Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = fiber-reinforced medium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 15691 KiB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions
by Marcelo Vitor Ferreira Machado, Felipe Perissé Duarte Lopes, Noan Tonini Simonassi, Eduardo Atem de Carvalho, Carlos Maurício Fontes Vieira and Sergio Neves Monteiro
Polymers 2025, 17(15), 2105; https://doi.org/10.3390/polym17152105 - 31 Jul 2025
Viewed by 229
Abstract
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. [...] Read more.
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. This research aims to identify the impact behavior of ramie reinforced epoxy composites with medium- and high-volume fractions of fibers in intact (nonaged) and aged conditions as well as to analyze if the influence of interface quality on the impact fracture energy can be described by a novel mathematical model. To reach these objectives, the study is designed with three groups (40%, 50%, and 60% of fiber theoretical volume fractions) of intact specimens and three groups of aged samples by condensation and ultraviolet radiation (C-UV) simulation containing the same fiber percentages. Consecutively, impact strength and fracture surface analyses are done to expand the comprehension of the damage mechanisms suffered by the biocomposites and to support the development of the mathematical relation. Certainly, this novel model can contribute to more sustainable and greener industries in the near future. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites, 2nd Edition)
Show Figures

Figure 1

15 pages, 15023 KiB  
Article
Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
by Yixin Li, Le Kang and Kai Cao
Polymers 2025, 17(15), 2086; https://doi.org/10.3390/polym17152086 - 30 Jul 2025
Viewed by 269
Abstract
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this [...] Read more.
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this problem. However, existing strategies usually produce nonporous composite scaffolds, where the interfiber pores are completely filled with hydrogel. This design can hinder oxygen and nutrient exchange between seeded cells and the culture medium, thereby limiting cell invasion and colonization within the scaffold. In this study, sodium alginate (SA) hydrogel was exclusively grafted onto the surface of the constituent fibers of the melt electrowritten scaffold while preserving the porous structure. The grafted hydrogel amount and pore size were precisely controlled by adjusting the SA concentration and the crosslinking ratio (SA: CaCl2). Experimental results demonstrated that the porous composite scaffolds exhibited superior swelling capacity, degradation ratio, mechanical properties, and biocompatibility. Notably, at an SA concentration of 0.5% and a crosslinking ratio of 2:1, the porous composite scaffold achieved optimal cell adhesion and viability. This study highlights the critical importance of preserving porous structures in composite scaffolds for tissue-engineering applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

16 pages, 4370 KiB  
Article
Comparative Study on Mechanical and Tribological Properties of Alkali-Treated and Untreated Sida acuta Fiber-Reinforced Composite
by Chandra Mohan Heggade Halli Krishnappa, Devaraj Sonnappa, Narayana Swamy Kalavara Saddashiva Reddy, Nikhil Rangaswamy, Ganesh Ravi Chate and Manjunath Patel Gowdru Chandrashekarappa
Eng 2025, 6(7), 143; https://doi.org/10.3390/eng6070143 - 30 Jun 2025
Viewed by 316
Abstract
The present study focused on a comparative analysis of NaOH-treated and untreated Sida acuta fiber-reinforced composites with respect to their wear behavior and compressive strength. The Sida acuta fibers were treated with 5% NaOH, while the untreated fibers were used directly as reinforcement, [...] Read more.
The present study focused on a comparative analysis of NaOH-treated and untreated Sida acuta fiber-reinforced composites with respect to their wear behavior and compressive strength. The Sida acuta fibers were treated with 5% NaOH, while the untreated fibers were used directly as reinforcement, both comprising 32 ± 1 wt.% of the epoxy matrix composites. The composites were further characterized based on their average density, hardness, and compressive strength. Additionally, weight loss, volume loss, and wear rate were examined under dry wear test conditions across various loads and sliding velocities. The results indicate that the alkali-treated fiber-reinforced composite exhibits superior hardness (84.3 ± 2.0) and compressive strength (99.89 ± 3.92 MPa), representing improvements of 12.57% and 13.5%, respectively, over the untreated fiber-reinforced composite. Moreover, the 5% NaOH-treated fiber-reinforced composite demonstrated lower wear rates compared to its untreated counterpart. Scanning Electron Microscopy (SEM) was employed to examine the dry wear surface morphology of both composite laminates, providing insights that support the observed test results. Overall, the developed Sida acuta composite exhibits promising properties, making it suitable for lightweight and medium-strength structural applications. Full article
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Enhancing Mechanical Properties of Hemp and Sisal Fiber-Reinforced Composites Through Alkali and Fungal Treatments for Sustainable Applications
by Rahul Kovuru and Jens Schuster
J. Manuf. Mater. Process. 2025, 9(6), 191; https://doi.org/10.3390/jmmp9060191 - 10 Jun 2025
Viewed by 728
Abstract
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and [...] Read more.
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and fungal treatments. Experimental results show that fungal treatment significantly improves tensile and flexural strength, while hardness slightly decreases. Water absorption tests revealed moderate reductions in hydrophilicity compared to untreated samples, although absolute water uptake remains higher than conventional glass/epoxy composites. Microscopy analysis further confirmed enhanced fiber adhesion and structural integrity in treated specimens. These findings suggest that hybrid composites reinforced with hemp and sisal, particularly with fungal treatment, hold promise for low-to-medium load sustainable applications in the automotive interiors, packaging, and construction industries, where moderate mechanical performance and partial biodegradability are acceptable. This research contributes to the advancement of bio-based composite materials while acknowledging current limitations in long-term durability and complete biodegradability. Full article
Show Figures

