Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = fibre reinforced polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3077 KiB  
Article
Influence of Carboxylic Acids (CAs) on the Structure–Properties Relationship in PLA/Pecan Nutshell (PN) Composites
by Giordano Pierozan Bernardes, Matheus de Prá Andrade and Matheus Poletto
J. Compos. Sci. 2025, 9(8), 422; https://doi.org/10.3390/jcs9080422 - 6 Aug 2025
Abstract
Reinforcing PLA composites with natural fibres is a prominent strategy for improving PLA’s properties while benefiting from its intrinsic biodegradation. However, these composites may be susceptible to an inefficient stress-transferring process due to the weak intermolecular interactions between PLA and natural fibres. A [...] Read more.
Reinforcing PLA composites with natural fibres is a prominent strategy for improving PLA’s properties while benefiting from its intrinsic biodegradation. However, these composites may be susceptible to an inefficient stress-transferring process due to the weak intermolecular interactions between PLA and natural fibres. A well-known practice is to incorporate coupling agents to improve polymer–fibre adhesion, such as carboxylic acids (CAs) and grafted copolymers. CAs are a more affordable and biodegradable option for improving PLA/natural fibre interface strength, resulting in a material with superior mechanical and thermal properties. In this context, this research discusses the potential use of mono (C6 and C8) and di (CC6 and CC8) carboxylic acids as coupling agents in PLA/pecan nutshells (PN) composites. PLA/PN composites with four different CAs were processed in a twin-screw extruder and subsequently injection moulded. The results indicated an increase in the flexural strength of the PLA due to the presence of PN in the neat composite. The use of CAs increased the storage modulus of PLA/PN composites, while C6 and CC8 reduced the PLA composite tan δ peak height. The PLA’s Tg in PLA/PN composite shifted to lower temperatures after the incorporation of CAs while increasing the PLA crystallinity degree. These results strongly suggested that besides acting as efficient coupling agents, these acids also exerted roles as nucleating agents and plasticisers. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

19 pages, 4697 KiB  
Article
The Delamination Behaviour of Basalt Fibre-Reinforced In Situ-Polymerisable Acrylic and Epoxy Composites: A Sustainable Solution for Marine Applications
by Mohamad Alsaadi, Tomas Flanagan, Daniel P. Fitzpatrick and Declan M. Devine
Sustainability 2025, 17(15), 6967; https://doi.org/10.3390/su17156967 - 31 Jul 2025
Viewed by 224
Abstract
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) [...] Read more.
This research paper employed novel sustainable alternative materials to reduce the environmental impact of thermoset/synthetic fibre composites. The effect of seawater hydrothermal ageing at 45 °C for 45 and 90 days on the physical and interlaminar fracture toughness (mode I and mode II) of a semi-unidirectional non-crimp basalt fibre (BF)-reinforced acrylic matrix and epoxy matrix composites was investigated. Optical and scanning electron microscopes were used to describe the fracture and interfacial failure mechanisms. The results show that the BF/Elium composite exhibited higher fracture toughness properties compared to the BF/Epoxy composite. The results of the mode I and mode II interlaminar fracture toughness values for the BF/Elium composite were 1280 J/m2 and 2100 J/m2, which are 14% and 56% higher, respectively, than those of the BF/Epoxy composite. The result values for both composites were normalised with respect to the density of each composite laminate. The saturated moisture content and diffusion coefficient values of seawater-aged samples at 45 °C and room temperature for the BF/Elium and BF/Epoxy composites were analysed. Both composites exhibited signs of polymer matrix decomposition and fibre surface degradation under the influence of seawater hydrothermal ageing, resulting in a reduction in the mode II interlaminar fracture toughness values. Enhancement was observed in mode I fracture toughness under hydrothermal ageing, particularly for the BF/Epoxy composite, due to matrix plasticisation and fibre bridging. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

