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Abstract: A film bulk acoustic resonator (FBAR), based on a polymer air cavity, is presented. The
polymer reflective layer on the polymer air cavity can serve both as the reflective layer and the
function layer for inducing the high-order mode resonance. With the aluminum nitride as the
piezoelectric layer, the resonance frequency of the FBAR can reach 6.360 GHz, based on the finite
element method. The product of the corresponding frequency and the quality factor, f × Q is
more than 2 × 1013. This design model provides a good solution for the high-frequency filters and
high-sensitivity sensor designs.
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1. Introduction

The popularization of fifth-generation communication equipment and the develop-
ment of the internet of things has made the internet of everything possible, and these are
inseparable from bulk acoustic wave (BAW)/surface acoustic wave (SAW) resonators. Due
to the structural limitations of the SAW resonator, the higher the operating frequency, the
thinner the interdigitated electrodes [1], and the thinner electrodes are difficult to withstand
high frequency and power. The BAW filters are more frequently used in high-frequency
communication and sensing because of their higher power tolerance. The BAW filters
are divided into film bulk acoustic resonator (FBARs) [2–4], solidly mounted resonators
(SMRs) [5,6], and laterally-excited bulk-wave resonators (XBARs) [7–9], based on the struc-
ture difference. At present, the piezoelectric film materials used in the BAW resonators
mainly include aluminum nitride, zinc oxide, and PZT. Compared with the polycrystalline
piezoelectric crystals, the single crystal piezoelectric crystals do not cause the scattering of
acoustic waves inside the piezoelectric crystals, which helps to increase the speed of the
acoustic wave. Growing high-performance piezoelectric films is key to the BAW fabrication,
the common methods are physical vapor deposition (PVD) and chemical vapor deposition
(CVD) [10,11]. For the resonator, due to the design deviation, the BAWs propagating in the
film are accompanied by many parasitic modes, while coupling-out spurious modes often
affect the signal-to-noise ratio of the filtered signal.

Currently. the known resonant modes of the FBAR include three modes: TE, TS, and
E: (1) TE-FBAR is the earliest developed and the most widely used type on the market. Its
c-axis is along the normal direction of the film plane (the thickness direction). It is mainly
used in filters, duplexers, and oscillators. It is used in radio frequency devices such as
communication systems [12,13]. (2) The FBAR (TS-FBAR) with the basic thickness-shear
(TS) as the resonance mode, needs a lining process to make the piezoelectricity during
the material processing. The axis forms an inclination angle with the excitation electric
field in the limit direction of the piezoelectric thin acid circuit, which excites the vibration
response dominated by the TS mode. The TS-FBAR can maintain a high-quality factor
when in contact with liquid and is usually used as a sensor in liquid or for biochemical
information detection [14–17]. (3) The FBAR with in-plane stretching (E) as the resonance
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mode is usually called a contour-mode FBAR, which is also realized by tilting the c-axis
of the piezoelectric film. Its main feature is that the resonant frequency of the device is
greatly affected by the lateral size of the electrode, so it has inherent advantages in the
integrated application of the device [18–20]. In recent years, more and more researchers
have begun to study higher frequency resonators, based on the parasitic modes and higher-
order resonances [21–23]. Regardless of the modes, they prevent acoustic waves from
leaking into the substrate.

Here, a new FBAR design, based on a polymer air cavity is presented. The polymer
reflective layer of the cavity serves not only as the high reflectivity layer of the FBAR but
also as the function layer for exciting the high order mode resonance. The results show
that the polymer reflective layer in the FBAR has a stronger resonance on both sides of
the fundamental mode than that of the traditional FBAR. With the aluminum nitride as
the piezoelectric layer, the resonance frequency of the FBAR can reach 6.360 GHz. The
product of the corresponding frequency and the quality factor, f × Q is more than 2 × 1013.
This design simplifies the fabrication process of the FBAR since a simple photolithography
process can create this polymer cavity and avoid the complicated etching process of the
traditional air cavity. Moreover, this design introduces the new characteristics of the FBAR.
It is expected to have practical applications in the FBAR based filters and sensors.

