Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = filamentous fungus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 - 2 Aug 2025
Viewed by 300
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

14 pages, 1604 KiB  
Article
Elicitation-Induced Enhancement of Lovastatin and Pigment Production in Monascus purpureus C322
by Sirisha Yerramalli, Stephen J. Getting, Godfrey Kyazze and Tajalli Keshavarz
Fermentation 2025, 11(8), 422; https://doi.org/10.3390/fermentation11080422 - 22 Jul 2025
Viewed by 508
Abstract
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This [...] Read more.
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This study evaluated the impact of carbohydrate-derived elicitors—mannan oligosaccharides, oligoguluronate, and oligomannuronate—on the enhancement of pigment and lovastatin production in M. purpureus C322 under submerged fermentation. Elicitors were added at 48 h in shake flasks and 24 h in 2.5 L stirred-tank fermenters. All treatments increased the production of yellow, orange, and red pigments and lovastatin compared to the control, with higher titres upon scale-up. OG led to the highest orange pigment yield (1.2 AU/g CDW in flasks; 1.67 AU/g CDW in fermenters), representing 2.3- and 3.0-fold increases. OM yielded the highest yellow and red pigments (1.24 and 1.35 AU/g CDW in flasks; 1.58 and 1.80 AU/g CDW in fermenters) and the highest lovastatin levels (10.46 and 12.6 mg/g CDW), corresponding to 2.03–3.03-fold improvements. These results highlight the potential of carbohydrate elicitors to stimulate metabolite biosynthesis and facilitate scalable optimisation of fungal fermentation. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

14 pages, 1180 KiB  
Article
Mycogenic Silver Nanoparticles: Promising Antimicrobials with Fungistatic Properties
by Aleksandra Tończyk, Katarzyna Niedziałkowska, Marta Nowak-Lange, Przemysław Bernat and Katarzyna Lisowska
Int. J. Mol. Sci. 2025, 26(14), 6639; https://doi.org/10.3390/ijms26146639 - 10 Jul 2025
Viewed by 313
Abstract
The antimicrobial activity of silver nanoparticles (AgNPs) makes them a valuable tool in various industries. Recently, biosynthesis has become the preferred method for nanoparticle synthesis, and among organisms that can be used as AgNP producers, filamentous fungi have attracted the greatest interest. In [...] Read more.
The antimicrobial activity of silver nanoparticles (AgNPs) makes them a valuable tool in various industries. Recently, biosynthesis has become the preferred method for nanoparticle synthesis, and among organisms that can be used as AgNP producers, filamentous fungi have attracted the greatest interest. In particular, wood decay fungi are considered promising candidates for AgNP biosynthesis. Biogenic AgNPs have been proven to have strong antibacterial potential and antifungal activity. The aim of this study was to evaluate the antifungal potential of AgNPs synthesized using the brown-rot decay fungus Gloeophyllum striatum DSM 9592 against four pathogenic fungal strains: Candida albicans, Malassezia furfur, Aspergillus flavus and Aspergillus fumigatus. Moreover, changes in the tested strains’ lipidome and cell membrane properties induced by the presence of AgNPs were investigated. The results revealed that the obtained AgNPs exerted fungistatic activity against all the strains tested. M. furfur, with a MIC value of 0.39 μg/mL obtained for all AgNP types, was found to be the most susceptible to the action of AgNPs. The lipidomic analysis revealed that the presence of AgNPs caused an increase in cell membrane fluidity in both A. flavus and C. albicans, and the mechanisms of response to AgNPs differed between the tested strains. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 2743 KiB  
Article
Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis
by Xiao-Rui Sun, Pu-Sheng Li, Huan Qiao, Wei-Liang Kong, Ya-Hui Wang and Xiao-Qin Wu
Microorganisms 2025, 13(7), 1574; https://doi.org/10.3390/microorganisms13071574 - 3 Jul 2025
Viewed by 418
Abstract
Phosphate-solubilizing microbes (PSMs) in soil play a crucial role in converting insoluble phosphates into plant-available soluble phosphorus. This paper systematically presents a comprehensive array of qualitative and quantitative techniques to assess the phosphate-decomposing capabilities of microbes. Additionally, it introduces two optimized media, namely [...] Read more.
Phosphate-solubilizing microbes (PSMs) in soil play a crucial role in converting insoluble phosphates into plant-available soluble phosphorus. This paper systematically presents a comprehensive array of qualitative and quantitative techniques to assess the phosphate-decomposing capabilities of microbes. Additionally, it introduces two optimized media, namely improved Monkina medium No. 1 and No. 2, which are particularly suitable for detecting the solubilization abilities of microbes toward insoluble organic phosphates. Talaromyces nanjingensis, a novel fungal species recently isolated from the rhizosphere soil of Pinus massoniana, demonstrates remarkable phosphate-solubilizing abilities. Across multiple temperature gradients (15 °C, 20 °C, 25 °C, 30 °C, and 37 °C), it effectively decomposes both insoluble inorganic and organic phosphates. This is achieved through the secretion of organic acids, including gluconic acid (6.10 g L−1), oxalic acid (0.93 g L−1), and malonic acid (0.17 g L−1), as well as phosphate-solubilizing enzymes. Moreover, under low-, medium-, and high-temperature conditions, T. nanjingensis can decompose insoluble phosphates in three types of soil with varying pH levels, thereby enhancing the overall soil fertility. Genomic analysis of T. nanjingensis has identified approximately 308 genes associated with phosphate decomposition and environmental adaptability, validating its superior capabilities and multi-faceted strategies for phosphate mobilization. These findings underscore the wide applicability of T. nanjingensis in maintaining soil phosphorus homeostasis and optimizing the phosphorus use efficiency, highlighting its promising potential for agricultural and environmental applications. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling: 2nd Edition)
Show Figures

