Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = filler layer strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3688 KiB  
Article
Layer-by-Layer Engineered Zinc–Tin Oxide/Single-Walled Carbon Nanotube (ZTO/SWNT) Hybrid Films for Thin-Film Transistor Applications
by Yong-Jae Kim, Young-Jik Lee, Yeon-Hee Kim, Byung Seong Bae and Woon-Seop Choi
Micromachines 2025, 16(7), 825; https://doi.org/10.3390/mi16070825 - 20 Jul 2025
Viewed by 443
Abstract
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with [...] Read more.
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with considerable potential, but its relatively low carrier mobility and inherent limitations in thin-film quality demand further performance enhancements. This paper proposes a new approach to overcome these challenges by incorporating single-walled carbon nanotubes (SWNTs) as conductive fillers into the ZTO matrix and using a layer-by-layer multiple coating process to construct nanocomposite thin films. As a result, ZTO/SWNTs (0.07 wt.%) thin-film transistors (TFTs) fabricated with three coating cycles exhibited a high saturation mobility of 18.72 cm2/V·s, a threshold voltage of 0.84 V, and a subthreshold swing of 0.51 V/dec. These values represent an approximately four-fold improvement in mobility compared to ZTO TFT, showing that the multiple-coating-based nanocomposite strategy can effectively overcome the fundamental limitations. This study confirms the feasibility of achieving high-performance oxide semiconductor transistors without indium, providing a sustainable pathway for next-generation flexible electronics and display technologies. Full article
Show Figures

Figure 1

15 pages, 3148 KiB  
Article
Elucidating the Role of Graphene Oxide Surface Architecture and Properties in Loess Soil Remediation Efficacy
by Zirui Wang, Haotian Lu, Zhigang Li, Yuwei Wu and Junping Ren
Nanomaterials 2025, 15(14), 1098; https://doi.org/10.3390/nano15141098 - 15 Jul 2025
Viewed by 263
Abstract
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel [...] Read more.
Loess Plateau is the region with the most concentrated loess distribution and the deepest loess soil layer in the world, and it is facing serious problems of soil erosion and ecological degradation. The nano carbon modification of soil surface properties is a novel strategy for soil improvement and enhancing the soil’s capacity to sequester carbon, which has been extensively researched. However, the mechanisms underlying the influence of carbon surface structure on the efficacy of loess soil remediation remain unclear. Herein, graphene oxide (GO) with a unique two-dimensional structure and adjustable surface properties was optimized as a model carbon filler to investigate the modification effect on loess. As a result, the addition amount of 0.03% GO significantly reduced the disintegration amount of loess, but, if inhibited for a long time, the disintegration effect would weaken. The highly reduced GO can delay the loess disintegration rate due to its enhanced hydrophobicity, but the inhibitory effect fails over a long period of time. After adjusting the reduce degree with a 50% SA (sodium ascorbate), the water-holding capacity of the modified soil in the high suction range is enhanced. This study reveals the synergistic mechanism of the sheet structure and surface properties of GO on the water stability of loess, providing a reference for the prevention and control of soil erosion and ecological restoration in the Loess Plateau. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 2067 KiB  
Article
Controllable Preparation of Oriented Boron Nitride Nanosheets/Polyacrylate Pressure-Sensitive Adhesive Composites with Enhanced Thermal Conductivity
by Yuan Liu, Chaochao Cao, De Zheng, Guohua Li and Xiongwei Qu
Polymers 2025, 17(12), 1604; https://doi.org/10.3390/polym17121604 - 9 Jun 2025
Viewed by 501
Abstract
Traditional approaches to constructing thermally conductive networks typically necessitate costly equipment and intricate processes, rendering them unsuitable for mass production and commercialization. Here, we propose a facile strategy to construct highly oriented boron nitride/polyacrylate pressure-sensitive adhesive frameworks by a calendering process. A UV [...] Read more.
Traditional approaches to constructing thermally conductive networks typically necessitate costly equipment and intricate processes, rendering them unsuitable for mass production and commercialization. Here, we propose a facile strategy to construct highly oriented boron nitride/polyacrylate pressure-sensitive adhesive frameworks by a calendering process. A UV light-based bulk polymerization method is adopted to prepare the pressure-sensitive adhesives (PSAs), which makes the preparation process solvent-free and volatile organic compound (VOC)-free, and environmentally friendly compared to emulsion and solvent-based pressure-sensitive adhesives. This simple, economical and scalable method provides new ideas and ways for the preparation of advanced thermal conductive networks. The highly oriented and flexible m-BNNSs/polyacrylate pressure-sensitive adhesive composites (m-BNNSs/PSAs-Ori) exhibited a significantly high thermal conductivity (TC) of 0.9552 W/(m·K) at 25 wt% filler content. Significantly, m-BNNSs/PSAs-Ori composites showed a better thermal response than the single-layer thermally conductive pressure-sensitive adhesive. Moreover, the composites also possess excellent electrical insulation and mechanical properties. This exploration not only provides a reasonable design scheme for thermal interface materials, but also promotes the practical application of polyacrylate pressure-sensitive adhesive composites in thermal management. Full article
Show Figures