22 pages, 2499 KiB  
Article
Low-Power Vibrothermography for Detecting Barely Visible Impact Damage in CFRP Laminates: A Comparative Imaging Study
by Zulham Hidayat, Muhammet Ebubekir Torbali, Nicolas P. Avdelidis and Henrique Fernandes
Appl. Sci. 2025, 15(15), 8514; https://doi.org/10.3390/app15158514 (registering DOI) - 31 Jul 2025
Viewed by 113
Abstract
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of [...] Read more.
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of 28 kHz, operated at a fixed excitation frequency of 28 kHz. Thermal data were captured using an infrared camera. To enhance defect visibility and suppress background noise, the raw thermal sequences were processed using principal component analysis (PCA) and robust principal component analysis (RPCA). In LVT, RPCA and PCA provided comparable signal-to-noise ratios (SNR), with no consistent advantage for either method across all cases. In contrast, for pulsed thermography (PT) data, RPCA consistently resulted in higher SNR values, except for one sample. The LVT results were further validated by comparison with PT and phased array ultrasonic testing (PAUT) data to confirm the location and shape of detected damage. These findings demonstrate that LVT, when combined with PCA or RPCA, offers a reliable method for identifying BVID and can support safer, more efficient structural health monitoring of composite materials. Full article
(This article belongs to the Special Issue Application of Acoustics as a Structural Health Monitoring Technology)
Show Figures

Figure 1

19 pages, 1058 KiB  
Review
Shear Strength of Lightweight Concrete Structural Elements Reinforced with FRP Bars: Experimental Studies vs. Code Predictions
by Agnieszka Wiater and Tomasz Wojciech Siwowski
Materials 2025, 18(15), 3525; https://doi.org/10.3390/ma18153525 - 27 Jul 2025
Viewed by 361
Abstract
Using lightweight concrete (LWC) reduces the dead weight of the concrete structure by 25–30% compared to ordinary concrete. However, harmful and corrosive substances penetrate the lightweight concrete matrix due to its high permeability, resulting in higher maintenance costs and a reduced structure service [...] Read more.
Using lightweight concrete (LWC) reduces the dead weight of the concrete structure by 25–30% compared to ordinary concrete. However, harmful and corrosive substances penetrate the lightweight concrete matrix due to its high permeability, resulting in higher maintenance costs and a reduced structure service life. Therefore, in harsh environments where conventional steel bars are susceptible to corrosion, fibre-reinforced polymer (FRP) bars should be used for reinforcement. However, there is a paucity of experimental studies regarding LWC structural elements reinforced with FRP bars. Shear strength is a critical limit state that typically determines the proper design of such elements, ensuring the required safety margin and an appropriate level of reliability. The research work was conducted to compare the experimentally determined shear strengths (Vexp) of 50 structural elements (beams, slabs) made of LWC/FRP with code predictions (Vcode) made according to eight codes used for design. Based on this comparison, the so-called conformity coefficient (Vexp/Vcode) was calculated and used to assess which provision documents are the best, considering the entire population of test results. The work demonstrated that the recent Eurocode best predicts the shear strength of LWC/FRP elements. Full article
Show Figures

Figure 1

34 pages, 3317 KiB  
Review
A Systematic Review of Epoxidation Methods and Mechanical Properties of Sustainable Bio-Based Epoxy Resins
by Manuel Álvarez, Anthony Reilly, Obey Suleyman and Caleb Griffin
Polymers 2025, 17(14), 1956; https://doi.org/10.3390/polym17141956 - 17 Jul 2025
Viewed by 542
Abstract
There has been a growing interest in polymer-based materials in recent years, and current research is focused on reducing fossil-derived epoxy compounds. This review examines the potential of epoxidised vegetable oils (EVOs) as sustainable alternatives to these systems. Epoxidation processes have been systematically [...] Read more.
There has been a growing interest in polymer-based materials in recent years, and current research is focused on reducing fossil-derived epoxy compounds. This review examines the potential of epoxidised vegetable oils (EVOs) as sustainable alternatives to these systems. Epoxidation processes have been systematically analysed and their influence on chemical, thermal, and mechanical properties has been assessed. Results indicate that basic, low-toxicity epoxidation methods resulted in resins with comparable performance to those obtained through more complex common/commercial procedures. In total, 5–7% oxirane oxygen content (OOC) was found to be optimal to achieve a balanced crosslink density, thus enhancing tensile strength. Furthermore, mechanical properties have been insufficiently studied, as less than half of the studies were conducted at least tensile or flexural strength. Reinforcement strategies were also explored, with nano-reinforcing carbon nanotubes (CBNTs) showing the best mechanical and thermal results. Natural fibres reported better mechanical performance when mixed with EVOs than conventional systems. On the other hand, one of the main constraints observed is the lack of consistency in reporting key chemical and mechanical parameters across studies. Environmental properties and end-of-life use are significant challenges to be addressed in future studies, as there remains a significant gap in understanding the end-of-life of these materials. Future research should focus on the exploration of eco-friendly epoxidation reagents and standardise protocols to compare and measure oil properties before and after being epoxidised. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Figure 1