Figure 1

32 pages, 1834 KiB  
Review
Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin
by Justyna Ruchala, Alicja Najdecka, Dominik Wojdyla, Wen Liu and Andriy Sibirny
Int. J. Mol. Sci. 2025, 26(13), 6243; https://doi.org/10.3390/ijms26136243 - 28 Jun 2025
Viewed by 674
Abstract
Riboflavin (vitamin B2) is an essential micronutrient required for all living organisms. It is naturally synthesized by plants and most microorganisms, including the bacterium Bacillus subtilis, the filamentous fungus Ashbya gossypii, and the yeast Candida famata—all of which [...] Read more.
Riboflavin (vitamin B2) is an essential micronutrient required for all living organisms. It is naturally synthesized by plants and most microorganisms, including the bacterium Bacillus subtilis, the filamentous fungus Ashbya gossypii, and the yeast Candida famata—all of which are known to be riboflavin overproducers. The choice of production organism in industrial applications depends on factors such as yield, ease of cultivation, and the availability of genetic tools. As a result, several microorganisms are commonly used, and their relative prominence can shift over time with advances in metabolic engineering and process optimization. This review presents a comparative analysis of riboflavin biosynthesis across prokaryotic and eukaryotic systems, with a particular focus on regulatory mechanisms governing flavinogenesis. Special attention is given to recent advances in metabolic engineering strategies, including the application of CRISPR/Cas9 genome editing in Bacillus subtilis and Ashbya gossypii. In yeast systems, significant improvements in riboflavin production have been achieved primarily through the manipulation of transcriptional regulators (e.g., SEF1, SFU1, TUP1) and metabolic genes. The role of other important genes (PRS3, ADE4, ZWF1, GND1, RFE1, VMA1, etc.) in riboflavin overproduction in C. famata is described. The review also explores the use of alternative, low-cost feedstocks—including lignocellulosic hydrolysates and dairy by-products—to support more sustainable and economically viable riboflavin production. Although considerable progress has been achieved in genetic optimization and bioprocess development, further work is required to fine-tune metabolic flux and maximize riboflavin synthesis, particularly under industrial conditions. This review highlights key opportunities for future research aimed at refining metabolic interventions and expanding the use of renewable substrates for environmentally sustainable riboflavin production. Full article
(This article belongs to the Special Issue New Advances in Metabolic Engineering and Synthetic Biology of Yeasts)
Show Figures

