An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets
Abstract
1. Introduction
2. Materials and Methods
2.1. The Net Material
2.2. The Testing Platform
2.3. Experimental Site
2.4. Data Collection and Analysis
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papafillipou, C. Legislation and Application of Ecological Coatings for Ships. Bachelor’s Thesis, Macedonia Merchant Marine Academy of Greece, Nea Michaniona, Greece, 2016. [Google Scholar]
- Selim, M.S.; Shenashen, M.A.; El-Safty, S.A.; Higazy, S.A.; Selim, M.M.; Isago, H.; Elmarakbi, A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci. 2017, 87, 1–32. [Google Scholar] [CrossRef]
- Abioye, O.P.; Loto, C.A.; Fayomi, O.S.I. Evaluation of anti-biofouling progresses in marine application. J. Bio Tribo Corros. 2019, 5, 1968. [Google Scholar] [CrossRef]
- Hellio, C.; Yebra, D. Advances in Marine Antifouling Coatings and Technologies; Woodhead Publishing in Materials; Woodhead Publishing: Cambridge, UK, 2009. [Google Scholar]
- Jia, M.; Zhang, J.; Zhang, Z.; Yu, L.; Wang, J. The application of Ag@PPy composite coating in the cathodic polarization antifouling. Mater. Lett. 2018, 230, 283–288. [Google Scholar] [CrossRef]
- Tesler, A.B.; Kim, P.; Kolle, S.; Howell, C.; Ahanotu, O.; Aizenberg, J. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nat. Commun. 2015, 6, 8649. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Barrios, C.A.; Cutright, T.; Zhang Newby, B. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants. Environ. Toxicol. 2005, 20, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Ciriminna, R.; Bright, F.V.; Pagliaro, M. Ecofriendly antifouling marine coatings. ACS Sustain. Chem. Eng. 2015, 3, 559–565. [Google Scholar] [CrossRef]
- Yigit, M.; Celikkol, B.; Ozalp, B.; Bulut, M.; Dwyer, R.L.; Yilmaz, S.; Maita, M.; Buyukates, Y. Comparison of copper alloy mesh with conventional nylon nets in offshore cage farming of Gilthead seabream (Sparus aurata). Aquac. Stud. 2018, 18, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Kalantzi, I.; Zeri, C.; Catsiki, V.-A.; Tsangaris, C.; Strogyloudi, E.; Kaberi, H.; Vergopoulos, N.; Tsapakis, M. Assessment of the use of copper alloy aquaculture nets: Potential impacts on the marine environment and on the farmed fish. Aquaculture 2016, 465, 209–222. [Google Scholar] [CrossRef]
- Van de Plassche, E.; Van der Aa, E. Harmonisation of Environmental Emission Scenarios; An Emission Scenario Document for Antifouling Products in OECD Countries. Environmental Emission Scenario Document; Contract No. B4-3040/2002/348010/MAR/C3, Final Report 9M2892.01; European Commission, DG-Environment: Brussels, Belgium, 2004; 194p. [Google Scholar]
- Ashraf, P.M.; Lekshmi, N.M.; Chinnadurai, S.; Anjitha, S.; Archana, M.; Vineeth, K.; Chirayil, M.; Sandhya, K.M.; Gop, A.P. Impact assessment of biofouling resistant nano copper oxide–polyaniline coating on aquaculture cage nets. Aquac. Fish. 2023, 8, 538–543. [Google Scholar] [CrossRef]