19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 257
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

21 pages, 3883 KiB  
Article
Multi-Variant Damage Assessment in Composite Materials Using Acoustic Emission
by Matthew Gee, Sanaz Roshanmanesh, Farzad Hayati and Mayorkinos Papaelias
Sensors 2025, 25(12), 3795; https://doi.org/10.3390/s25123795 - 18 Jun 2025
Viewed by 468
Abstract
This study presents a novel methodology for the real-time characterisation and quantitative assessment of damage in fibre-reinforced polymers (FRPs) using acoustic emission (AE) techniques. While FRPs offer superior mechanical properties for structural applications, their anisotropic nature introduces complex damage mechanisms that are challenging [...] Read more.
This study presents a novel methodology for the real-time characterisation and quantitative assessment of damage in fibre-reinforced polymers (FRPs) using acoustic emission (AE) techniques. While FRPs offer superior mechanical properties for structural applications, their anisotropic nature introduces complex damage mechanisms that are challenging to detect with conventional inspection methods. Our approach advances beyond traditional peak frequency analysis by implementing a multi-variant frequency assessment that can detect and evaluate simultaneously occurring damage modes. By applying the fast Fourier transform and examining multiple frequency peaks within AE signals, we successfully identified five distinct damage mechanisms in carbon fibre composites: matrix cracking (100–200 kHz), delamination (205–265 kHz), debonding (270–320 kHz), fibre fracture (330–385 kHz), and fibre pullout (395–490 kHz). A comparative analysis with wavelet transform methods demonstrated that our approach provides earlier detection of critical damage events, with delamination identified approximately 28 s sooner than with conventional techniques. The proposed methodology enables a more accurate quantitative assessment of structural health, facilitating timely maintenance interventions for large-scale FRP structures, such as wind turbine blades, thereby enhancing reliability while reducing operational downtime and maintenance costs. Full article
(This article belongs to the Special Issue Intelligent Sensing Technologies in Structural Health Monitoring)
Show Figures

Figure 1

22 pages, 5134 KiB  
Article
Experimental Investigation of the Behaviour of Short-Span FRP-Reinforced Glulam Beams with Hoops and Tension Anchoring
by Herry Chen, Yannick Vetter, Catherine Shrimpton and Daniel Lacroix
Fibers 2025, 13(6), 80; https://doi.org/10.3390/fib13060080 - 17 Jun 2025
Viewed by 327
Abstract
Past research has shown that for short-span glulam beams reinforced with a simple tension GFRP fabric can lead to undesirable failure modes at the reinforcement termination point. An experimental programme aimed at investigating alternative reinforcement schemes comprising hoops and tension anchoring as an [...] Read more.
Past research has shown that for short-span glulam beams reinforced with a simple tension GFRP fabric can lead to undesirable failure modes at the reinforcement termination point. An experimental programme aimed at investigating alternative reinforcement schemes comprising hoops and tension anchoring as an alternative to fan-type anchorage and full-length confinement was undertaken. Sixteen GFRP-reinforced glulam beams were tested to failure under four-point bending. Overall, the hoops and tension anchoring prevented premature debonding and stress concentration failures observed in beams reinforced with simple tension reinforcement. Improvements in the stiffness and strength were generally observed for all configurations with the average failure strain being on average 1.16 times larger than the unreinforced specimens. While hoops prevented undesirable failure modes, it had limited improvements when using bidirectional fabrics for the hoops. Conversely, the configurations with tension anchoring using bidirectional fabrics only resulted in improved performance with some level of post-peak resistance compared to the unreinforced specimens and those reinforced with simple tension reinforcement. For short-span beams, or any FRP-reinforced glulam beams where flexure is not the dominant failure mode, more robust modelling techniques are required to properly capture the distribution of the reinforcement. Full article
Show Figures