Graphical abstract

42 pages, 12382 KiB  
Review
Development of Wear-Resistant Polymeric Materials Using Fused Deposition Modelling (FDM) Technologies: A Review
by Zhiwang Li and Li Chang
Lubricants 2025, 13(3), 98; https://doi.org/10.3390/lubricants13030098 - 22 Feb 2025
Cited by 4 | Viewed by 1766
Abstract
The advancement of 3D printing technology has changed material design and fabrication across various industries. Among its many applications, the development of high-wear-resistance polymer composites, particularly using Fused Deposition Modelling (FDM), has received increasing interest from both academic and industrial sectors. This paper [...] Read more.
The advancement of 3D printing technology has changed material design and fabrication across various industries. Among its many applications, the development of high-wear-resistance polymer composites, particularly using Fused Deposition Modelling (FDM), has received increasing interest from both academic and industrial sectors. This paper provides an overview of recent advances in this field, focusing on the selection of key printing parameters (such as layer thickness, print speed, infill density, and printing temperature) and material compatibility optimisation to enhance print quality and tribological performance. The effects of various tribo-fillers, such as fibres and nanoparticles, on the tribological properties of the printed polymer composites were studied. Generally, in the case of nano-sized particles, the wear rate can be reduced by approximately 3 to 5 times when the nanoparticle content is below 5 vol.%. However, when the nanoparticle concentration exceeds 10 vol.%, wear resistance may deteriorate due to the formation of agglomerates, which disrupts the uniform dispersion of reinforcements and weakens the composite structure. Similarly, in short fibre-reinforced polymer composites, a fibre content of 10–30 vol.% has been observed to result in a 3 to 10 times reduction in wear rate. Special attention is given to the synergistic effects of combining micro- and nano-sized fillers. These advancements introduce novel strategies for designing wear-resistant polymer composites without requiring filament fabrication, making 3D printing more accessible for tribological applications. In the last part of the review, the impact of emerging AI technologies on the field is also reviewed and discussed. By identifying key research gaps and future directions, this review aims to drive further innovation in the development of durable, high-performance materials for wide industry applications in aerospace, biomedical, and industrial engineering. Full article
Show Figures