Figure 1

14 pages, 3453 KiB  
Article
Decapeptide Inducer Promotes the Conidiation of Phytopathogenic Magnaporthe oryzae via the Mps1 MAPK Signaling Pathway
by Mengya Yang, Yanan Liu and Jianhua Qi
Int. J. Mol. Sci. 2025, 26(12), 5880; https://doi.org/10.3390/ijms26125880 - 19 Jun 2025
Viewed by 259
Abstract
Magnaporthe oryzae (M. oryzae) is a phytopathogenic fungus that inflicts damage on vital crops, particularly rice. Its asexual reproduction leads to the generation of numerous conidia, which is a critical factor contributing to the prevalence of rice blast disease. However, the [...] Read more.
Magnaporthe oryzae (M. oryzae) is a phytopathogenic fungus that inflicts damage on vital crops, particularly rice. Its asexual reproduction leads to the generation of numerous conidia, which is a critical factor contributing to the prevalence of rice blast disease. However, the molecules regulating the asexual reproduction of M. oryzae are unknown. In our study, to identify the molecules capable of regulating the asexual reproduction of M. oryzae, compositions of the complete medium (CM) were screened. Results showed that acid-hydrolyzed casein (AHC) could remarkably promote conidial production. One M. oryzae conidiation inducer was isolated from AHC using high-performance liquid chromatography (HPLC) under the guidance of bioassay. Its structure was further elucidated as a decapeptide compound (pyroGlu-EQNQEQPIR) by LC-MS/MS, chemical synthesis, and conidium-inducing assays, named M. oryzae conidiation inducer decapeptide (MCIDP). MCIDP could significantly promote the conidiation of M. oryzae and two other filamentous ascomycetes (Botrytis cinerea and Fusarium graminearum). The Mps1 MAPK cascade signaling pathway is crucial for conidiation, and the effect of MCIDP on this pathway was investigated to elucidate the mechanism underlying conidiation enhancement. qRT-PCR analysis demonstrated that MCIDP could remarkably upregulate the gene expression within the Mps1 MAPK cascade signaling pathway, especially the WSC2, WSC3, PKC1, MKK1, MPS1, and MIG1. Furthermore, the ΔMowsc1, ΔMowsc2, ΔMowsc3, and ΔMomid2 mutant strains were constructed. Bioassay results showed that MCIDP failed to promote conidial formation and hyphal growth in these mutant strains. These findings indicate that MCIDP promotes conidiation of M. oryzae by modulating the Mps1 MAPK signaling pathway. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 4850 KiB  
Article
Cell Structure of the Preoral Mycangia of Xyleborus (Coleoptera: Curculiondiae) Ambrosia Beetles
by Ross A. Joseph, Esther Tirmizi, Abolfazl Masoudi and Nemat O. Keyhani
Insects 2025, 16(6), 644; https://doi.org/10.3390/insects16060644 - 19 Jun 2025
Viewed by 562
Abstract
Ambrosia beetles have evolved specialized structures termed “mycangia”, which house and transport symbiotic microbes. Microbial partners include at least one obligate mutualistic filamentous fungus used as food for larvae and adults, and potentially secondary filamentous fungi, yeasts, and bacteria. Beetles in the genus [...] Read more.
Ambrosia beetles have evolved specialized structures termed “mycangia”, which house and transport symbiotic microbes. Microbial partners include at least one obligate mutualistic filamentous fungus used as food for larvae and adults, and potentially secondary filamentous fungi, yeasts, and bacteria. Beetles in the genus Xyleborus possess paired pre-oral mycangial structures located within the head on either side of the mouth parts. Mycangia develop in pupae, with newly emerged adults acquiring partners from the environment. However, information concerning the cellular structure and function of Xyleborus mycangia remains limited. We show that in X. affinis, mycangia are lined with a layer of striated dense material, enclosing layers of insect epithelial cells, with diverse spine-like structures. Larger (5–10 μm) projections were concentrated within and near the entrance of mycangia, with smaller filaments (4–8 μm) within the mycangia itself. Rows of “eyelash” structures lined the inside of mycangia, with fungal cells free-floating or in close association with these projections. Serial sections revealed mandibular articulations, and mandibular, pharyngeal, and labial muscles, along with the mycangial entry/exit channel. Sheets of comb-like spines at the mycangial entrance and opposite the mycangia attached to the roof of the labrum or epipharynx may serve as an interlocking mechanism for opening/closing the mycangia and guiding fungal cells into entry/exit channels. Additionally, mandibular fibra (muscle tissue) potentially enervating and affecting the mechanism of mycangial functioning were noted. These data add crucial mechanistic detail to the model of pre-oral mycangia in Xyleborus beetles, their cellular structures, and how they house and dispense microbial symbionts. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

