Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = filament diameter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 443 KB  
Article
Detection of a Second KAP22 Family Member in Sheep and Analysis of Its Genetic Variation and Associations with Selected Wool Fibre Traits
by Lingrong Bai, Huitong Zhou, Jinzhong Tao and Jon G. H. Hickford
Animals 2025, 15(19), 2770; https://doi.org/10.3390/ani15192770 - 23 Sep 2025
Viewed by 204
Abstract
The keratin-associated proteins (KAPs) are a class of wool proteins. They form a matrix that cross-links the wool intermediate filament keratins. The KAPs are thought to affect wool fibre structure and properties and have been associated with variation in wool fibre traits. There [...] Read more.
The keratin-associated proteins (KAPs) are a class of wool proteins. They form a matrix that cross-links the wool intermediate filament keratins. The KAPs are thought to affect wool fibre structure and properties and have been associated with variation in wool fibre traits. There are many KAP genes in sheep, but not all have been identified. Recently a second member of the KAP22 gene family, KRTAP22-2, was identified in goats, and variation in this caprine gene was associated with cashmere fibre traits. In this study, we identified ovine KRTAP22-2. To ascertain the extent of variation in KRTAP22-2, sheep from eight breeds were investigated using polymerase chain reaction (PCR) followed by single-strand conformational polymorphism (SSCP) analysis. This revealed two unique banding patterns, which upon sequencing gave two novel DNA sequences. These differed by two single nucleotide polymorphisms in the coding region. Three genotypes of the novel KRTAP22-2 sequences were observed in the eight sheep breeds studied. The ovine KRTAP22-2 variant sequences were similar to a goat KRTAP22-2 variant, but a search of ovine expressed sequence tags revealed no matching mRNA sequences in the ovine databases. In a second part of the study, no association was found between the KRTAP22-2 genotypes and mean fibre diameter, fibre diameter standard deviation, coefficient of variation in fibre diameter, and mean fibre curvature, for either the fine wool or heterotypic hair fibres of 255 Chinese Tan lambs. These results suggests that sheep have a KRTAP22-2 gene, but that there may be species-specific differences in the gene’s expression or function. The gene may not affect wool traits in the way that it appears to in goats. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
Show Figures

Figure 1

18 pages, 4515 KB  
Article
Type B Fibers: A Novel Ultrastructural Biomarker for Cognitive Impairment in Neuronal Intranuclear Inclusion Disease
by Binbin Zhou, Shaoping Zhong, Yangye Lian, Jingzhen Liang, Luyao Huang, Jing Ding and Xin Wang
Brain Sci. 2025, 15(10), 1026; https://doi.org/10.3390/brainsci15101026 - 23 Sep 2025
Viewed by 313
Abstract
Background/Objective: Neuronal intranuclear inclusion disease (NIID) is characterized by widespread deposition of eosinophilic intranuclear inclusions in multiple systems throughout the body. The aim of this study was to investigate the clinical and phenotypic features of NIID, with a focus on the potential association [...] Read more.
Background/Objective: Neuronal intranuclear inclusion disease (NIID) is characterized by widespread deposition of eosinophilic intranuclear inclusions in multiple systems throughout the body. The aim of this study was to investigate the clinical and phenotypic features of NIID, with a focus on the potential association between the morphological features of fibrils formed by polyG (polyglycine) proteins and cognitive dysfunction in patients with NIID. Methods: This study involved a retrospective collection of clinical data from 15 patients with NIID harboring GGC repeat expansions in the NOTCH2NLC (Notch 2 N-Terminal Like C) gene (including symptoms, signs, biochemical markers, cranial MRI, MMSE, and MoCA cognitive scores). All patients underwent skin biopsy, with one additional autopsy of brain tissue. Some skin samples were stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining with anti-p62 antibody. The remaining skin samples and brain tissue samples obtained from autopsies were analyzed using anti-p62 antibody immunofluorescence (IF) staining and transmission electron microscopy (TEM). The number of GGC repeats was quantified using repeat primer PCR (RP-PCR). Based on ultrastructural characteristics (morphology and diameter), inclusion fibers were classified into two subtypes, and differences in the severity of cognitive impairment between subtypes were compared. Results: The majority of patients in this cohort with NIID were female (73.3%), with an average age of onset of 61.06 ± 7.67 years. The core clinical manifestations were cognitive decline (93.3%) and autonomic dysfunction (93.3%). Cranial MRI revealed characteristic DWI “ribbon sign” in 93.3% of patients, accompanied by lateral ventricle enlargement (93.3%), cerebellar atrophy (86.6%), and high T2-FLAIR signal in the corpus callosum (93.3%). All patients were found to have pathogenic GGC amplification in the NOTCH2NLC gene (median 115, range 88–210). Skin/brain tissue pathology confirmed p62-positive nuclear inclusions, and transmission electron microscopy revealed two fiber subtypes for the first time: type A (Long, thin filamentous, 202.38 ± 42.35 nm) and type B (short rod-shaped, 73.08 ± 11.56 nm). Group analysis indicated that the diameter of fibers was significantly larger in the cognitive impairment group (p < 0.05), and the type B fiber group had lower cognitive levels (p < 0.05) and larger diameters (p < 0.05), suggesting a strong association between type B fibers and severe cognitive impairment and poor prognosis. Conclusions: The presence of two different forms of fibrils, type A and type B, in the inclusion bodies of NIID patients, and the poorer cognitive level of NIID patients in the type B group than that of type A suggest that type B fibrils can be used as a novel pathological marker of severe cognitive impairment and poor prognosis in NIID. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