Figure 1

18 pages, 1272 KiB  
Article
Novel Flame-Retardant Wood-Polymer Composites by Using Inorganic Mineral Huntite and Hydromagnesite: An Aspect of Application in Electrical Engineering
by Gül Yılmaz Atay, Jacek Lukasz Wilk-Jakubowski and Valentyna Loboichenko
Materials 2025, 18(11), 2652; https://doi.org/10.3390/ma18112652 - 5 Jun 2025
Viewed by 455
Abstract
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste [...] Read more.
In this study, a flame-retardant wood-polymer composite was produced using huntite-hydromagnesite mineral, recognized for its non- flammability properties. In this context, wood-polymer composites were produced with the co-rotating twin-screw extrusion technique, while polypropylene was applied as the composite matrix, medium density fiberboard waste and inorganic huntite-hydromagnesite mineral were used as the reinforcement material. The proportion of wood powder additives was changed to 10% and 20%, and the huntite and hydromagnesite ratio was changed to 30%, 40%, 50% and 60%. Maleic anhydride grafted polypropylene, i.e., MAPP, was applied as a binder at a rate of 3%. Polypropylene, wood fibers, mineral powders, and MAPP blended in the mixer were processed in the extruder and turned into granules. Structural, morphological, thermal, mechanical, and flame-retardant properties of the composites were analyzed using XRD, SEM, FTIR, TGA, tensile testing, and the UL-94 vertical flammability test. Test samples were prepared to evaluate the physical and mechanical properties with a compression molding machine. It was concluded that the composites gained significant flame retardancy with the addition of huntite hydromagnesite. The potential for using this material in various fields and its compliance with the principles of circular economy and the Sustainable Development Goals (SDG 12) were noted. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

18 pages, 7622 KiB  
Article
Recycling of Epoxy/Fiberglass Composite Using Pyridine
by Alexander E. Protsenko, Alexandra N. Protsenko, Olga G. Shakirova and Victor V. Petrov
Polymers 2025, 17(11), 1513; https://doi.org/10.3390/polym17111513 - 29 May 2025
Viewed by 519
Abstract
This study presents a new approach to chemical processing using pyridine-based solvolysis to produce high-quality glass fiber from epoxy composites. Pyridine was chosen due to its solubility parameter, which precisely matches the parameters calculated for the epoxy matrix segment. Experiments with exposure in [...] Read more.
This study presents a new approach to chemical processing using pyridine-based solvolysis to produce high-quality glass fiber from epoxy composites. Pyridine was chosen due to its solubility parameter, which precisely matches the parameters calculated for the epoxy matrix segment. Experiments with exposure in a pyridine medium demonstrated effective swelling and the potential for destruction. The solvolysis experiments were conducted in a round-bottomed flask with a reflux condenser and stirrer, under ambient conditions (20 °C) until the boiling point was reached (115.2 °C). Additionally, data from experimental studies conducted at subcritical temperatures before reaching 280 °C are presented. The dependences of changes in the mass of composites on time and temperature during the solvolysis process were determined. The tensile strength of the recovered fibers was examined, and thermogravimetric analysis was used to determine their properties. Fiberglass recovered at the boiling point is characterized by 91% tensile strength and 20% residual degradation products on the surface. The residual strength of fiberglass-reinforced plastic (FGRP) is 70.3%. The use of subcritical pyridine helps improve the quality of plastic products made from recycled fibers. This process retains 93% of the residual tensile strength for fibers that have been processed at 250 °C for two hours. Recycled fibers also contain 2.82% organic components on their surfaces. Using this material results in an increase in flexural strength of FGRP by 16.1%, compared to the reference samples. Full article
(This article belongs to the Special Issue Advances in Polymer Composites with Upcycling Waste)
Show Figures