21 pages, 4901 KiB  
Article
Arsenic Stress Resistance in the Endophytic Fungus Cladosporium cladosporioides: Physiological and Transcriptomic Insights into Heavy Metal Detoxification
by Xiao-Xu You, Xiao-Gang Li, Xing-Kai Zhang, Wen Gu, Di Chen, Sen He and Guan-Hua Cao
J. Fungi 2025, 11(5), 374; https://doi.org/10.3390/jof11050374 - 14 May 2025
Viewed by 534
Abstract
This study aims to evaluate the tolerance of an endophytic fungus isolated from the fibrous roots of Gentiana yunnanensis Franch. to arsenic (As) and elucidate the underlying physiological and molecular mechanisms. The filamentous fungus is identified as Cladosporium cladosporioides based on morphological characteristics [...] Read more.
This study aims to evaluate the tolerance of an endophytic fungus isolated from the fibrous roots of Gentiana yunnanensis Franch. to arsenic (As) and elucidate the underlying physiological and molecular mechanisms. The filamentous fungus is identified as Cladosporium cladosporioides based on morphological characteristics and phylogenetic tree analysis, belonging to the family Moniliaceae and Phyla Hyphomycetes. The tolerance of C. cladosporioides to As(V) was assessed by measuring its biomass under varying concentrations of As(V). The fungus exhibited remarkable As(V) tolerance, with an EC50 value of 2051.94 mg/L, and accumulated high concentrations of As in its mycelium. Subcellular distribution analysis revealed that As was predominantly localized in the cell wall fraction, with levels 4.06 times higher than those in the non-cell wall fraction. Notably, the concentrations of total organic As and As(III) in the mycelium were 852.75 μg/g and 24.94 μg/g, respectively, with conversion ratios of 76.64% and 2.24%. The organic As levels significantly surpassed both As(V) and As(III) concentrations in all cellular fractions (cell wall and non-cell wall components), demonstrating particularly efficient As transformation in C. cladosporioides. Under As(V) stress, the membrane antioxidant system, including superoxide dismutase (SOD), metallothionein (MT), glutathione (GSH), and melanin, was activated and significantly enhanced to mitigate oxidative damage. Transcriptomic analysis identified 4771 differentially expressed genes (DEGs; 2527 upregulated), including highly expressed As-responsive genes (CcArsH_1, CcARR_1, CcARR_3, CcGST_1, and CcGST_3). Strong correlations emerged between As speciation (total/organic/As(V)/As(III)), antioxidant levels, and DEG expression patterns. Taken together, these findings demonstrate that C. cladosporioides employs a multi-faceted As detoxification strategy involving subcellular distribution and reductive transformation (As(V) to As(III)/organic As), antioxidant system enhancement, transcriptomic adaptations, and integrated defense strategy. This work highlights C. cladosporioides potential for As bioremediation and elucidates As accumulation mechanisms in G. yunnanensis. Full article
Show Figures