- Nurioglu, A.G.; Esteves, A.; De With, G. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J. Mater. Chem. B 2015, 3, 6547–6570. [Google Scholar] [CrossRef] [PubMed]
- Ashwitha, A.; Thamizharasan, K.; Roshini, S.; Snega Priya, P.; Bhuvaneswari, S.; Sankari, D. Biofouling-bioadhesion of micro-organisms and its prevention: A Review. Int. J. Eng. Res. Rev. 2018, 6, 11–21. [Google Scholar]
- European Commission. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. In Official Journal of the European Union OJ L 167; European Commission: Brussels, Belgium, 2012; 123p. [Google Scholar]
- Lagerström, M.; Ytreberg, E.; Wiklund, A.-K.E.; Granhag, L. Antifouling paints leach copper in excess—Study of metal release rates and efficacy along a salinity gradient. Water Res. 2020, 186, 116383. [Google Scholar] [CrossRef] [PubMed]
- Vinagre, P.A.; Simas, T.; Cruz, E.; Pinori, E.; Svenson, J. Marine Biofouling: A European Database for the Marine Renewable Energy Sector. J. Mar. Sci. Eng. 2020, 8, 495. [Google Scholar] [CrossRef]
- Conides, A.; Kallias, I.; Cotou, E.; Georgiou, P.; Gialamas, I.; Klaoudatos, D. Preliminary Results on the Antifouling Potential of Copper Wire and Dyneema® Fiber Combined Twines for Aquaculture Net Cages. WSEAS Trans. Environ. Dev. 2023, 19, 607–612. [Google Scholar] [CrossRef]
- Swift, M.R.; Fredriksson, D.W.; Unrein, A.; Fullerton, B.; Patursson, O.; Baldwin, K. Drag force acting on biofouled net panels. Aquac. Eng. 2006, 35, 292–299. [Google Scholar] [CrossRef]
- Bannister, J.; Sievers, M.; Bush, F.; Bloecher, N. Biofouling in marine aquaculture: A review of recent research and developments. Biofouling 2019, 35, 631–648. [Google Scholar] [CrossRef] [PubMed]
- Gansel, L.C.; Plew, D.R.; Endresen, P.C.; Olsen, A.I.; Misimi, E.; Guenther, J.; Jensen, Ø. Drag of clean and fouled net panels—Measurements and parameterization of fouling. PLoS ONE 2015, 10, e0131051. [Google Scholar] [CrossRef] [PubMed]
- Lader, P.; Dempster, T.; Fredheim, A.; Jensen, Ø. Current induced net deformations in full-scale sea-cages for Atlantic salmon (Salmo salar). Aquac. Eng. 2008, 38, 52–65. [Google Scholar] [CrossRef]
- Fitridge, I.; Dempster, T.; Guenther, J.; de Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.J.; Luu, H.A.; Chen, D.Z.; Holmes, C.F.; Kent, M.L.; Le Blanc, M.; Taylor, F.; Williams, D.E. Chemical and biological evidence links microcystins to salmon ‘netpen liver disease’. Toxicon 1993, 31, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, J.; Chen, H.; Chen, D. Progress of marine biofouling and antifouling technologies. Chin. Sci. Bull. 2011, 56, 598–612. [Google Scholar] [CrossRef]
- Dürr, S.; Thomason, J. Biofouling, 1st ed.; Blackwell Publishing Ltd.: Chichester, UK, 2010. [Google Scholar]
- Railkin, A.I. Marine Biofouling: Colonization Processes and Defenses; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- IMO. Common Hull Fouling Invasive Species. Available online: https://www.imo.org/en/ourwork/environment/pages/common-hull-fouling-invasive-species.aspx (accessed on 12 December 2022).