Figure 1

16 pages, 3838 KiB  
Review
Anatomical-Based Diagnosis and Filler Injection Techniques: Lips and Philtrum
by Gi-Woong Hong, Wonseok Choi, Song-Eun Yoon, Jovian Wan and Kyu-Ho Yi
Life 2025, 15(2), 315; https://doi.org/10.3390/life15020315 - 18 Feb 2025
Cited by 2 | Viewed by 4374
Abstract
Lip augmentation has become increasingly popular in aesthetic medicine, driven by advancements in dermal filler technologies and injection techniques. This review provides a comprehensive overview of lip anatomy, age-related changes, and current best practices in lip augmentation using dermal fillers. The complex structure [...] Read more.
Lip augmentation has become increasingly popular in aesthetic medicine, driven by advancements in dermal filler technologies and injection techniques. This review provides a comprehensive overview of lip anatomy, age-related changes, and current best practices in lip augmentation using dermal fillers. The complex structure of the lips, including multiple layers of skin, muscle, and mucosa, contributes to their unique appearance and function. Age-related changes, such as volume loss, thinning of the vermilion border, and flattening of the philtrum, significantly impact lip aesthetics. Understanding these changes is crucial for developing effective treatment strategies. The review discusses the importance of tailoring treatments to individual patient needs, considering factors such as ethnic variations in lip structure and cultural preferences. It emphasizes the significance of proper filler selection, with hyaluronic acid-based products being the gold standard due to their biocompatibility and reversibility. Injection techniques, including needle and cannula approaches, are described in detail, with a focus on safety and optimal aesthetic outcomes. Anatomical considerations, particularly the vascular supply to the lips, are highlighted as critical for avoiding complications during filler injections. The review also addresses the evolving approach to lip augmentation, which now focuses on restoring natural contours and addressing age-related changes in the perioral region rather than simply increasing volume. Finally, the importance of managing patient expectations and the potential for future advancements in the field are discussed, including the development of more targeted filler products and refined injection techniques. Full article
Show Figures

Figure 1

25 pages, 14228 KiB  
Review
A Review on Metallurgical Issues in the Production and Welding Processes of Clad Steels
by Fabio Giudice, Severino Missori, Cristina Scolaro and Andrea Sili
Materials 2024, 17(17), 4420; https://doi.org/10.3390/ma17174420 - 8 Sep 2024
Cited by 9 | Viewed by 2328
Abstract
Carbon and low-alloy steel plates clad with stainless steel or other metals are a good choice to meet the demand for cost-effective materials to be used in many corrosive environments. Numerous technical solutions are developed for the production of clad steel plates, as [...] Read more.
Carbon and low-alloy steel plates clad with stainless steel or other metals are a good choice to meet the demand for cost-effective materials to be used in many corrosive environments. Numerous technical solutions are developed for the production of clad steel plates, as well as for their joining by fusion welding. For thick plates, a careful strategy is required in carrying out the multiple passes and in choosing the most suitable filler metals, having to take into account the composition of the base metal and the cladding layer. The specificity of the different processes and materials involved requires an adequate approach in the study of the metallurgical characteristics of clad steel, thus arousing the interest of researchers. Focusing mainly on ferritic steel plates clad with austenitic steel, this article aims to review the scientific literature of recent years which deals with both the production and the fusion welding processes. The metallurgical issues concerning the interfaces and the effects of microstructural characteristics on mechanical behaviour and corrosion resistance will be addressed; in particular, the effects on the fusion and thermally affected zones that form during the fusion welding and weld overlay processes will be analysed and discussed. Full article
Show Figures

Figure 1

15 pages, 5076 KiB  
Article
High-Value and Environmentally Friendly Recycling Method for Coal-Based Solid Waste Based on Polyurethane Composite Materials
by Xu Li, Yang Liu, Mingyi Li, Sitong Zhang, Lan Jia, Fengbo Zhu and Wenwen Yu
Polymers 2024, 16(14), 2044; https://doi.org/10.3390/polym16142044 - 17 Jul 2024
Viewed by 1231
Abstract
This study aims to provide a high-value and environmentally friendly method for the application of coal-based solid waste. Modified fly ash/polyurethane (MFA/PU) and modified coal gangue powder/polyurethane (MCG/PU) composites were prepared by adding different contents of MFA and MCG (10%, 20%, 30%, 40%). [...] Read more.
This study aims to provide a high-value and environmentally friendly method for the application of coal-based solid waste. Modified fly ash/polyurethane (MFA/PU) and modified coal gangue powder/polyurethane (MCG/PU) composites were prepared by adding different contents of MFA and MCG (10%, 20%, 30%, 40%). At the filler content of 30%, the compressive strengths of MFA/PU and MCG/PU are 84.1 MPa and 46.3 MPa, respectively, likely due to an improvement in interface compatibility, as indicated by scanning electron microscopy (SEM). The MFA/PU and MCG/PU composites present their highest limiting oxygen index (LOI) values of 29% and 23.5%, respectively, when their filler content is 30%. MFA has advantages in improving the LOIs of composites. Cone calorimetry (CCT) and SEM demonstrate that the two composites exhibit similar condensed-phase flame-retardant behaviors during combustion, which releases CO2 in advance and accelerates the formation of a dense barrier layer. Compared with the MFA/PU composites, the MCG/PU composites could produce a more stable and dense barrier structure. Water quality tests show that heavy metals do not leak from FA and CG embedded in PU. This work provided a new strategy for the safe and high-value recycling of coal-based solid waste. Full article
(This article belongs to the Special Issue Polyurethane Materials for Multifunctional Applications)
Show Figures