19 pages, 3628 KB  
Article
Additive Manufacturing of Bio-Based PA11 Composites with Recycled Short Carbon Fibers: Stiffness–Strength Characterization
by Christian Brauner, Thierry Bourquin, Julian Kupski, Lucian Zweifel, Mohammad Hajikazemi, Chester Houwink and Martin Eichenhofer
Polymers 2025, 17(18), 2549; https://doi.org/10.3390/polym17182549 - 20 Sep 2025
Viewed by 486
Abstract
Short carbon fiber-reinforced bio-based polyamide 11 (PA11) composites were developed in filament form for Additive Fusion Technology (AFT) 3D printing and benchmarked against injection-molded samples. Composites containing 15 and 25 weight percent (wt%) recycled carbon fibers (rCFs) were successfully extruded into 1.75 mm [...] Read more.
Short carbon fiber-reinforced bio-based polyamide 11 (PA11) composites were developed in filament form for Additive Fusion Technology (AFT) 3D printing and benchmarked against injection-molded samples. Composites containing 15 and 25 weight percent (wt%) recycled carbon fibers (rCFs) were successfully extruded into 1.75 mm diameter filaments, whereas higher fiber contents (35 wt%) led to brittle filament failure. AFT printing with subsequent consolidation produced short fiber composites with highly aligned fibers, while injection molding generated more randomly oriented microstructures. Mechanical testing revealed that AFT-printed composites in the fiber direction achieved significantly higher stiffness and comparable tensile strength to injection-molded counterparts. At 25 wt% fiber content, AFT 0° specimens reached an axial tensile modulus of 14.5 GPa, about 32% higher than injection-molded samples (11.0 GPa), with similar axial tensile strength (~123 vs. 126 MPa). However, AFT specimens displayed pronounced anisotropy: transverse (90°) properties dropped to ~2.3 GPa for transverse modulus and ~46–50 MPa transverse tensile strength, near matrix-dominated levels. Impact testing showed orientation-dependent toughness, with AFT 90° samples at 15% fiber content achieving the highest impact energy (76 kJ·m−2), while AFT 0° samples were ~30% lower than injection-molded equivalents. Dynamic mechanical analysis confirmed that AFT 0° composites maintained higher stiffness up to ~80 °C. Overall, these results demonstrate that aligned short fiber filaments enable high stiffness and strength performance comparable to injection molding, with the trade-off of anisotropy that must be carefully considered in design. This study is the first to demonstrate the feasibility of combining bio-based PA11 with recycled short carbon fibers in AFT printing, thereby extending additive manufacturing to sustainable and high-stiffness short fiber composites. Full article
(This article belongs to the Special Issue Development in Fiber-Reinforced Polymer Composites: 2nd Edition)
Show Figures