Figure 1

21 pages, 7151 KiB  
Review
Alphaflexiviridae in Focus: Genomic Signatures, Conserved Elements and Viral-Driven Cellular Remodeling
by Jesús R. Úbeda, Miguel A. Aranda and Livia Donaire
Viruses 2025, 17(5), 611; https://doi.org/10.3390/v17050611 - 24 Apr 2025
Viewed by 1324
Abstract
The family Alphaflexiviridae comprises plant- and fungus-infecting viruses with single-stranded, positive-sense RNA genomes ranging from 5.4 to 9 kb. Their virions are flexuous and filamentous, measuring 470–800 nm in length and 12–13 nm in diameter. The family includes 72 recognized species, classified into [...] Read more.
The family Alphaflexiviridae comprises plant- and fungus-infecting viruses with single-stranded, positive-sense RNA genomes ranging from 5.4 to 9 kb. Their virions are flexuous and filamentous, measuring 470–800 nm in length and 12–13 nm in diameter. The family includes 72 recognized species, classified into six genera: Allexivirus, Lolavirus, Platypuvirus, Potexvirus (plant-infecting), and Botrexvirus and Sclerodarnavirus (fungus-infecting). The genus Potexvirus is the largest, with 52 species, including Potexvirus ecspotati (potato virus X), an important crop pathogen and plant virology model. The genera are distinguished by genome organization and host range, while species differentiation relies on nucleotide and protein sequence identity thresholds. In this review, we summarize the current knowledge on the genomic structure, conserved genes, and phylogenetic relationships within Alphaflexiviridae, with a particular focus on the replicase and coat protein genes as signature markers. Additionally, we update the model of cellular remodeling driven by the triple gene block proteins, which are essential for virus movement, among other viral functions. Beyond their biological significance, alphaflexiviruses serve as valuable models for studying virus–host dynamics and hold potential applications in plant disease control and biotechnology. This review provides an updated framework for understanding Alphaflexiviridae and their broader impact on plant virology. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Graphical abstract