Graphical abstract

13 pages, 5156 KiB  
Article
Enhancing the Thermal Conductivity of CNT/AlN/Silicone Rubber Composites by Using CNTs Directly Grown on AlN to Achieve a Reduced Filler Filling Ratio
by Naoyuki Matsumoto, Don N. Futaba, Takeo Yamada and Ken Kokubo
Nanomaterials 2024, 14(6), 528; https://doi.org/10.3390/nano14060528 - 15 Mar 2024
Cited by 6 | Viewed by 3169
Abstract
Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite [...] Read more.
Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite matrix, limiting its practical applicability. To address this issue, in this paper, we present a new strategy to reduce the required ceramic filler content: the use of a thermally conductive ceramic composite filler with carbon nanotubes (CNTs) grown on aluminum nitride (AlN). We combined catalyst coating technology with vacuum filtration to ensure that the catalyst was uniformly applied to micrometer-sized AlN particles, followed by the efficient and uniform synthesis of CNTs using a water-assisted process in a vertical furnace. By carefully controlling the number of vacuum filtration cycles and the growth time of the CNTs, we achieved precise control over the number and length of the CNT layers, thereby adjusting the properties of the composite to the intended specifications. When AlN/CNT hybrid fillers are incorporated into silicone rubber, while maintaining the mechanical properties of rubber, the thermal diffusivity achieved at reduced filler levels exceeds that of composites using AlN-only or simultaneous AlN and CNTs formulations. This demonstrates the critical influence of CNTs on AlN surfaces. Our study represents a significant advancement in the design of thermally conductive materials, with potential implications for a wide range of applications. Full article
Show Figures

Figure 1

16 pages, 3768 KiB  
Article
Computational Optimization of Sandwich Silicone Rubber Composite for Improved Thermal Conductivity and Electrical Insulation
by Abdulrahman A. Alghamdi
Polymers 2024, 16(5), 616; https://doi.org/10.3390/polym16050616 - 23 Feb 2024
Cited by 5 | Viewed by 2110
Abstract
The efficient dissipation of heat has emerged as a crucial concern for modern electronic devices, given the continuous increase in their power density and consumption. Thus, the utilization of thermally conductive but electrically insulating silicone rubber composites as a thermal interface material has [...] Read more.
The efficient dissipation of heat has emerged as a crucial concern for modern electronic devices, given the continuous increase in their power density and consumption. Thus, the utilization of thermally conductive but electrically insulating silicone rubber composites as a thermal interface material has garnered significant interest. In this study, the effects of the filler volume fraction, filler orientation, layer volume fractions, layer configuration, and a number of layers on the thermal conductivity and electrical resistivity of silicone rubber composites were examined using a multiscale finite element modeling strategy. The results demonstrated that modification of the filler orientation can change the thermal conductivity by 28 and 21 times in the in-plane and through-thickness directions, respectively. The in-plane thermal conductivities of silicone rubber/boron nitride and silicone rubber/expanded graphite layers exhibit a percolation phenomenon at filler volume fractions of 35% and 30%, respectively. The electrical resistivity of the composite increases exponentially with a decrease in the number of layers. Full article
(This article belongs to the Special Issue Multiscale Modeling and Simulation of Polymer-Based Composites)
Show Figures