2. Principle of the Polymer-FBAR

In recent years, researchers have proposed many different simulation analysis meth-
ods, such as the Mason and Butterworth Van Dyke one-dimensional simulation, and the
simulation results are consistent with the experimental results [24,25].Therefore, it has
become one of the most popular simulation methods. Nevertheless, the one-dimensional
modeling simulation is not enough to pay attention to the stray mode in the simulation of
the FBAR resonator. The acoustic wave propagates inside the FBAR, and the electrome-
chanical coupling in the transverse and longitudinal directions exists at the same time,
so it is necessary to carry out a two-dimensional finite element simulation of the FBAR
resonator. Multiphysics systems can be represented by the boundary conditions and a set
of equations. The stress equation of the motion can be expressed as [26]:

Tij = ρuj, (1)

where Tij is the stress matrix, ρ is the density of the piezoelectric materials, and uj is
displacement. The electrostatic Gaussian equation can be expressed as [27]:

Di,j = 0. (2)

The following stress-charge equations describes the electrostrictive behavior of the
piezoelectric materials and it can be solved using simulation software. These equations are
one of many forms that describe the inverse piezoelectric effect and the direct piezoelectric
effect [28–31],

Tij = cijkl · Skl − ekij · Ek (3)

Di = eikl · Skl + εik · Ek (4)

where cijkl is the elastic constant matrix, ekij is the piezoelectric constant matrix, ekij is the
transpose of eikl, ε is the dielectric constant matrix, S is the strain, E is the electric field, and
i, j, k, l are tensor indices.

The direct analysis of the results for the multiphysics systems is quite difficult. The
finite element method can solve the multidimensional complex systems by using sophis-
ticated approximation techniques for partial differential equations and discretizing the
geometry of the system [32,33]. COMSOL® Multiphysics 5.6 (Comsol Multiphysics GmbH,
Göttingen, Germany) is an important tool for solving such complex systems.

The piezoelectric conversion efficiency is usually described by the electromechanical
coupling coefficient, but the difference between the electromechanical coupling coefficient
K2 and the effective electromechanical coupling coefficient Kteff

2 should be noted. K2
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is the electromechanical coupling coefficient of the piezoelectric material, which is the
intrinsic characteristic of the material, and Kteff

2 is the effective electromechanical coupling
coefficient of the resonator, which is not only related to the piezoelectric material, but also
related to various resonator designs, such as film thickness, film material, and resonator
structure. The electromechanical coupling coefficient K2 of the material can be obtained
from the blew formula:

Kte f f
2 =

(
π
2
)( fr

fa

)
tan

((
π
2
)( fr

fa

)) ≈
(π

2

)2
(

fa − fγ

fa

)
(5)

where fr is the resonant frequency and fa is the anti-resonant frequency [34–36]. The FBAR
devices can use the piezoelectric effect to generate the mechanical resonance under the
action of an input electrical signal, and correspondingly, the mechanical resonance can also
be converted into an electrical signal output.

Figure 1 shows our proposed polymer FBAR 3D model. It has six parts, including
the substrate, the polymer air cavity, the support layer, the bottom electrode layer, the
piezoelectric layer, and the top electrode layer.
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Figure 1. 3D model of the FBAR resonator.

The reflectance formula for the FBAR structure can be given by:

c =
Z1 − Z2

Z1 + Z2
(6)

where C is the reflection coefficient, Z1 is the characteristic acoustic impedance of the
support layer, and Z2 is the characteristic acoustic impedance of the polymer [37]. The
characteristic acoustic impedance of a material is equal to the product of the density of
the material and the velocity of the acoustic wave of the material. The characteristic
acoustic impedance of the bottom electrode and the support layer is large while that of
the characteristic acoustic impedance of the reflective polymer layer is small, resulting in a
large reflection at the interface of the polymer support layer (C > 90%) [38]. Thin polymer
layers cannot withstand strong stress, adding a silicon nitride support layer enhances the
mechanical stability of the polymer FBAR [39–41].
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A simulation analysis is performed by the finite element method (FEM) supported
by COMSOL® Multiphysics 5.6 software. The proposed model of the polymer FBAR in
the finite element simulation environment is shown in Figure 2, and the 3 µm perfectly
matched layers (PML) on both sides and the bottom of the substrate are adopted. The
bottom of the substrate is set as a fixed constraint, the drive voltage or power is applied to
the top electrode and to the ground on the bottom electrode, and the frequency domain is
used to calculate the impedance spectrum and reflection coefficient of the polymer FBAR.
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Figure 2. Polymer-FBAR finite element simulation model.

In the finite element simulation environment, the traditional FBAR model and the
polymer-FBAR model are established, respectively. The traditional FBAR has a silicon
based air cavity while the proposed FBAR has a polymer air cavity. All parameters are the
same except for the polymer layer for comparing the performance difference between the
traditional FBAR and polymer-FBAR, from their results.

As shown in Figure 3, the traditional FBAR has only one resonance peak while two
strong resonance peaks on both sides of the resonance peak of the traditional cavity FBAR
are induced, for the polymer FBAR. Moreover, the resonance impedance ratio of the poly-
mer FBAR can reach 52 dB. The resonator based on this resonance mode can work at
a higher frequency resonance than that of the traditional FBAR. Unlike the crystalline
materials, the spatial lattice of the polymer materials is not periodic with the strong scat-
tering of acoustic waves, so a variety of eigenmodes are coupled with each other to form
complex coupled vibration modes. In addition, the acoustic energy is suppressed inside the
aluminum nitride piezoelectric layer to achieve a more efficient electromechanical coupling,
reducing the leakage of the acoustic waves into the substrate material which may lead to
insertion loss.
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Figure 3. (a) Absolute admittance curves for the conventional FBAR and polymer FBAR; (b) Reso-
nance and antiresonance energy distribution.