Figure 1

7 pages, 167 KiB  
Editorial
Additive Manufacturing of Fibre-Reinforced Polymer Composites
by Chengxing Yang, Kui Wang, Jianxun Zhang and Andrea Codolini
Polymers 2025, 17(12), 1652; https://doi.org/10.3390/polym17121652 - 14 Jun 2025
Viewed by 607
Abstract
Additive manufacturing (AM) has emerged as a transformative approach to fabricating complex geometries with tailored architectures, offering significant advantages in terms of design freedom, material efficiency, and on-demand production [...] Full article
(This article belongs to the Special Issue Additive Manufacturing of Fibre Reinforced Polymer Composites)
20 pages, 5667 KiB  
Article
Optimising Mechanical Performance of Additive Manufactured Composites for Biomedical Applications
by Abdul Qadir, Amadi Gabriel Udu and Norman Osa-uwagboe
Fibers 2025, 13(6), 79; https://doi.org/10.3390/fib13060079 - 13 Jun 2025
Viewed by 341
Abstract
The mechanical properties of additive manufactured (AM) short-fibre reinforced polymer (SFRP) composites are significantly influenced by infill patterns, fibre orientation, and fibre-matrix interactions. While previous studies have explored the role of process parameters in optimising AM components, the impact of infill geometry on [...] Read more.
The mechanical properties of additive manufactured (AM) short-fibre reinforced polymer (SFRP) composites are significantly influenced by infill patterns, fibre orientation, and fibre-matrix interactions. While previous studies have explored the role of process parameters in optimising AM components, the impact of infill geometry on anisotropy and mechanical performance remains underexplored, particularly in the context of machine learning (ML). This study develops an ML-driven framework to predict the tensile and flexural properties of AM SFRP composites with different infill patterns, including triangular, hexagonal, and rectangular. AM structures were fabricated and subjected to tensile and flexural tests, with the data used to train ML models, including LightGBM, XGBoost, and artificial neural networks (ANN). The results showed that the triangular infill pattern had the highest tensile strength and stiffness, the hexagonal infill had the lowest flexural properties, and the rectangular infill exhibited performance levels that fell between those of the triangular and hexagonal patterns. The ML models demonstrated high prediction accuracy, with R-squared values exceeding 0.95. XGBoost performed best for predicting tensile properties of hexagonal infill, while ANN excelled with triangular and rectangular configurations. This study demonstrates the potential of machine learning to enhance the mechanical performance of additively manufactured SFRP composites by capturing the complex interplay between infill geometry and fibre-matrix interactions. Thus, providing additional data for the design of high-performance materials in applications such as biomedical devices. Full article
Show Figures

Figure 1

17 pages, 4270 KiB  
Article
Tribocorrosion and Stress Corrosion Cracking Risk Assessment of Novel Hybrid Stainless Steel–Carbon Fibre Tubes
by Arshad Yazdanpanah, Valentina Zin, Francesca Valentini, Luca Pezzato and Katya Brunelli
Corros. Mater. Degrad. 2025, 6(2), 22; https://doi.org/10.3390/cmd6020022 - 3 Jun 2025
Viewed by 618
Abstract
The increasing demand for lightweight, high-performance materials in marine and offshore engineering has driven the development of hybrid solutions combining metals and composites. This study investigates the stress corrosion cracking (SCC) and tribocorrosion behaviour of a novel hybrid wire consisting of a superaustenitic [...] Read more.
The increasing demand for lightweight, high-performance materials in marine and offshore engineering has driven the development of hybrid solutions combining metals and composites. This study investigates the stress corrosion cracking (SCC) and tribocorrosion behaviour of a novel hybrid wire consisting of a superaustenitic stainless steel (6Mo) outer shell and a carbon fibre-reinforced polymer (CFRP) core. Microstructural analysis, residual stress measurement, and corrosion testing were performed to assess the integrity of the welded structure under harsh conditions. The results revealed that residual stresses and interdendritic segregation in the weld zone significantly contribute to SCC susceptibility, while the 6Mo steel showed improved corrosion resistance over 316L under tribocorrosion conditions but was more sensitive to the sliding frequency. These findings provide critical insights into the degradation mechanisms of metal composite hybrid wires and support the future design of corrosion-resistant components for offshore and structural applications. Full article
Show Figures