Figure 1

18 pages, 2582 KiB  
Article
Multi-Attribute Decision Making: Parametric Optimization and Modeling of the FDM Manufacturing Process Using PLA/Wood Biocomposites
by Alexandra Morvayová, Nicola Contuzzi, Laura Fabbiano and Giuseppe Casalino
Materials 2024, 17(4), 924; https://doi.org/10.3390/ma17040924 - 17 Feb 2024
Cited by 13 | Viewed by 1364
Abstract
The low carbon footprint, biodegradability, interesting mechanical properties, and relatively low price are considered some of the reasons for the increased interest in polylactic acid-based (PLA-based) filaments supplied with natural fillers. However, it is essential to recognize that incorporating natural fillers into virgin [...] Read more.
The low carbon footprint, biodegradability, interesting mechanical properties, and relatively low price are considered some of the reasons for the increased interest in polylactic acid-based (PLA-based) filaments supplied with natural fillers. However, it is essential to recognize that incorporating natural fillers into virgin PLA significantly impacts the printability of the resulting blends. The complex inter-relationship between process, structure, and properties in the context of fused deposition modeling (FDM)-manufactured biocomposites is still not fully understood, which thus often results in decreased reliability of this technology in the context of biocomposites, decreased accuracy, and the increased presence of defects in the manufactured biocomposite samples. In light of these considerations, this study aims to identify the optimal processing parameters for the FDM manufacturing process involving wood-filled PLA biocomposites. This study presents an optimization approach consisting of Grey Relational Analysis in conjunction with the Taguchi orthogonal array. The optimization process has identified the combination of a scanning speed of 70 mm/s, a layer height of 0.1 mm, and a printing temperature of 220 °C as the most optimal, resulting in the highly satisfactory combination of good dimensional accuracy (Dx = 20.115 mm, Dy = 20.556 mm, and Dz = 20.220 mm) and low presence of voids (1.673%). The experimentally determined Grey Relational Grade of the specimen manufactured with the optimized set of process parameters (0.782) was in good agreement with the predicted value (0. 754), substantiating the validity of the optimization process. Additionally, the research compared the efficacy of optimization between the integrated multiparametric method and the conventional monoparametric strategy. The multiparametric method, which combines Grey Relational Analysis with the Taguchi orthogonal array, exhibited superior performance. Although the monoparametric optimization strategy yielded specimens with favorable values for the targeted properties, the analysis of the remaining characteristics uncovered unsatisfactory results. This highlights the potential drawbacks of relying on a singular optimization approach. Full article
Show Figures

Graphical abstract

13 pages, 3683 KiB  
Article
Graphene-Oxide-Modified Metal–Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO2/N2 Separation
by Long Feng, Qiuning Zhang, Jianwen Su, Bing Ma, Yinji Wan, Ruiqin Zhong and Ruqiang Zou
Nanomaterials 2024, 14(1), 24; https://doi.org/10.3390/nano14010024 - 21 Dec 2023
Cited by 8 | Viewed by 2480
Abstract
MOF-74 (metal–organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles [...] Read more.
MOF-74 (metal–organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles and improving the compatibility with the matrix can effectively avoid the existence of non-selective voids to improve the gas separation efficiency. We propose a novel, layer-by-layer modification strategy for MOF-74 with graphene oxide. Two-dimensional graphene oxide nanosheets as a supporting skeleton creatively improve the dispersion uniformity of MOFs in MMMs, enhance their interfacial compatibility, and thus optimize the selective gas permeability. Additionally, they extended the gas diffusion paths, thereby augmenting the dissolution selectivity. Compared with doping with a single component, the use of a GO skeleton to disperse MOF-74 into Pebax®1657 (Polyether Block Amide) achieved a significant improvement in terms of the gas separation effect. The CO2/N2 selectivity of Pebax®1657-MOF-74 (Ni)@GO membrane with a filler concentration of 10 wt% was 76.96, 197.2% higher than the pristine commercial membrane Pebax®1657. Our results highlight an effective way to improve the selective gas separation performance of MMMs by functionalizing the MOF supported by layered GO. As an efficient strategy for developing porous MOF-based gas separation membranes, this method holds particular promise for manufacturing advanced carbon dioxide separation membranes and also concentrates on improving CO2 capture with new membrane technologies, a key step in reducing greenhouse gas emissions through carbon capture and storage. Full article
Show Figures