3. Results and Discussions
3.1. Electrode

The simulation model AlN is selected as the piezoelectric layer with the thickness of
1 µm, and the thickness of the electrode is set to 0.1 µm. The polymer layer is a polyimide
material with a thickness of 1 µm. Due to the low mechanical strength of the polymer
layer, it can only provide the effect of bulk acoustic wave coupling. Hence, it is necessary
to support the electrode-piezo-electrode sandwich structure. The Si3N4 materials with a
higher mechanical strength is used as the support layer with the thickness of 1 µm. The top
electrode is rectangular and the irregular pentagonal electrode suppresses the coupling of
the parasitic modes and weakens the high-order resonances [42]. A model was established
in COMSOL® Multiphysics 5.6 to simulate the effect of the electrodes of different materials
on the intensity of the high-order resonance peak.

Figure 4a, shows the absolute value of the admittance for the electrode materials at
different resonance frequencies. With the increase of the acoustic impedance, the magnitude
of the first and the second resonance admittance decreases accordingly. Figure 4b shows
the relationship between the admittance amplitude and the acoustic impedance of the
electrodes. The metal electrodes with a higher density of Au, Ag, and Pt have a lower
resonance strength, since they have a higher acoustic impedance which leads to a higher
bulk acoustic wave reflection at the interface between the electrode and piezoelectric film.
The electrode material with the lowest density is Al. Hence, it has the highest admittance at
the resonance frequencies. Figure 4c shows that the second-order mode reflection coefficient
of Al is the largest, and the Q factor is calculated by S11. The Q factor is Al 2121, Ti 1398,
Mo 2021.

3.2. Polymer Materials

There are many kinds of polymer materials, and Poisson’s ratio of Young’s modulus
varies greatly among the different polymer materials. The acoustic vibration coupled by
the piezoelectric film is transmitted to the polymer layer, and within the elastic limit, the
high-order vibration mode of the piezoelectric layer can be strengthened or weakened.
Four different polymer materials are selected for the simulation, namely: polyimide (PI),
polyethylene (PE), polymethyl methacrylate (PMMA) and polyamide (PA). The mechanical
parameters are provided by COMSOL® Multiphysics 5.6, as shown in Table 1.
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Figure 4. (a) Absolute value of the admittance for the electrode materials; (b) Relationship between
the admittance amplitude and the acoustic impedance of the electrodes; (c) S11 reflection spectra of
the electrode materials.

Table 1. Young’s modulus and Poisson’s ratio of common polymer materials.

Polymers Young’s Modulus (GPa) Poisson’s Ratio

PI 3.1 0.34
PA 2.0 0.28

PMMA 3.0 0.40
PE 1.0 0.38

Figure 5a shows the absolute value of the polymer materials’ admittance response at
the different frequencies. As can be seen, the FBAR with the polyimide reflective layer has
a higher resonance frequency. Since the PI has high thermal stability, a high insulation, and
a high mechanical strength, it is an ideal polymer material for the polymer reflective layer
FBAR. Figure 5b shows the S11 reflection spectra of the second-order resonance mode of
the polymer FBAR. It can be seen that the PI FBAR has the highest resonance frequency. Its
resonance frequency can reach 6.360 GHz. A variety of resonances coupled out because the
polymer does not have a strict crystal structure, which helps the polymer FBAR to induce
the higher frequency resonance.
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Figure 5. (a) Absolute value of the polymer materials’ admittance response; (b) S11 reflection spectra
of the polymer FBAR.

3.3. Polyimide Thickness

Figure 6 shows the absolute admittance of the polymer FBAR under different poly-
imide thicknesses. It can be seen that the resonance intensity and frequency of the second
resonance peak of the PI FBAR under a thickness of 1µm, are higher than those of the other
polymer thicknesses. The polyimide with a thickness between 1.0–1.4 µm, can couple out
the second high-order resonance. When the thickness of the polymer layer increases to
2 µm, the second-order high-order strong resonance disappears. Moreover, for the poly-
imide films with a thickness of less than 1 µm, there is no second high-order resonance in
the admittance spectrum. In an ideal fluid, there is no shear deformation and the coefficient
of the viscosity is zero, so the medium has only a volumetric deformation in which only
the compressional waves propagate. However, in the solid medium, in addition to the
volume deformation, the shear deformation will be generated. Therefore, the deformation
of the solid medium will generate two kinds of waves, namely, the compression wave and
the shear wave. Therefore, when the bulk acoustic wave is incident into the polyimide
film, multiple modes of acoustic waves are coupled, resulting in modes higher than the
fundamental frequency.