Graphical abstract

24 pages, 4100 KB  
Article
Sustainable Pattern Innovation in Chenille Tufted Carpets: A Spatial Color Mixing Approach Using Dope-Dyed Filament
by Peng Cui and Yuan Xue
Fibers 2025, 13(9), 126; https://doi.org/10.3390/fib13090126 - 12 Sep 2025
Viewed by 438
Abstract
Chenille tufted carpets typically use wet dyeing, which consumes large amounts of water, chemicals, and energy and limits pattern control. This study combines dope-dyed filaments with spatial (juxtaposed) color mixing to eliminate post-dyeing and expand design options. We define a nine-primary filament set [...] Read more.
Chenille tufted carpets typically use wet dyeing, which consumes large amounts of water, chemicals, and energy and limits pattern control. This study combines dope-dyed filaments with spatial (juxtaposed) color mixing to eliminate post-dyeing and expand design options. We define a nine-primary filament set and a ten-primary mixing system, quantify color relations in CIE Lab*, and classify four visual effects by hue angle difference (Δh): Blending (<30°), Pointillistic (30–60°), Mosaic (60–120°), and Heathering (≥120°). A CNC chenille spinner independently controls linear density, twist, and diameter via head speed, delivery speed, and spacer width; a 130 °C thermal setting step reproduces dyeing-induced pile morphology. The ten-primary system yields 45 binary and 120 ternary mixes that produce predictable effects matching the Δh categories. Yarn geometry is tuned precisely by rotating-head speed (density), front-roller speed (density/twist), and spacer width (diameter). Dope-dyed carpets reach wash and rub fastness grades 4–5 and light fastness grades 3–4 to 4, meeting industry standards. Spatial color mixing with dope-dyed filaments and CNC-controlled chenille morphology thus enables the production of sustainable, dye-free carpets with quantitatively designed patterns and reliable performance, converting empirical color design into a predictive, more resource-efficient process. Full article
Show Figures

Figure 1

22 pages, 3465 KB  
Review
Novel Aspects of the Physiology of Pregnancy in Domestic Ruminants
by Fuller W. Bazer, Thainá Minela and Gregory A. Johnson
Animals 2025, 15(18), 2672; https://doi.org/10.3390/ani15182672 - 12 Sep 2025
Viewed by 533
Abstract
Mammals exhibit unique and highly variable mechanisms for the establishment and maintenance of pregnancy. Ruminants (e.g., sheep, cows, and goats) have novel mechanisms whereby the conceptus (embryo and its extra-embryonic membranes) signals for the establishment of pregnancy and exhibits unique metabolic pathways favoring [...] Read more.
Mammals exhibit unique and highly variable mechanisms for the establishment and maintenance of pregnancy. Ruminants (e.g., sheep, cows, and goats) have novel mechanisms whereby the conceptus (embryo and its extra-embryonic membranes) signals for the establishment of pregnancy and exhibits unique metabolic pathways favoring conceptus development. Embryos of ruminants reach the spherical blastocyst stage at 5 to 10 mm in diameter and then elongate rapidly to elongated filamentous conceptuses of greater than 250 mm as they make contact with the uterine luminal epithelium (LE) for implantation. During conceptus elongation the trophectoderm cells secrete interferon tau (IFNT), a novel pregnancy recognition signal for ruminants to ensure maintenance of a functional corpus luteum (CL) to secrete progesterone (P4) required for pregnancy. P4 induces uterine epithelia cells to express the endogenous Jaagsiekte Retrovirus (enJSRV) that may transactivate toll-like receptors 7 and 8 in the conceptus trophectoderm to induce secretion of IFNT, a classical viral–antiviral mechanism. IFNT silences expression of receptors for estradiol (E2) and oxytocin (OXTR), which abrogates the mechanism whereby oxytocin from CL and posterior pituitary would otherwise induce large pulses of prostaglandin F (PGF) by uterine epithelia to cause regression of the CL and its secretion of P4. IFNT has another novel role in silencing expression of not only ESR1 and OXTR, but all classical interferon-stimulated genes in the uterine LE and superficial glandular epithelium (sGE), but with P4 increasing expression of genes for transport of nutrients such as glucose and arginine into the uterine lumen to support conceptus development. Ruminant conceptuses convert glucose to fructose, a novel hexose sugar that cannot be transported back to the maternal circulation. Fructose is converted to fructose-1-PO4 for metabolism, not via the pathway for glycolysis but via the novel fructolysis pathway uninhibited by low pH, citrate, or ATP as is the case for glycolysis. Thus, fructose and its metabolites support the pentose cycle, hexosamine biosynthesis pathway, one-carbon metabolism, and the citric acid cycle for all cells of the conceptus. Arginine is another key nutrient transported into the uterine lumen by the uterine LE/sGE in response to P4 and IFNT. Arginine is metabolized to generate nitric oxide, polyamines, and creatine, essential for conceptus growth and development, while enhancing production of IFNT as a novel pregnancy recognition signal, and upregulating expression of genes in the uterine LE/sGE for transport of nutrients. Fructose is the major hexose sugar supporting major metabolic pathways required for conceptus growth and development in ruminants. Full article
Show Figures