Figure 1

10 pages, 3787 KiB  
Article
Mechanically Strong and Electrically Conductive Polyethylene Oxide/Few-Layer Graphene/Cellulose Nanofibrils Nanocomposite Films
by Mei Li, Meijie Xiao, Qunhao Wang, Jian Zhang, Xiaolin Xue, Jiangqi Zhao, Wei Zhang and Canhui Lu
Nanomaterials 2022, 12(23), 4152; https://doi.org/10.3390/nano12234152 - 23 Nov 2022
Cited by 9 | Viewed by 1953
Abstract
In this work, a cellulose nanofibrils (CNFs)/few-layer graphene (FLG) hybrid is mechanically stripped from bamboo pulp and expanded graphene (EG) using a grinder. This strategy is scalable and environmentally friendly for high-efficiency exfoliation and dispersion of graphene in an aqueous medium. The in [...] Read more.
In this work, a cellulose nanofibrils (CNFs)/few-layer graphene (FLG) hybrid is mechanically stripped from bamboo pulp and expanded graphene (EG) using a grinder. This strategy is scalable and environmentally friendly for high-efficiency exfoliation and dispersion of graphene in an aqueous medium. The in situ-generated CNFs play a key role in this process, acting as a “green” dispersant. Next, the obtained CNFs-FLG is used as a functional filler in a polyoxyethylene (PEO) matrix. When the composition of CNFs-FLG is 50 wt.%, the resultant PEO/CNFs-FLG nanocomposite film exhibits a Young’s modulus of 1.8 GPa and a tensile strength of 25.7 MPa, showing 480% and 260% enhancement as compared to those of the pure PEO film, respectively. Remarkably, the incorporation of CNFs-FLG also provides the nanocomposite films with a stunning electrical conductivity (72.6 S/m). These attractive features make PEO/CNFs-FLG nanocomposite films a promising candidate for future electronic devices. Full article
Show Figures

Figure 1

11 pages, 35681 KiB  
Article
Research on Filling Strategy of Pipeline Multi-Layer Welding for Compound Narrow Gap Groove
by Tie Yin, Jinpeng Wang, Hong Zhao, Lun Zhou, Zenghuan Xue and Hehe Wang
Materials 2022, 15(17), 5967; https://doi.org/10.3390/ma15175967 - 29 Aug 2022
Cited by 12 | Viewed by 2645
Abstract
With the increase in transmission pressure and pipe diameter of long-distance oil and gas pipelines, automatic welding of the pipeline has become the mainstream welding method. The multi-layer and multi-pass welding path planning of large-diameter pipelines with typical narrow gap grooves are studied, [...] Read more.
With the increase in transmission pressure and pipe diameter of long-distance oil and gas pipelines, automatic welding of the pipeline has become the mainstream welding method. The multi-layer and multi-pass welding path planning of large-diameter pipelines with typical narrow gap grooves are studied, and a welding strategy for pipeline external welding robot is proposed. By analyzing the shape of the weld bead section of the narrow gap groove and comparing the advantages and disadvantages of the equal-height method and the equal-area method, the mathematical model of the filling layer is established. Through the test and analysis in the workshop, the predicted lifting value meets the actual welding requirements. The microstructure of the weld was analyzed by SEM. The main structure of the weld was fine acicular ferrite, which could improve the mechanical properties of the welded joint. After multi-layer filling, the filling layer is flush with the edge of the groove. The establishment of this model lays a foundation for the formulation of welding process parameters for large-diameter pipes and the off-line programming of welding procedures. Full article
Show Figures