16 pages, 10939 KiB  
Communication
The Geographic Distribution and Natural Variation of the Rice Blast Fungus Avirulence Gene AVR-Pita1 in Southern China
by Xinwei Chen, Xin Liu, Xiaochun Hu, Zhouyi Tu, Jun Fu, Liping Zhong, Nan Jiang and Yuanzhu Yang
Plants 2025, 14(8), 1210; https://doi.org/10.3390/plants14081210 - 15 Apr 2025
Viewed by 610
Abstract
The avirulence (AVR) genes of the filamentous ascomycete fungus Magnaporthe oryzae (M. oryzae) are known to mutate rapidly under a higher selection pressure, allowing the pathogen to evade recognition by rice resistance (R) genes. Understanding the geographic distribution [...] Read more.
The avirulence (AVR) genes of the filamentous ascomycete fungus Magnaporthe oryzae (M. oryzae) are known to mutate rapidly under a higher selection pressure, allowing the pathogen to evade recognition by rice resistance (R) genes. Understanding the geographic distribution and natural variation of AVR genes is critical for the rational utilization and prolonging of the effectiveness of R genes. In this study, a total of 1060 M. oryzae strains collected from 19 rice blast nurseries in 13 provinces across southern China were subjected to presence/absence variation (PAV), genetic variation, and virulence analyses of the AVR-Pita1 gene. PCR amplification results indicated that AVR-Pita1 was present in only 57.45% of the blast strains, with significant geographic variation in distribution frequency. Specifically, the highest frequency (100%) was observed in strains from Chengmai, Hainan, while the lowest (1.79%) was observed in strains from Baoshan, Yunnan. A sequencing analysis identified 29 haplotypes of AVR-Pita1, characterized by insertions, deletions, and base substitutions. A phylogenetic analysis indicated that haplotypes of AVR-Pita1 identified in this study were clustered into one clade. A further amino acid sequence analysis of these haplotypes led to the identification of 25 protein variants. Notably, four haplotypes of AVR-Pita1 exhibited pathogenicity toward its corresponding rice R gene, PtrA. Additionally, we performed allele profiling of Ptr in a collection of elite parental lines that are widely used in rice breeding in southern China and found that the functional Ptr alleles (PtrA, PtrB, and PtrC) accounted for over 70%. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 4041 KiB  
Article
Histone Methyltransferases AcDot1 and AcRmtA Are Involved in Growth Regulation, Secondary Metabolism, and Stress Response in Aspergillus carbonarius
by Angelo Agnusdei, Adrián González-García, Donato Gerin, Stefania Pollastro, Francesco Faretra, Luis González-Candelas and Ana-Rosa Ballester
Toxins 2025, 17(4), 196; https://doi.org/10.3390/toxins17040196 - 12 Apr 2025
Viewed by 651
Abstract
Histone post-translational modifications (HPTMs) can affect gene expression by rearranging chromatin structure. Between these, histone methylation is one of the most studied in filamentous fungi, and different conserved domains coding for methyltransferase were found in Aspergillus spp. genomes. In this work, the role [...] Read more.
Histone post-translational modifications (HPTMs) can affect gene expression by rearranging chromatin structure. Between these, histone methylation is one of the most studied in filamentous fungi, and different conserved domains coding for methyltransferase were found in Aspergillus spp. genomes. In this work, the role of the histone methyltransferases AcDot1 and AcRmtA in the mycotoxigenic fungus Aspergillus carbonarius was investigated, obtaining knockout or overexpression mutants through Agrobacterium tumefaciens-mediated transformation (ATMT). A. carbonarius is responsible for grape-bunch rot, representing the major source of ochratoxin A (OTA) contamination on grapes. In vivo conditions, the deletion of Acdot1 or AcrmtA resulted in upregulation of growth when the isolates were cultivated on a minimal medium. The influence of Acdot1 on the OTA biosynthesis was differently affected by culture conditions. On rich media, an increase in OTA accumulation was observed, while on minimal medium, lower OTA concentrations were reported. The deletion of AcrmtA always resulted in lower OTA accumulation. However, the expression of OTA biosynthesis genes was regulated by both histone methyltransferases. Of the six analyzed OTA genes, three of them showed altered expression in the knockout mutants, and otaB and otaR1 were common between both mutants. Furthermore, both AcDot1 and AcRmtA play a role in oxidative stress response, induced by 1 mM hydrogen peroxide, by modulating growth, conidiation and OTA biosynthesis. Neither the deletion nor the overexpression of the Acdot1 or AcrmtA affected virulence, while both the sporulation and OTA production were negatively affected in vivo by the deletion of AcrmtA. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

28 pages, 2253 KiB  
Review
Signaling Pathways Regulating Dimorphism in Medically Relevant Fungal Species
by Uriel Ramírez-Sotelo, Manuela Gómez-Gaviria and Héctor M. Mora-Montes
Pathogens 2025, 14(4), 350; https://doi.org/10.3390/pathogens14040350 - 4 Apr 2025
Viewed by 2143
Abstract
Pathogenic fungi that exhibit the ability to alternate between hyphal and yeast morphology in response to environmental stimuli are considered dimorphic. Under saprobic conditions, some fungi exist as filamentous hyphae, producing conidia. When conidia are inhaled by mammals or traumatically inoculated, body temperature [...] Read more.
Pathogenic fungi that exhibit the ability to alternate between hyphal and yeast morphology in response to environmental stimuli are considered dimorphic. Under saprobic conditions, some fungi exist as filamentous hyphae, producing conidia. When conidia are inhaled by mammals or traumatically inoculated, body temperature (37 °C) triggers dimorphism into yeast cells. This shift promotes fungal dissemination and immune evasion. Some fungal pathogens undergo dimorphism in the contrary way, forming pseudohyphae and hyphae within the host. While temperature is a major driver of dimorphism, other factors, including CO2 concentration, pH, nitrogen sources, and quorum-sensing molecules, also contribute to morphological shifts. This morphological transition is associated with increased expression of virulence factors that aid in adhesion, colonization, and immune evasion. Candida albicans is a fungus that is commonly found as a commensal on human mucous membranes but has the potential to be an opportunistic fungal pathogen of immunocompromised patients. C. albicans exhibits a dimorphic change from the yeast form to the hyphal form when it becomes established as a pathogen. In contrast, Histoplasma capsulatum is an environmental dimorphic fungus where human infection begins when conidia or hyphal fragments of the fungus are inhaled into the alveoli, where the dimorphic change to yeast occurs, this being the morphology associated with its pathogenic phase. This review examines the main signaling pathways that have been mostly related to fungal dimorphism, using as a basis the information available in the literature on H. capsulatum and C. albicans because these fungi have been widely studied for the morphological transition from hypha to yeast and from yeast to hypha, respectively. In addition, we have included the reported findings of these signaling pathways associated with the dimorphism of other pathogenic fungi, such as Paracoccidioides brasiliensis, Sporothrix schenckii, Cryptococcus neoformans, and Blastomyces dermatitis. Understanding these pathways is essential for advancing therapeutic approaches against systemic fungal infections. Full article
(This article belongs to the Special Issue Rare Fungal Infection Studies)
Show Figures

