesco Rizzi, Antonella D’Orazio, Marco Grande, and Massimo De Vittorio. 2023. "Design and Fabrication of a Flexible Gravimetric Sensor Based on a Thin-Film Bulk Acoustic Wave Resonator" Sensors 23, no. 3: 1655. https://doi.org/10.3390/s23031655