Figure 1

13 pages, 3754 KiB  
Article
Sandwich-Structured Flexible PVA/CS@MWCNTs Composite Films with High Thermal Conductivity and Excellent Electrical Insulation
by Fanghua Luo, Chen Ma, Yuhui Tang, Lintao Zhou, Youpeng Ding and Guohua Chen
Polymers 2022, 14(12), 2512; https://doi.org/10.3390/polym14122512 - 20 Jun 2022
Cited by 11 | Viewed by 2884
Abstract
High thermal conductivity polymer matrix composites have become an urgent need for the thermal management of modern electronic devices. However, increasing the thermal conductivity of polymer-based composites typically results in loss of lightweight, flexibility and electrical insulation. Herein, the polyvinyl alcohol (PVA)/PVA-chitosan-adsorbed multi-walled [...] Read more.
High thermal conductivity polymer matrix composites have become an urgent need for the thermal management of modern electronic devices. However, increasing the thermal conductivity of polymer-based composites typically results in loss of lightweight, flexibility and electrical insulation. Herein, the polyvinyl alcohol (PVA)/PVA-chitosan-adsorbed multi-walled carbon nanotubes/PVA (PVA/CS@MWCNTs) composite films with a sandwich structure were designed and fabricated by a self-construction strategy inspired by the surface film formation of milk. The obtained film simultaneously possesses high thermal conductivity, electrical insulation, and excellent flexibility. In this particular structure, the uniform intermediate layer of PVA-CS@MWCNTs contributed to improving the thermal conductivity of composite films, and the PVA distributed on both sides of the sandwich structure maintains the electrical insulation of the films (superior electrical resistivity above 1012 Ω·cm). It has been demonstrated that the fillers could be arranged in a horizontal direction during the scraping process. Thus, the obtained composite film exhibited high in-plane thermal conductivity of 5.312 W·m−1·K−1 at fairly low MWCNTs loading of 5 wt%, which increased by about 1190% compared with pure PVA (0.412 W·m−1·K−1). This work effectively realizes the combination of high thermal conductivity and excellent electrical insulation, which could greatly expand the application of polymer-based composite films in the area of thermal management. Full article
(This article belongs to the Special Issue High Performance Polymer Membranes)
Show Figures

Graphical abstract

25 pages, 14015 KiB  
Article
Effect of PMMA Coupling Layer in Enhancing the Ultrasonic Weld Strength of Novel Room Temperature Curable Acrylic Thermoplastic to Epoxy Based Composites
by Goram Gohel, Chun Zhi Soh, Kah Fai Leong, Pierre Gerard and Somen K. Bhudolia
Polymers 2022, 14(9), 1862; https://doi.org/10.3390/polym14091862 - 2 May 2022
Cited by 9 | Viewed by 3026
Abstract
The joining of composites can be performed in an extremely short time with more energy-efficient ultrasonic welding techniques. The current research investigated the performance optimization of ultrasonic welding of carbon/Elium® composite to carbon/epoxy composite using a polymethyl methacrylate (PMMA) coupling interlayer. The [...] Read more.
The joining of composites can be performed in an extremely short time with more energy-efficient ultrasonic welding techniques. The current research investigated the performance optimization of ultrasonic welding of carbon/Elium® composite to carbon/epoxy composite using a polymethyl methacrylate (PMMA) coupling interlayer. The weld strength was quantified by static lap shear strength (LSS) testing. A new methodology was used by creating a PMMA coupling layer on the epoxy composite adherend to achieve an improved interphase and thus enhance the weld properties. The LSS of Elium (EL)-Epoxy (EP) _0.25_0.25 was found to be 190% higher compared to that of EL-EP, confirming the effectiveness of the strategy used for creating an interlayer thermoplastic coupling layer. The time required for welding was optimized to be 2s as compared to 10 min required for adhesive bonding. Scanning electron microscopic images of epoxy and PMMA/Elium matrix interphase were observed to have a rough surface and remained largely unaffected by welding. There was an interphase change further away from the interphase to a rougher texture. There was little to no effect on the penultimate layer on the weld strength, as no interphase change could be observed after welding. Fractography investigation revealed shear cusps, matrix plastic deformation, fiber imprints, fiber pull-out, and good adhesion between matrix and fiber, features seen for configuration with maximum LSS. The current research findings present a way to join Elium® with epoxy composites that could be used in applications that require a selective strengthening, such as in sporting goods and consumer products. Furthermore, a detailed investigation is ongoing to use different filler particles and coupling layers to reach the maximum welding performance. Full article
(This article belongs to the Collection State-of-the-Art Polymer Science and Technology in Singapore)
Show Figures

Graphical abstract

Back to TopTop