Figure 1

12 pages, 983 KiB  
Article
Novel Epidithiodiketopiperazine Derivatives in the Mutants of the Filamentous Fungus Trichoderma hypoxylon
by Zedong Ren, Yuanyuan Li, Peng-Lin Wei, Shengquan Zhang, Dong Wang, Jie Fan and Wen-Bing Yin
J. Fungi 2025, 11(4), 241; https://doi.org/10.3390/jof11040241 - 22 Mar 2025
Viewed by 497
Abstract
Epidithiodiketopiperazines (ETPs) are a class of fungal secondary metabolites (SMs) featuring a transannular disulfide bridge at the diketopiperazine (DKP) core. The complex structures and biological activities have attracted widespread attention from biologists and chemists. In this study, we identified five novel ETP derivatives [...] Read more.
Epidithiodiketopiperazines (ETPs) are a class of fungal secondary metabolites (SMs) featuring a transannular disulfide bridge at the diketopiperazine (DKP) core. The complex structures and biological activities have attracted widespread attention from biologists and chemists. In this study, we identified five novel ETP derivatives 47 and 4′ from three gene deletion mutants of Trichoderma hypoxylon CGMCC 3.17906, including ΔtdaP, ΔtdaQ, and ΔtdaQΔtdaI. Their structures were characterized through NMR and HR-ESI-MS data analysis. Compounds 4 and 4′ have unique heteroatom substitutions at the α and α′ positions, compound 5 possesses a unique α, β′-disulfide bridge, and compounds 6 and 7 contain a C3-(thio)carbonyl group. Based on structural elucidation and biosynthetic pathway of α, β′-disulfide bridged ETPs, we also proposed the formation of 47 and 4′. This study not only expands the chemical diversity of ETPs, but also offers new mechanistic insights into the biosynthetic pathways of fungal ETPs. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