Figure 1

16 pages, 2767 KB  
Article
Screening of Protein Related to Wool Development and Fineness in Gansu Alpine Fine-Wool Sheep
by Zhaohua He, Liming Tian, Guan Wang, Fangfang Zhao, Pengfei Zhao, Shuhong Zhang, Shaobin Li and Guangli Yang
Animals 2025, 15(17), 2578; https://doi.org/10.3390/ani15172578 - 2 Sep 2025
Viewed by 585
Abstract
Fiber fineness is a critical determinant of wool quality and is of great significance in enhancing the overall quality of wool. The aim of this research was to pinpoint the key proteins that participate in the regulation of wool fineness. To achieve this, [...] Read more.
Fiber fineness is a critical determinant of wool quality and is of great significance in enhancing the overall quality of wool. The aim of this research was to pinpoint the key proteins that participate in the regulation of wool fineness. To achieve this, we utilized Astral—DIA proteomics technology to examine the disparities in proteins, pathways, and GO terms among the wool tissues of Gansu alpine fine-wool sheep with varying mean fiber diameters (MFD). The experiment was divided into two groups: coarse (group C, MFD = 22.36 ± 0.75 μm, n = 4) and fine (group F, MFD = 16.89 ± 0.36 μm, n = 4). The results indicated that 67 differentially expressed proteins (DEPs) were identified from the wool tissues of Gansu alpine fine-wool sheep in groups C and F. Functional enrichment analysis demonstrated that several key differential proteins, including MGST3, KRT26, KRT72, KRT74, KRT71, etc., were mainly enriched in multiple functional pathways. These pathways included glutathione metabolism, oxidative phosphorylation, the degradation of valine, leucine, and isoleucine, intermediate filaments, serine protease activity, and cysteine protease activity (p < 0.05). Furthermore, protein–protein interaction (PPI) network analysis suggested that type II keratin and type I keratin (such as CTSF, PSAP, TMEM106B, LYPD3, KRT71, KRT72), along with glutathione metabolism (MGST3, W5QDB7), are closely related to hair follicle development and the regulation of wool fineness. In summary, this study enriches the existing sheep proteinome database and offers novel perspectives on the regulatory mechanisms of wool fineness. Full article
(This article belongs to the Special Issue Livestock Omics)
Show Figures