Graphical abstract

17 pages, 6902 KiB  
Article
Effect of Waste Cigarette Butt Fibers on the Properties and CO2 Footprint of Bitumen
by Kai Yang, Cheng Cheng, Yong Yan, Qinglin Wu and Ru Du
Materials 2025, 18(9), 2059; https://doi.org/10.3390/ma18092059 - 30 Apr 2025
Viewed by 348
Abstract
This research utilized recycled acetate fibers from discarded cigarette butts (CBs) as reinforcing materials, reducing solid waste and enhancing the properties of bitumen. The surface properties of the fibers significantly impacted the binder characteristics. The treatment of CB fibers with anhydrous ethanol was [...] Read more.
This research utilized recycled acetate fibers from discarded cigarette butts (CBs) as reinforcing materials, reducing solid waste and enhancing the properties of bitumen. The surface properties of the fibers significantly impacted the binder characteristics. The treatment of CB fibers with anhydrous ethanol was employed to remove the plasticizer glycerol triacetate (GTA), enabling the better homogeneity of the fibers in the binder. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to assess the effectiveness of the fiber treatment. A dynamic shear rheometer (DSR) was used to explore the properties of bitumen with varying CB contents (0%, 0.25%, 0.75%, and 1.25% by weight). A whole life cycle analysis further confirmed the eco-efficiency of CB binders. The results show that the pretreatment effectively removed GTA, leading to a more homogeneous dispersion of fibers in the binder. Adding CBs can significantly improve bitumen properties, but this effect does not increase with higher dosages; when the CB content exceeded 1.25%, a reduction in fatigue resistance was observed. Among the tested dosages, the optimal amount was 0.75%, which improved the high-temperature performance of the binder by 2.7 times, the medium-temperature fatigue life by 1.78 times, and the low-temperature performance by 1.08 times. In terms of ecological benefits, the addition of CB fibers to bitumen pavement reduced carbon emissions by two-thirds compared to traditional bitumen pavement, resulting in a significant decrease in carbon emissions. This study provides valuable insights into the construction of sustainable transportation infrastructure. Full article
Show Figures

Figure 1

18 pages, 4180 KiB  
Article
Study on the Influence of Fiber Parameters on the Mechanical Properties of Self-Compacting Concrete
by Yu Zhao, Nan Ru, Jun Wang, Yong Li and Yi Zhou
Constr. Mater. 2025, 5(2), 25; https://doi.org/10.3390/constrmater5020025 - 19 Apr 2025
Viewed by 422
Abstract
To address the issues of significant brittleness in self-compacting concrete (SCC), limited parameter ranges in existing steel fiber reinforcement studies, and incomplete performance evaluation systems, this study conducted mechanical performance tests on steel fiber-reinforced SCC (SFRSCC) with a wide range of volume fractions [...] Read more.
To address the issues of significant brittleness in self-compacting concrete (SCC), limited parameter ranges in existing steel fiber reinforcement studies, and incomplete performance evaluation systems, this study conducted mechanical performance tests on steel fiber-reinforced SCC (SFRSCC) with a wide range of volume fractions (1–3%) and multiple aspect ratios. A multi-indicator comprehensive evaluation model of compressive strength, flexural strength, and elastic modulus was established using an improved entropy-weighted TOPSIS method. Gray relational analysis was integrated to reveal nonlinear correlation patterns between fiber parameters (the volume fraction and aspect ratio) and mechanical responses. The experimental results demonstrated the following: (1) At a 3% fiber content, compressive and flexural strengths increased by 25.7% and 280%, respectively, compared to the control group; (2) the elastic modulus peaked at 2% fiber content, with excessive content (3%) causing an uneven fiber dispersion and diminishing performance gains; (3) short fibers (6 mm) achieved optimal compressive strength at 3% content and medium-length fibers (13 mm) significantly enhanced flexural strength, while long fibers (25 mm) maximized the elastic modulus at 2% content. The combined application of the improved entropy-weighted TOPSIS method and gray relational analysis identified that the high fiber content (3%) paired with medium-length fibers (13 mm) optimally balanced flexural strength and toughness, providing theoretical guidance for the application of SFRSCC in tensile- and crack-resistant engineering projects. Full article
Show Figures