18 pages, 3093 KiB  
Article
Transcriptomic Profiling Reveals Key Gene in Trichoderma guizhouense NJAU4742 Enhancing Tomato Tolerance Under Saline Conditions
by Huiling Mei, Tuo Li, Haiyan Wu, Yanwei Xia, Qiwei Huang, Dongyang Liu and Qirong Shen
Agriculture 2025, 15(6), 610; https://doi.org/10.3390/agriculture15060610 - 13 Mar 2025
Viewed by 807
Abstract
Soil salinity stress inhibits the growth of most beneficial soil fungi, thereby adversely affecting crop growth, though the underlying mechanisms remain poorly understood. Our study revealed that the beneficial fungus Trichoderma guizhouense NJAU4742 exhibited limited salt tolerance, with its growth being significantly suppressed [...] Read more.
Soil salinity stress inhibits the growth of most beneficial soil fungi, thereby adversely affecting crop growth, though the underlying mechanisms remain poorly understood. Our study revealed that the beneficial fungus Trichoderma guizhouense NJAU4742 exhibited limited salt tolerance, with its growth being significantly suppressed under elevated salinity. To investigate the physiological, biochemical, and molecular responses of NJAU4742 to salt stress and its subsequent effects on tomato growth, we subjected NJAU4742 to X-ray irradiation, aiming to obtain mutants with altered salt tolerance. A forward mutant strain (designated M15) displaying near-complete loss of salt tolerance was successfully isolated. Comparative transcriptomic analysis between the wild type (wt) and M15 identified gene Tgmfs, a salt stress-responsive gene belonging to the major facilitator superfamily. By constructing Tgmfs knockout (Tgmfs-KO) and overexpression (Tgmfs-OE) strains, we observed that Tgmfs deletion caused intracellular Na+ accumulation in NJAU4742, prompting compensatory upregulation of Na+/K+-ATPase activity to maintain ion homeostasis. Concurrently, salt stress induced reactive oxygen species accumulation and oxidative stress in fungal cells, which was counteracted by enhanced superoxide dismutase activity and an elevated NAD+/NADH ratio, collectively boosting antioxidant defenses. Pot experiments demonstrated that the application of Tgmfs-OE or wt spore suspensions markedly improved tomato salt tolerance, with Tgmfs-OE treatment showing superior efficacy. This study advances our understanding of filamentous fungal salt adaptation mechanisms and their synergistic effects on plant resilience. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 5018 KiB  
Article
Biotechnological Applications of the Ubiquitous Fungus Penicillium sp. 8L2: Biosorption of Zn(II) and Synthesis of ZnO Nanoparticles as Biocidal Agents
by Antonio Jesús Muñoz Cobo, Francisco Espínola Lozano, Manuel Moya Vilar, Celia Martín Valenzuela and Encarnación Ruiz Ramos
Sustainability 2025, 17(6), 2379; https://doi.org/10.3390/su17062379 - 8 Mar 2025
Cited by 1 | Viewed by 935
Abstract
In this study, the capacity of the ubiquitous filamentous fungus Penicillium sp. 8L2 to remove Zn(II) ions present in synthetic solutions was studied and the optimal operating conditions were obtained based on a response surface methodology (RSM). The contact time was optimized through [...] Read more.
In this study, the capacity of the ubiquitous filamentous fungus Penicillium sp. 8L2 to remove Zn(II) ions present in synthetic solutions was studied and the optimal operating conditions were obtained based on a response surface methodology (RSM). The contact time was optimized through kinetic tests. Equilibrium tests were then carried out, which allowed biosorption isotherms to be obtained for several mathematical models. At the same time, the capacity of the fungal cell extract to transform metal ions into ZnO nanoparticles with a biocidal capacity was evaluated. Its inhibitory capacity for five microbial strains was then determined. The biosorption mechanisms and nanoparticle synthesis were characterized by different crystallographic, spectrophotometric and microscopic analytical techniques. It was confirmed that the metal was bound superficially but also in the periplasmic space with a strong bond to phosphate groups, both in the biosorption stage and during the synthesis and consolidation of the nanoparticles. In addition, the presence of hydroxyl, amino, carbonyl and methylene groups was identified, which could promote the synthesis of nanoparticles, since some of them have a reducing nature. The kinetics showed that the biosorption of Zn(II) occurred in two stages, the first very fast and the second slower. Equilibrium tests identified a maximum biosorption capacity of 52.14 mg/g for the Langmuir model under optimized conditions: a contact time of 5 days, pH 5.6 and a 0.2 g/L biomass dose. The success of the biological synthesis route was confirmed and ZnO nanoparticles with an average size of 18 nm were obtained. The data showed that the nanoparticles showed a good inhibition ability against the tested microorganisms, with values ranging from 62.5 to 1000 µg/mL. Penicillium sp. 8L2 is a promising ubiquitous microorganism in the field of heavy metal biosorption and applied biotechnology. Full article
Show Figures

Figure 1

Back to TopTop