Figure 1

19 pages, 6809 KB  
Article
Balancing Strength and Flexibility: Mechanical Characterization of Carbon Fiber-Reinforced PLA Composites in FDM 3D Printing
by Boston Blake, Ryan Mendenhall and Babak Eslami
J. Manuf. Mater. Process. 2025, 9(9), 288; https://doi.org/10.3390/jmmp9090288 - 22 Aug 2025
Viewed by 1510
Abstract
Fused Deposition Modeling (FDM) is a commonly used 3D printing process characterized by its versatility in material selection; however, FDM’s layer-by-layer process often leads to lower strength properties. This study explores the mechanical properties of FDM 3D-printed composite materials printed with varying nozzle [...] Read more.
Fused Deposition Modeling (FDM) is a commonly used 3D printing process characterized by its versatility in material selection; however, FDM’s layer-by-layer process often leads to lower strength properties. This study explores the mechanical properties of FDM 3D-printed composite materials printed with varying nozzle diameters, specifically on the influence of Carbon Fiber-reinforced Polylactic Acid (PLA-CF) on tensile and flexural strength when reinforcing Polylactic Acid (PLA) parts. Composite samples were printed with varying ratios of PLA and PLA-CF, ranging from 0% to 100% PLA-CF in 20% increments, with layer groups stacked vertically, while also using three different nozzle diameters (0.4 mm, 0.6 mm, and 0.8 mm). Tensile testing revealed a proportional increase in strength as PLA-CF content increased, indicating that carbon fiber reinforcement significantly enhances tensile performance. However, flexural testing demonstrated a decrease in bending strength with higher PLA-CF content, suggesting a trade-off between stiffness and flexibility. Mid-range ratios (40–60% PLA-CF) provided a balance between tensile and flexural properties. Finally, atomic force microscopy was utilized to provide a better understanding of the microscale morphology and surface properties of PLA and PLA-CF thin films. The results highlight the potential of PLA-CF/PLA composites to allow for more direct control over the tensile–flexural trade-off during the printing process, as opposed to manufacturing filaments with fixed fiber percentages. These results provide a path for tailoring the mechanical behavior of printed parts without requiring specialized filaments. Full article
Show Figures

Figure 1

17 pages, 1171 KB  
Article
An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets
by Alexis Conides, Efthimia Cotou, Dimitris Klaoudatos and Branko Glamuzina
J. Mar. Sci. Eng. 2025, 13(8), 1384; https://doi.org/10.3390/jmse13081384 - 22 Jul 2025
Viewed by 837
Abstract
Based on the experience gained worldwide from potential solutions to the fouling problem of fisheries and aquaculture infrastructure, we attempted to design, construct and test the antifouling efficiency of a new hybrid filament created from non-laminated copper wire braided with synthetic fibers made [...] Read more.
Based on the experience gained worldwide from potential solutions to the fouling problem of fisheries and aquaculture infrastructure, we attempted to design, construct and test the antifouling efficiency of a new hybrid filament created from non-laminated copper wire braided with synthetic fibers made of Dyneema. The design involved the creation of a hybrid twine substituting a percentage of the synthetic fibers with 0.1–0.15 mm diameter copper wire at 5%, 10%, 20% and 40% levels. There is limited information in the international literature for comparison with our results, since there has never been any attempt to create such a hybrid net. The results showed that for the 6 mm mesh, the maximum openness obtained after the 8-month experimental period was 8.72%, with Cu wire substitution at 35%. For the 12 mm mesh, these values were 27.07% at 26%, and for the 20 mm mesh, they were 33.68% at 28%. A conservative average independent from mesh size to achieve optimum openness in the long term is 30 ± 4.73% Cu wire substitution. In addition, we found that both the mesh size (mm) and the copper substitution percentage affected the fouling process during the experimental period, which lasted 8 months. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