Figure 1

16 pages, 4977 KiB  
Article
The Rheological and Fatigue Properties of Waste Acetate Fiber-Modified Bitumen
by Cheng Cheng, Kai Yang, Jianwei Luo, Shu Yang and Yong Yan
Molecules 2025, 30(8), 1784; https://doi.org/10.3390/molecules30081784 - 16 Apr 2025
Viewed by 367
Abstract
The rheological properties of fiber-reinforced binders are remarkable. The research on acetate fibers as reinforcing agents is scant. Acetate fibers exhibit more environmental benefits than lignocellulose and other fibers. In this study, acetate fibers were pretreated with anhydrous ethanol as the extractant to [...] Read more.
The rheological properties of fiber-reinforced binders are remarkable. The research on acetate fibers as reinforcing agents is scant. Acetate fibers exhibit more environmental benefits than lignocellulose and other fibers. In this study, acetate fibers were pretreated with anhydrous ethanol as the extractant to disperse the fibers uniformly in the bitumen and the high/medium-temperature fatigue properties of waste acetate fibers blended with binders were investigated. Infrared spectroscopy (FT-IR) tests showed that pretreatment was effective in removing plasticizers from CBs so that the fibers could be more uniformly dispersed in the binders. The roadworthiness and fatigue performance of the adhesives were tested based on frequency sweep (FS), multiple stress creep recovery (MSCR), and linear amplitude sweep (LAS) tests with different CB (cigarette butt) doping levels. Ultimately, CBs were added to effectively improve all aspects of bitumen performance, but this phenomenon was not enhanced with an increase in the amount of admixture—optimal covariance was 0.25%. Moreover, a further correlation analysis was performed for the three traditional predicted fatigue failure points. The best correlation was R2 = 0.98 for a 50% decrease in dynamic shear modulus, followed by R2 = 0.96 for peak stress–strain, and R2 = 0.88 for fatigue factor. Full article
(This article belongs to the Special Issue Advances in the Preparation and Application of Cellulose)
Show Figures

Figure 1

25 pages, 11548 KiB  
Article
Response of Bare and CFRP-Retrofitted Multi-Column Piers Under Post-Fire-Coupled Vehicle Collision and Air Blast
by Qusai A. Alomari, Daniel G. Linzell and Mubarak F. Abu Zouriq
Materials 2025, 18(7), 1449; https://doi.org/10.3390/ma18071449 - 25 Mar 2025
Cited by 1 | Viewed by 504
Abstract
Numerous catastrophic events, including fire, vehicle collisions, and air blasts, have highlighted the significance of examining bridge performance under multi-hazard scenarios. While these hazards cause extensive damage, the loss of life, and drastically impact economies, limited attention has been devoted to study the [...] Read more.
Numerous catastrophic events, including fire, vehicle collisions, and air blasts, have highlighted the significance of examining bridge performance under multi-hazard scenarios. While these hazards cause extensive damage, the loss of life, and drastically impact economies, limited attention has been devoted to study the behavior of bridge structural elements under such extreme demand combinations. Hence, comprehensive research to understand the resiliency of bridges and their response to combinations of fire, vehicular impact, and air blast is warranted so that effective retrofitting techniques can be developed and design recommendations be made. To address this research gap, present investigations utilized previously validated finite element (FE) models in LS-DYNA to study the structural behavior of two-, three-, and four-column piers under post-fire medium truck collision and subsequent air blast. The response of multi-column piers was quantified and evaluated based on damage propagation, failure patterns, and permanent deformation sets. The effectiveness of selected retrofitting techniques that employed carbon-fiber-reinforced polymers (CFRPs) to mitigate damage was investigated. Study findings enhance current understanding, provide valuable insights, and can ultimately be used to ensure safety and improve the structural integrity of bridge piers under coupled vehicle collision and air blast following fire exposure. Full article
Show Figures