Figure 1

14 pages, 1360 KiB  
Article
Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications
by Amir Mofidi and Mona Rajabifard
J. Compos. Sci. 2025, 9(6), 282; https://doi.org/10.3390/jcs9060282 - 31 May 2025
Viewed by 449
Abstract
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately [...] Read more.
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately predicting the load transfer behaviour has not yet been developed. This study presents a fracture mechanics-based analytical bond model for post-installed adhesive FRP anchors embedded in concrete. The model formulation is derived from fundamental equilibrium and compatibility principles, incorporating a bilinear bond–slip law that captures both elastic and softening behaviours. A new expression for the effective bond length is also proposed. Validation of the model against a comprehensive database of direct pull-out tests reported in the literature shows excellent agreement between predicted and experimental pull-out forces (R2 = 0.980; CoV = 0.058). Future research should aim to extend the proposed model to account for confinement effects, long-term durability, the impact of adhesive type, and cyclic loading conditions. Full article
Show Figures

Figure 1

33 pages, 2600 KiB  
Review
Sawdust as a Byproduct of Wood Processing: Properties, Applications and a Reinforcing Filler in Hybrid Polymer Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Tladi Gideon Mofokeng, Mpho Phillip Motloung and Mokgaotsa Jonas Mochane
Polymers 2025, 17(11), 1523; https://doi.org/10.3390/polym17111523 - 29 May 2025
Viewed by 720
Abstract
There is a sizeable amount of sawdust produced from wood industries such as timber and furniture. In the past, sawdust has been utilized as a fuel source and in the manufacturing of furniture. Based on the limited use of sawdust, there is plenty [...] Read more.
There is a sizeable amount of sawdust produced from wood industries such as timber and furniture. In the past, sawdust has been utilized as a fuel source and in the manufacturing of furniture. Based on the limited use of sawdust, there is plenty of sawdust accessible from the industries. Sawdust is the material of choice due to its cost effectiveness, environmental friendliness, and biodegradability. However, if sawdust is not appropriately disposed or utilized better, it may have negative impact on the aquatic life and organic products. Hence, this review paper discusses the best possible methods or proper routes for the utilization of sawdust to benefit the environment, society, and the economy at large. Sawdust possesses superior capabilities as a reinforcing filler in various polymer matrices for advanced applications. This paper provides an in-depth discussion on sawdust hybrid composites in comparison to other natural fibres hybrid composites. The applications of various sawdust hybrid polymer composites for specific systems are also mentioned. Furthermore, the morphology and preparation of the sawdust/polymer composites and/or sawdust hybrid polymers composites are also discussed since it is well known that the properties of the natural fibre composites are affected by the preparation method and the resultant morphology. Based on the above, the current paper also plays a critical role in providing more information about waste to value added products. Full article
Show Figures

Figure 1

19 pages, 10561 KiB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 1 | Viewed by 628
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

15 pages, 6019 KiB  
Article
Effect of Service Temperature on the Mechanical and Fatigue Behaviour of Metal–Polymer Friction Stir Composite Joints
by Arménio N. Correia, Rodrigo J. Coelho, Daniel F. O. Braga, Mafalda Guedes, Ricardo Baptista and Virgínia Infante
Polymers 2025, 17(10), 1366; https://doi.org/10.3390/polym17101366 - 16 May 2025
Cited by 1 | Viewed by 464
Abstract
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at [...] Read more.
This study investigates the mechanical and fatigue behaviour of friction stir composite joints fabricated from an aluminum alloy (AA6082-T6) and a glass fibre-reinforced polymer (Noryl® GFN2) under different service temperature conditions. The joints were tested under both quasi-static and cyclic loading at three different temperatures (23, 75, and 130 °C). Fracture surfaces were analyzed, and the probabilistic S–N curves were derived using Weibull distribution. Results indicated that increasing the service temperature caused a non-linear decrease in both the quasi-static and fatigue strength of the joints. Compared to room temperature, joints tested at 75 °C and 130 °C showed a 10% and 50% reduction in average tensile strength, respectively. The highest fatigue strength occurred at 23 °C, while the lowest was at 130 °C, in line with the quasi-static results. Fatigue stress-life plots displayed a semi-logarithmic nature, with lives ranging from 102 to 105 cycles for stress amplitudes between 7.7 and 22.2 MPa at 23 °C, 7.2 to 19.8 MPa at 75 °C, and 6.2 to 13.5 MPa at 130 °C. The joints’ failure occurred in the polymeric base material close to joints’ interface, highlighting the critical role of the polymer in limiting joints’ performance, as confirmed by thermal and scanning electron microscopy analyses. Full article
Show Figures

Figure 1

Back to TopTop