21 pages, 8320 KB  
Article
Optimization of SA-Gel Hydrogel Printing Parameters for Extrusion-Based 3D Bioprinting
by Weihong Chai, Yalong An, Xingli Wang, Zhe Yang and Qinghua Wei
Gels 2025, 11(7), 552; https://doi.org/10.3390/gels11070552 - 17 Jul 2025
Cited by 1 | Viewed by 771
Abstract
Extrusion-based 3D bioprinting is prevalent in tissue engineering, but enhancing precision is critical as demands for functionality and accuracy escalate. Process parameters (nozzle diameter d, layer height h, printing speed v1, extrusion speed v2) significantly influence hydrogel [...] Read more.
Extrusion-based 3D bioprinting is prevalent in tissue engineering, but enhancing precision is critical as demands for functionality and accuracy escalate. Process parameters (nozzle diameter d, layer height h, printing speed v1, extrusion speed v2) significantly influence hydrogel deposition and structure formation. This study optimizes these parameters using an orthogonal experimental design and grey relational analysis. Hydrogel filament formability and the die swell ratio served as optimization objectives. A response mathematical model linking parameters to grey relational grade was established via support vector regression (SVR). Particle Swarm Optimization (PSO) then determined the optimal parameter combination: d = 0.6 mm, h = 0.3 mm, v1 = 8 mm/s, and v2 = 8 mm/s. Comparative experiments showed the optimized parameters predicted by the model with a mean error of 5.15% for printing precision, which outperformed random sets. This data-driven approach reduces uncertainties inherent in conventional simulation methods, enhancing predictive accuracy. The methodology establishes a novel framework for optimizing precision in extrusion-based 3D bioprinting. Full article
(This article belongs to the Special Issue 3D Printing of Gel-Based Materials (2nd Edition))
Show Figures

Graphical abstract

24 pages, 4087 KB  
Article
Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA
by I. S. ELDeeb, Ehssan Esmael, Saad Ebied, Mohamed Ragab Diab, Mohammed Dekis, Mikhail A. Petrov, Abdelhameed A. Zayed and Mohamed Egiza
J. Manuf. Mater. Process. 2025, 9(7), 221; https://doi.org/10.3390/jmmp9070221 - 1 Jul 2025
Cited by 1 | Viewed by 1680
Abstract
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene [...] Read more.
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA), aiming to determine optimal conditions for enhanced strength. ASTM D638-Type IV specimens were printed using nozzle diameters ranging from 0.05 to 0.25 mm and speeds from 15 to 80 mm/s. For ABS, tensile strength increased from 56.46 MPa to 60.74 MPa, representing a 7.6% enhancement, as nozzle diameter increased, with the best performance observed at 0.25 mm and 45 mm/s, attributed to improved melt flow and interlayer fusion. PLA exhibited a non-linear response, reaching a maximum strength of 89.59 MPa under the same conditions, marking a 22.3% enhancement over the minimum value. The superior performance of PLA was linked to optimal thermal management that enhanced crystallinity and interlayer bonding. Fractographic analysis revealed reduced porosity and smoother fracture surfaces under optimized conditions. Overall, PLA consistently outperformed ABS across all settings, with an average tensile strength advantage of 47.5%. The results underscore the need for material-specific parameter tuning in FFF and offer practical insights for optimizing mechanical performance in applications demanding high structural integrity, including biomedical, aerospace, and functional prototyping. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

18 pages, 4037 KB  
Article
Voriconazole-Loaded Nanohydrogels Towards Optimized Antifungal Therapy for Cystic Fibrosis Patients
by Shaul D. Cemal, María F. Ladetto, Katherine Hermida Alava, Gila Kazimirsky, Marcela Cucher, Romina J. Glisoni, María L. Cuestas and Gerardo Byk
Pharmaceutics 2025, 17(6), 725; https://doi.org/10.3390/pharmaceutics17060725 - 30 May 2025
Viewed by 874
Abstract
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. [...] Read more.
Background/Objectives: Filamentous fungi, in particular the species Aspergillus, Scedosporium, and Exophiala, frequently colonize the lungs of cystic fibrosis (CF) patients. Chronic colonization is linked to hypersensitivity reactions and persistent infections leading to a significant long-term decline in lung function. Azole antifungal therapy such as voriconazole (VRC) slows disease progression, particularly in patients with advanced CF; however, excessive mucus production in CF lungs poses a diffusional barrier to effective treatment. Methods: Here, biodegradable nanohydrogels (NHGs) recently developed as nanocarriers were evaluated for formulating VRC as a platform for treating fungal infections in CF lungs. The NHGs entrapped up to about 30 μg/mg of VRC, and physicochemical properties were investigated via dynamic laser light scattering and nanoparticle tracking analysis. Diameters were 100–400 nm, and excellent colloidal stability was demonstrated in interstitial fluids, indicating potential for pulmonary delivery. Nano-formulations exhibited high in vitro cytocompatibility in A549 and HEK293T cells and were tested for the release of VRC under two different sink conditions. Results: Notably, the antifungal activity of VRC-loaded nanohydrogels was up to eight-fold greater than an aqueous suspension drug against different fungal species isolated from CF sputum, regardless of the presence of a CF artificial mucus layer. Conclusions: These findings support the development of potent VRC nano-formulations for treating fungal disorders in CF lungs. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