Figure 1

13 pages, 8060 KiB  
Article
Research on the Quality of Composite Pipe Components in Fluid-Powered Projectile-Assisted Injection Molding
by Tangqing Kuang, Chuixin Kong, Hesheng Liu and Fan Yang
Polymers 2025, 17(4), 489; https://doi.org/10.3390/polym17040489 - 13 Feb 2025
Viewed by 775
Abstract
Composite pipe fittings with an outer layer of 20% long glass fiber-reinforced polypropylene (LGFR-PP) and an inner layer of polypropylene (PP) were prepared via water-powered projectile-assisted co-injection molding short-shot (W-PACIM-S), water-powered projectile-assisted co-injection molding overflow (W-PACIM-O), gas-powered projectile-assisted co-injection molding short-shot (G-PACIM-S), and [...] Read more.
Composite pipe fittings with an outer layer of 20% long glass fiber-reinforced polypropylene (LGFR-PP) and an inner layer of polypropylene (PP) were prepared via water-powered projectile-assisted co-injection molding short-shot (W-PACIM-S), water-powered projectile-assisted co-injection molding overflow (W-PACIM-O), gas-powered projectile-assisted co-injection molding short-shot (G-PACIM-S), and gas-powered projectile-assisted co-injection molding overflow (G-PACIM-O)techniques. The effects of different injection molding processes on the wall thickness, inner surface roughness, glass fiber orientation, and pressure resistance of pipe fittings were studied to evaluate the quality of the pipe fittings formed by each process. Compared with the short-shot method, the overflow method results in pipes with thinner walls in each layer, a more uniform distribution, smoother inner wall surfaces, and better orientation of glass fibers along the axial direction in the near boundary layer, resulting in better pressure resistance. Under the same injection method, the difference in fluid medium did not significantly change the trend of wall thickness variation in each layer. However, compared with gas, high-pressure water improves the uniformity of the pipe wall thickness and inner wall quality. In addition, the introduction of the warhead is more conducive to improving the degree of glass fiber orientation of the pipe fittings, and the thickness of the residual wall thickness of the pipe fittings has a great influence on the pressure resistance of the pipe fittings. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 3356 KiB  
Article
Comparison of the Corrosion Resistance of Fiber-Reinforced Concrete with Steel and Polypropylene Fibers in an Acidic Environment
by Sergii Kroviakov, Vitalii Kryzhanovskyi and Daria Hedulian
Constr. Mater. 2025, 5(1), 6; https://doi.org/10.3390/constrmater5010006 - 1 Feb 2025
Cited by 4 | Viewed by 1056
Abstract
Rigid road pavements and industrial floors are not only subjected to moving traffic loads, but can also be exposed to environmental influences such as acid attack. The strength and corrosion resistance of fiber-reinforced concrete with steel fibers (15–25 kg/m3) and polypropylene [...] Read more.
Rigid road pavements and industrial floors are not only subjected to moving traffic loads, but can also be exposed to environmental influences such as acid attack. The strength and corrosion resistance of fiber-reinforced concrete with steel fibers (15–25 kg/m3) and polypropylene fibers (2–3 kg/m3) in an acidic environment were compared. The influence of the amount and type of dispersed reinforcement on water absorption and the volume of permeable voids, which in turn characterizes the durability of fiber-reinforced concrete under the action of acids, was determined. The change in the compressive strength of the studied fiber-reinforced concrete after 12 months of exposure in an acidic environment was studied. At low dosages of fibers (15 kg/m3 for steel and 2 kg/m3 for polypropylene fibers), dispersed reinforcement has little effect on the corrosion resistance of concrete. In turn, the decrease in the compressive strength of concrete without fibers after 12 months of aging in acid medium led to a reduction in the design class of the concrete from C25/30 to C20/25. At a higher consumption of dispersed reinforcement (25–30 kg/m3 of steel fiber and 2.5–3.0 kg/m3 of polypropylene fiber), fiber-reinforced concrete had a higher corrosion resistance while maintaining the design compressive strength class C25/30. Structural changes in fiber-reinforced concrete after aging in an acidic environment were determined by X-ray diffraction analysis and compared with samples aged in water. It has been experimentally confirmed that the efficiency of polypropylene fibers in an acidic environment is not lower than that of steel fibers. However, the use of polypropylene fibers is economically advantageous. Full article
(This article belongs to the Special Issue Modelling and Analysis of Concrete Degradation)
Show Figures