- Jackson, L. Marine biofouling and invasive species; guidelines for prevention and management. In Global Invasive Species Program; UNEP Regional Seas Programm: Nairobi, Kenya, 2008; 68p. [Google Scholar]
- García-Bueno, N.; Marín, A. Ecological management of biomass and metal bioaccumulation in fish-cage nettings: Influence of antifouling paint and fiber manufacture. Aquaculture 2021, 544, 737142. [Google Scholar] [CrossRef]
- Bressy, C.; Lejars, M. Marine Fouling: An Overview. J. Ocean. Technol. 2014, 9, 19–28. [Google Scholar]
- California State Lands Commission. Biofouling Management Regulations to Minimize the Transfer of Nonindigenous Species from Vessels Arriving at California Ports: California Code of Regulations, title 2, section 2298.1 et seq. In Marine Invasive Species Program; California State Lands Commission: Sacramento, CA, USA, 2017; p. 25. [Google Scholar]
- Blöcher, N.; Floerl, O. Towards cost-effective biofouling management in salmon aquaculture: A strategic outlook. Rev. Aquac. 2021, 13, 783–795. [Google Scholar] [CrossRef]
- Willemsen, P. Biofouling in European aquaculture: Is there an easy solution? In Aquaculture Europe 2005; European Aquaculture Society: Trondheim, Norway, 2005. [Google Scholar]
- Younis, E.M.; Abdel-Warith, A.-W.A.; Al-Asgah, N.A.; Elthebite, S.A.; Mostafizur Rahman, M. Nutritional value and bioaccumulation of heavy metals in muscle tissues of five commercially important marine fish species from the Red Sea. Saudi J. Biol. Sci. 2021, 28, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.J.; Shimmield, T.M.; Black, K.D. Copper, zinc and cadmium in marine cage fish farm sediments: An extensive survey. Environ. Pollut. 2007, 145, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.E.; Gace, L.; Dwyer, R.L.; Santore, R.C.; McGree, J.; Smith, D.S. Field testing of copper alloy cages in British Columbia: Comparison of measured copper to ambient water quality criteria. In Farming Our Waters—Agrifood Innovations; Aquaculture Association of Canada: Toronto, ON, Canada, 2013. [Google Scholar]
- Blöcher, N.; Floerl, O. Efficacy testing of novel antifouling coatings for pen nets in aquaculture: How good are alternatives to traditional copper coatings? Aquaculture 2020, 519, 734936. [Google Scholar] [CrossRef]
- Rejeki, S.; Susilowati, T.; Aryati, R.W. Application of copper oxide paints as prevention for macrofouling attachment on a marine floating net cage. J. Coast. Dev. 2010, 13, 166–178. [Google Scholar]
- Blöcher, N. Biofouling in the Norwegian Salmon Farming Industry. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2013. [Google Scholar]
- Ashraf, P.; Anjana, C.; Lekshmi, N.M. Photocatalytic mediated marine biofouling inhibition using nano CuO: TiO2-carbon dot embedded on organo silane surface modified polyethylene aquaculture cage nets. Int. Biodeterior. Biodegrad. 2024, 193, 105856. [Google Scholar] [CrossRef]
- Ashraf, P.M.; Edwin, L. Nano copper oxide incorporated polyethylene glycol hydrogel: An efficient antifouling coating for cage fishing net. Int. Biodeterior. Biodegrad. 2016, 115, 39–48. [Google Scholar] [CrossRef]
- Comas, J.; Parra, D.; Balasch, J.C.; Tort, L. Effects of fouling management and net coating strategies on reared gilthead sea bream juveniles. Animals 2021, 11, 734. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- Grøsvik, E.; Kristiansen, D.E.; Ali, A. Analysis of uptake of tralopyril and transformation products in salmon exposed to tralopyril coated net pen. In Rapport Fra Havforskningen 2024-43; Havforsknings Instituttet: Bergen, Norway, 2024; 24p. [Google Scholar]
- Liu, B.; Li, P.; He, S.; Xing, S.; Cao, Z.; Cao, X.; Wang, X.; Li, Z.-H. Effects of short-term exposure to tralopyril on physiological indexes and endocrine function in turbot (Scophthalmus maximus). Aquat. Toxicol. 2022, 245, 106118. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, P.; He, S.; Xing, S.; Cao, Z.; Cao, X.; Liu, B.; Li, Z.-H. Effects of tralopyril on histological, biochemical and molecular impacts in Pacific oyster, Crassostrea gigas. Chemosphere 2022, 289, 133157. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.B.; Groh, K.J.; Stadnicka-Michalak, J.; Schönenberger, R.; Beiras, R.; Barroso, C.M.; Langford, K.H.; Thomas, K.V.; Suter, M.J.-F. Tralopyril bioconcentration and effects on the gill proteome of the Mediterranean mussel Mytilus galloprovincialis. Aquat. Toxicol. 2016, 177, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Drach, A.; Tsukrov, I.; DeCew, J.; Celikkol, B. Engineering procedures for design and analysis of submersible fish cages with copper netting for exposed marine environment. Aquac. Eng. 2016, 70, 1–14. [Google Scholar] [CrossRef]