24 pages, 3719 KB  
Article
Evaluating Self-Produced PLA Filament for Sustainable 3D Printing: Mechanical Properties and Energy Consumption Compared to Commercial Alternatives
by Luca Fontana, Paolo Minetola, Mankirat Singh Khandpur and Alberto Giubilini
J. Manuf. Mater. Process. 2025, 9(6), 172; https://doi.org/10.3390/jmmp9060172 - 24 May 2025
Viewed by 2505
Abstract
This study investigates the feasibility of self-producing polylactic acid (PLA) filament for use in 3D printing. The filament was fabricated using a desktop single-screw extruder and evaluated against commercially available PLA in terms of mechanical properties and energy consumption. Specimens were printed at [...] Read more.
This study investigates the feasibility of self-producing polylactic acid (PLA) filament for use in 3D printing. The filament was fabricated using a desktop single-screw extruder and evaluated against commercially available PLA in terms of mechanical properties and energy consumption. Specimens were printed at two layer heights (0.2 mm and 0.3 mm) and four infill densities (25%, 50%, 75%, and 100%). The self-produced filament exhibited lower diameter precision (1.67 ± 0.21 mm), which resulted in mass variability up to three orders of magnitude higher than that of the commercial filament. Thermal analysis confirmed that the extrusion and printing process did not significantly alter the thermal properties of PLA. Mechanical testing revealed that a layer height 0.3 mm consistently yielded higher stiffness and tensile strength in all samples. When normalized by mass, the specimens printed with commercial filament demonstrated approximately double the ultimate tensile strength compared to those that used self-produced filament. The energy consumption analysis indicated that a 0.3 mm layer height improved printing efficiency, cutting specific energy consumption by approximately 50% and increasing the material deposition rate proportionally. However, the total energy required to print with self-produced filament was nearly three times higher than that for commercial filament, primarily due to material waste that stems from inconsistencies in the diameter of the filament. These findings are significant in evaluating the practicality of self-produced PLA filament, particularly in terms of mechanical performance and energy efficiency. Full article
Show Figures

Figure 1

21 pages, 7151 KB  
Review
Alphaflexiviridae in Focus: Genomic Signatures, Conserved Elements and Viral-Driven Cellular Remodeling
by Jesús R. Úbeda, Miguel A. Aranda and Livia Donaire
Viruses 2025, 17(5), 611; https://doi.org/10.3390/v17050611 - 24 Apr 2025
Cited by 1 | Viewed by 1606
Abstract
The family Alphaflexiviridae comprises plant- and fungus-infecting viruses with single-stranded, positive-sense RNA genomes ranging from 5.4 to 9 kb. Their virions are flexuous and filamentous, measuring 470–800 nm in length and 12–13 nm in diameter. The family includes 72 recognized species, classified into [...] Read more.
The family Alphaflexiviridae comprises plant- and fungus-infecting viruses with single-stranded, positive-sense RNA genomes ranging from 5.4 to 9 kb. Their virions are flexuous and filamentous, measuring 470–800 nm in length and 12–13 nm in diameter. The family includes 72 recognized species, classified into six genera: Allexivirus, Lolavirus, Platypuvirus, Potexvirus (plant-infecting), and Botrexvirus and Sclerodarnavirus (fungus-infecting). The genus Potexvirus is the largest, with 52 species, including Potexvirus ecspotati (potato virus X), an important crop pathogen and plant virology model. The genera are distinguished by genome organization and host range, while species differentiation relies on nucleotide and protein sequence identity thresholds. In this review, we summarize the current knowledge on the genomic structure, conserved genes, and phylogenetic relationships within Alphaflexiviridae, with a particular focus on the replicase and coat protein genes as signature markers. Additionally, we update the model of cellular remodeling driven by the triple gene block proteins, which are essential for virus movement, among other viral functions. Beyond their biological significance, alphaflexiviruses serve as valuable models for studying virus–host dynamics and hold potential applications in plant disease control and biotechnology. This review provides an updated framework for understanding Alphaflexiviridae and their broader impact on plant virology. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Graphical abstract