Figure 1

17 pages, 5358 KiB  
Article
A Study on the Impact of Temperature on the Anchoring Durability of Carbon-Fiber-Reinforced Polymer Cables
by Minzhe Wang, Bo Chen, Haozhe Jiang and Ping Zhuge
Materials 2025, 18(2), 410; https://doi.org/10.3390/ma18020410 - 16 Jan 2025
Cited by 3 | Viewed by 717
Abstract
To improve the application of carbon-fiber-reinforced polymers (CFRPs) in civil engineering, the long-term durability of CFRP anchorage systems has become a critical issue. Temperature fluctuations can significantly impact the bond performance between CFRPs and the load transfer medium (LTM), making it essential to [...] Read more.
To improve the application of carbon-fiber-reinforced polymers (CFRPs) in civil engineering, the long-term durability of CFRP anchorage systems has become a critical issue. Temperature fluctuations can significantly impact the bond performance between CFRPs and the load transfer medium (LTM), making it essential to understand the effects of temperature on the durability of CFRP anchorages. Therefore, this study investigates the influence of temperature on the durability of CFRP anchorages through aging tests on 30 epoxy-filled CFRP-bonded anchorage specimens, followed by pull-out tests. The long-term degradation of CFRP cable anchorage performances in representative regions of the globe was predicted using Arrhenius theory. The experimental results show that after long-term temperature exposure, the maximum bond strength of the CFRP-LTM interface in the anchoring zone degrades after 30 days but continues to increase after 150 days. In contrast, the residual bond strength of the CFRP-LTM interface in the anchorage zone continuously decreases over time, with the degradation rates gradually decreasing over time. Higher temperatures lead to more severe degradation of anchoring performance. Based on the experimental results, it is predicted that the anchoring performance of a CFRP cable anchorage system will reach degradation rates of 63.72%, 83.36%, and 94.73% after 50 years in regions with average annual temperatures of 0 °C, 10 °C, and 20 °C, respectively. Therefore, the temperature has a significant long-term impact on the anchoring performance of CFRP cable bonding systems, necessitating a more conservative design in higher-temperature areas. Full article
Show Figures

Figure 1

25 pages, 5749 KiB  
Article
A Statistical Assessment of Drilling Effects on Glass Fiber-Reinforced Polymeric Composites
by Ana Martins, Alda Carvalho, Ivo M. F. Bragança, Inês C. J. Barbosa, Joaquim Infante Barbosa and Maria A. R. Loja
Materials 2024, 17(22), 5631; https://doi.org/10.3390/ma17225631 - 18 Nov 2024
Cited by 1 | Viewed by 1007
Abstract
Fiber-reinforced composites are extensively used in many components and structures in various industry sectors, and the need to connect and assemble such types of components may require drilling operations. Although drilling is a common machining process; when dealing with fiber-reinforced composite materials, additional [...] Read more.
Fiber-reinforced composites are extensively used in many components and structures in various industry sectors, and the need to connect and assemble such types of components may require drilling operations. Although drilling is a common machining process; when dealing with fiber-reinforced composite materials, additional and specific problems may arise that can com-promise mechanical integrity. So, the main goal of this work is to assess how various input variables impact two main outcomes in the drilling process: the exit-adjusted delamination factor and the maximum temperature on the bottom surface where the drilling tool exits. The input variables include the type of drilling tools used, the operating speeds, and the thickness of the plates being drilled. By using Analysis of Variance (ANOVA), the analysis aims to identify which factors significantly influence damage and exit temperature. The results demonstrate that the influence of tools and drilling parameters is critical, and those selections impact the quality of the hole and the extent of the induced damage to the surrounding area. In concrete, considering the initially selected set of tools, the BZT03 tool does not lead to high-quality holes when drilling medium- and high-thickness plates. In contrast, the Dagger tool shows potential to reduce exit hole damage while also lowering temperature. Full article
Show Figures

Figure 1

Back to TopTop