- Ayer, N.; Martin, S.; Dwyer, R.L.; Gace, L.; Laurin, L. Environmental performance of copper-alloy Net-pens: Life cycle assessment of Atlantic salmon grow-out in copper-alloy and nylon net-pens. Aquaculture 2016, 453, 93–103. [Google Scholar] [CrossRef]
- Earley, P.J.; Swope, B.L.; Colvin, M.A.; Rosen, G.; Wang, P.-F.; Carilli, J.; Rivera-Duarte, I. Estimates of environmental loading from copper alloy materials. Biofouling 2020, 36, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Berillis, P.; Mente, E.; Kormas, K.A. The Use of Copper Alloy in Aquaculture Fish Net Pens: Mechanical, Economic and Environmental Advantages. J. Fish. Sci. 2017, 11, 1–3. [Google Scholar] [CrossRef]
- Earley, P.J.; Swope, B.L.; Barbeau, K.; Bundy, R.; McDonald, J.A.; Rivera-Duarte, I. Life cycle contributions of copper from vessel painting and maintenance activities. Biofouling 2014, 30, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.K.; Austin Hew, T.Y.; Nulit, R.; Syazwan, W.M.; Okamura, H.; Horie, Y.; Ong, M.C.; Ismail, M.S.; Kumar, K.; Zakaly, H.M.H.; et al. Copper in Commercial Marine Fish: From Biomonitoring to the ESG (Environment, Social, and Governance) Method. Pollutants 2024, 4, 117–135. [Google Scholar] [CrossRef]
- Cotou, E.; Henry, M.; Zeri, C.; Rigos, G.; Torreblanca, A.; Catsiki, V.-A. Short-term exposure of the European sea bass Dicentrarchus labrax to copper-based antifouling treated nets: Copper bioavailability and biomarkers responses. Chemosphere 2012, 89, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, W.; Du, S.; Green, I.; Tan, Q.; Zhang, L. Developmental patterns of copper bioaccumulation in a marine fish model Oryzias melastigma. Aquat. Toxicol. 2016, 170, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Drach, A.; Tsukrov, I.; DeCew, J.; Aufrecht, J.; Grohbauer, A.; Hofmann, U. Field studies of corrosion behaviour of copper alloys in natural seawater. Corros. Sci. 2013, 76, 453–464. [Google Scholar] [CrossRef]
- Pagnotta, L. Sustainable Netting Materials for Marine and Agricultural Applications: A Perspective on Polymeric and Composite Developments. Polymers 2025, 17, 1454. [Google Scholar] [CrossRef] [PubMed]
- Cardia, F.; Lovatelli, A. Aquaculture operations in floating HDPE cages: A field handbook. In FAO Fisheries and Aquaculture Technical Papervol. 593. FAO; Ministry of Agriculture of the Kingdom of Saudi Arabia: Rome, Italy, 2015. [Google Scholar]
Net | Antifouling Method | Mesh (mm) |
---|---|---|
1 | Standard Dyneema net; no treatment (control) | 6, 12, 20 |
2 | Copper-based coating (commercial) | |
3 | Tralopyril-based paint (nanomaterial; copper-free; commercial) | |
4 | 5% Cu wire replacement (experimental) | |
5 | 10% Cu wire replacement (experimental) | |
6 | 20% Cu wire replacement (experimental) | |
7 | 40% Cu wire replacement (experimental) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conides, A.; Cotou, E.; Klaoudatos, D.; Glamuzina, B. An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets. J. Mar. Sci. Eng. 2025, 13, 1384. https://doi.org/10.3390/jmse13081384
Conides A, Cotou E, Klaoudatos D, Glamuzina B. An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets. Journal of Marine Science and Engineering. 2025; 13(8):1384. https://doi.org/10.3390/jmse13081384
Chicago/Turabian StyleConides, Alexis, Efthimia Cotou, Dimitris Klaoudatos, and Branko Glamuzina. 2025. "An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets" Journal of Marine Science and Engineering 13, no. 8: 1384. https://doi.org/10.3390/jmse13081384
APA StyleConides, A., Cotou, E., Klaoudatos, D., & Glamuzina, B. (2025). An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets. Journal of Marine Science and Engineering, 13(8), 1384. https://doi.org/10.3390/jmse13081384