18 pages, 8239 KB  
Article
Enhanced Mechanical Properties of 3D-Printed Glass Fibre-Reinforced Polyethylene Composites
by Jan Sezemský, Gregor Primc, Taťana Vacková, Zdeňka Jeníková, Miran Mozetič and Petr Špatenka
Polymers 2025, 17(9), 1154; https://doi.org/10.3390/polym17091154 - 24 Apr 2025
Cited by 2 | Viewed by 1015
Abstract
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the [...] Read more.
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the polymer and fillers. In this study, an additively manufactured composite was 3D-printed and tested. The composite consisted of a linear low-density polyethylene matrix filled with glass fibres. Composite filaments were extruded from neat and plasma-treated polymer powders. Plasma was sustained in oxygen at 100 Pa by a pulsed microwave discharge, and 250 g of polymer powder of average diameter 150 µm was placed into a dish and stirred during the plasma treatment. The O-atom density at the position of the dish containing polymer powder was about 2 × 1021 m−3, and the treatment time was varied up to 30 min. A gradual improvement in the composites’ tensile and flexural strength was observed at the plasma treatment time up to about 10 min, and the mechanical properties remained unchanged with prolonged treatment time. The tensile strength of composites prepared from plasma-treated polymer increased by one-third compared to those based on untreated powder. However, reinforcing the modified polyethylene with plasma-treated glass fibres did not result in further significant mechanical improvement compared to untreated fibres. In contrast, strength values doubled using glass fibres with silane sizing in combination with plasma-modified matrix. The results were explained by the increased surface energy of the polymer powder due to functionalisation with polar functional groups during plasma treatment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 6413 KB  
Article
Optimizing Nozzle Structure and Parameters for Continuous Fiber Prepreg Filament 3D Printing
by Sheng Qu, Qi Zhang, Beiying Liu, Wei Li, Yesong Wang, Feilong Li and Jisheng Liu
Polymers 2025, 17(8), 1014; https://doi.org/10.3390/polym17081014 - 9 Apr 2025
Cited by 1 | Viewed by 791
Abstract
Successful continuous fiber-reinforced composite filament 3D printing hinges on the synergistic relationship between the printing nozzle and precisely controlled process parameters. This research uses a simulation model to investigate how printing temperature, printing speed, and nozzle length affect the prepreg filament’s molten state [...] Read more.
Successful continuous fiber-reinforced composite filament 3D printing hinges on the synergistic relationship between the printing nozzle and precisely controlled process parameters. This research uses a simulation model to investigate how printing temperature, printing speed, and nozzle length affect the prepreg filament’s molten state during 3D printing. We employed the Box–Behnken response surface methodology to optimize these key parameters. Using continuous fiber-reinforced composite filament polylactic acid (CFRCF/PLA) as an example, and a printing nozzle with a 1 mm diameter and an 8 mm length of heating zone were designed. The optimal printing parameters were determined to be as follows: printing temperature of 220 °C, printing speed of 300 mm/min, and printing layer height of 0.2 mm. Experimental validation using the optimized nozzle and parameters demonstrated enhanced stability in continuous fiber prepreg filament printing. Full article
(This article belongs to the Special Issue Three-Dimensional Printing of Polymer Materials)
Show Figures

Figure 1

Back to TopTop