3.4. Support Layer Thickness

The absolute admittance spectra under the different thicknesses of the Si3N4 support
layer are shown in Figure 7. The admittance response amplitude and the frequency are
higher as the thickness of the Si3N4 layer is between 0.7 µm and 1.4 µm, and the speed of
the bulk acoustic wave is Si3N4 is 9000 m/s, and the wavelength of the acoustic wave under
the frequency of 6.360 GHz propagating in the support layer is 1.4 µm, which is thinner
than the half wavelength and maty induce, the acoustic wave coupling of the surface waves
and shear waves. It should be noted that if the supported layer is thicker than the full
wavelength, the longitudinal waves coupled out of surface waves and shear waves may be
induced to cause a large loss of acoustic energy.
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Figure 6. Absolute admittance of the polymer FBAR against the different polyimide thicknesses.
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Figure 7. Absolute admittance spectra against the different thicknesses of the Si3N4 support layer.

4. Discussion

In micro electric mechanical systems (MEMS), the selection of electrodes often has a
great impact on the performance of the device. For example, Au and Pt have a high stability,
therefore, it is mostly used in the more extreme external environments [43]. The melting
point of Ir is 2450 ◦C, so Ir electrodes are often used in high-temperature devices [44].
However, for the polymer-FBAR, it is not only necessary to return the acoustic energy
to the piezoelectric layer in order to form resonance, but it also requires the mechanical
vibration coupling of the acoustic waves in the polymer layer, so the Al and Ti electrode
materials with a low acoustic impedance are conducive to the leakage of acoustic waves
into the polymer layer, forming complex multi-order coupling modes, and enhancing the
high-order polymer FBAR resonance.

The FBAR is a high-frequency device. Under a high-frequency operation, heat will
be generated due to the inherent loss of the material. Therefore, the high-temperature
resistance of the polymer material will seriously affect the temperature stability of the
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FBAR. The PI is a better polymer material for high-temperature chips because of its high-
temperature stability. The PI has good dielectric properties, and its dielectric constant is
about 3.4, and can be reduced to about 2.5 by introducing fluorine or dispersing air nanome-
ter size in polyimide. Its dielectric loss is 10−3, its dielectric strength is 100–300 kV/mm,
and its volume resistance is 1017 Ω·cm. It should be noted that the polymer film used in this
simulation is polyimide film and it has stable thermal characteristics. Hence, the proposed
FBAR has a stable frequency response to temperature. A good crystal structure can be
grown under extreme growth conditions without damaging the polyimide substrate [45].

Based on Stokes’ law, the amplitude attenuation of the elastic waves in a homogeneous
medium and the x-direction [46]:

A(x) = A0 sin(ωt) exp(−ax), (7)

where A0 is the incident sine wave amplitude, α is the attenuation coefficient, which is
greatly affected by the ω and temperature, as the temperature increases and the incident
sine wave ω increases, the prompt attenuation coefficient sharply increases. The thin
polyimide film is easy to leak the acoustic wave into the substrate, which induces the larger
loss of the bulk acoustic wave, and the thicker polyimide film can suppress the generation
of high-order resonance. Hence, the optimized polymer film thickness is needed.

The Si3N4 film has a relatively regular crystal structure so the loss of the acoustic wave
energy is small. The analysis of the effect of Si3N4 thickness on the mode coupling in the
FBAR of this study follows the resonator mode coupling and the characteristic dispersion
of the SMR structure [10].The Si3N4 film with a thickness of less than 0.5 µm reduces the
mechanical q value of the FBAR, which is not conducive to the mechanical stability of the
FBAR; The high-order resonance reinforced by the film layer needs to be reflected back to
the piezoelectric layer, to form resonance. In addition, the Si3N4 film larger than 1.5 µm
will scatter this part of the sound wave, thus weakening the secondary resonance strength.

5. Conclusions

In summary, a novel polymer FBAR design is proposed. The effect of the polymer
material, the electrode material, the thickness of the polymer layer, and the thickness of
the support layer are optimized by using the finite element simulation method. It is found
that the acoustic impedance of the heavy electrode material weakens the second resonance
strength; the resonator with 1 µm PI polymer layer has a higher second resonance frequency;
the Si3N4 support layer with a 1 µm thickness has a higher second resonance strength and
a higher frequency. The research in this paper guides the design of the polymer FBAR with
the polymer air cavity. In addition, the polymer air cavity acoustic wave resonators have a
great potential in the direction of flexible wearable FBAR sensors.
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