Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = fiber-optic communication network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1089 KiB  
Article
Adaptive Learned Belief Propagation for Decoding Error-Correcting Codes
by Alireza Tasdighi and Mansoor Yousefi
Entropy 2025, 27(8), 795; https://doi.org/10.3390/e27080795 - 25 Jul 2025
Viewed by 240
Abstract
Weighted belief propagation (WBP) for the decoding of linear block codes is considered. In WBP, the Tanner graph of the code is unrolled with respect to the iterations of the belief propagation decoder. Then, weights are assigned to the edges of the resulting [...] Read more.
Weighted belief propagation (WBP) for the decoding of linear block codes is considered. In WBP, the Tanner graph of the code is unrolled with respect to the iterations of the belief propagation decoder. Then, weights are assigned to the edges of the resulting recurrent network and optimized offline using a training dataset. The main contribution of this paper is an adaptive WBP where the weights of the decoder are determined for each received word. Two variants of this decoder are investigated. In the parallel WBP decoders, the weights take values in a discrete set. A number of WBP decoders are run in parallel to search for the best sequence- of weights in real time. In the two-stage decoder, a small neural network is used to dynamically determine the weights of the WBP decoder for each received word. The proposed adaptive decoders demonstrate significant improvements over the static counterparts in two applications. In the first application, Bose–Chaudhuri–Hocquenghem, polar and quasi-cyclic low-density parity-check (QC-LDPC) codes are used over an additive white Gaussian noise channel. The results indicate that the adaptive WBP achieves bit error rates (BERs) up to an order of magnitude less than the BERs of the static WBP at about the same decoding complexity, depending on the code, its rate, and the signal-to-noise ratio. The second application is a concatenated code designed for a long-haul nonlinear optical fiber channel where the inner code is a QC-LDPC code and the outer code is a spatially coupled LDPC code. In this case, the inner code is decoded using an adaptive WBP, while the outer code is decoded using the sliding window decoder and static belief propagation. The results show that the adaptive WBP provides a coding gain of 0.8 dB compared to the neural normalized min-sum decoder, with about the same computational complexity and decoding latency. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

31 pages, 2179 KiB  
Article
Statistical Analysis and Modeling for Optical Networks
by Sudhir K. Routray, Gokhan Sahin, José R. Ferreira da Rocha and Armando N. Pinto
Electronics 2025, 14(15), 2950; https://doi.org/10.3390/electronics14152950 - 24 Jul 2025
Viewed by 338
Abstract
Optical networks serve as the backbone of modern communication, requiring statistical analysis and modeling to optimize performance, reliability, and scalability. This review paper explores statistical methodologies for analyzing network characteristics, dimensioning, parameter estimation, and cost prediction of optical networks, and provides a generalized [...] Read more.
Optical networks serve as the backbone of modern communication, requiring statistical analysis and modeling to optimize performance, reliability, and scalability. This review paper explores statistical methodologies for analyzing network characteristics, dimensioning, parameter estimation, and cost prediction of optical networks, and provides a generalized framework based on the idea of convex areas, and link length and shortest path length distributions. Accurate dimensioning and cost estimation are crucial for optical network planning, especially during early-stage design, network upgrades, and optimization. However, detailed information is often unavailable or too complex to compute. Basic parameters like coverage area and node count, along with statistical insights such as distribution patterns and moments, aid in determining the appropriate modulation schemes, compensation techniques, repeater placement, and in estimating the fiber length. Statistical models also help predict link lengths and shortest path lengths, ensuring efficiency in design. Probability distributions, stochastic processes, and machine learning improve network optimization and fault prediction. Metrics like bit error rate, quality of service, and spectral efficiency can be statistically assessed to enhance data transmission. This paper provides a review on statistical analysis and modeling of optical networks, which supports intelligent optical network management, dimensioning of optical networks, performance prediction, and estimation of important optical network parameters with partial information. Full article
(This article belongs to the Special Issue Optical Networking and Computing)
Show Figures

Figure 1

20 pages, 3269 KiB  
Article
Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions
by Meet Kumari and Satyendra K. Mishra
Photonics 2025, 12(7), 712; https://doi.org/10.3390/photonics12070712 - 14 Jul 2025
Viewed by 339
Abstract
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication [...] Read more.
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication system integrated with fiber-end is designed and investigated using the Bennett–Brassard 1984 quantum key distribution (BB84-QKD) protocol. Simulation results show that reliable transmission can be achieved over a 10–15 km fiber length with a signal power of −19.54 dBm and high optical-to-signal noise of 72.28–95.30 dB over a 550 m FSO range under clear air, haze, fog, and rain conditions at a data rate of 1 Gbps. Also, the system using rectilinearly and circularly polarized signals exhibits a Stokes parameter intensity of −4.69 to −35.65 dBm and −7.7 to −35.66 dBm Stokes parameter intensity, respectively, over 100–700 m FSO range under diverse weather conditions. Likewise, for the same scenario, an FSO range of 100 m incorporating 2.5–4 mrad beam divergence provides the Stokes power intensity of −6.03 to −11.1 dBm and −9.04 to −14.12 dBm for rectilinearly and circularly polarized signals, respectively. Moreover, compared to existing works, this work allows faithful and secure signal transmission in free space, considering FSO–fiber link losses. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

33 pages, 5209 KiB  
Review
Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
by Gerardo Antonio Castañón Ávila, Walter Cerroni and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(13), 7494; https://doi.org/10.3390/app15137494 - 3 Jul 2025
Viewed by 853
Abstract
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact [...] Read more.
Integrated photonics is a transformative technology for enhancing communication and computation in Cloud and Fog computing networks. Photonic integrated circuits (PICs) enable significant improvements in data-processing speed, energy-efficiency, scalability, and latency. In Cloud infrastructures, PICs support high-speed optical interconnects, energy-efficient switching, and compact wavelength division multiplexing (WDM), addressing growing data demands. Fog computing, with its edge-focused processing and analytics, benefits from the compactness and low latency of integrated photonics for real-time signal processing, sensing, and secure data transmission near IoT devices. PICs also facilitate the low-loss, high-speed modulation, transmission, and detection of RF signals in scalable Radio-over-Fiber (RoF) links, enabling seamless IoT integration with Cloud and Fog networks. This results in centralized processing, reduced latency, and efficient bandwidth use across distributed infrastructures. Overall, integrating photonic technologies into RoF, Fog and Cloud computing networks paves the way for ultra-efficient, flexible, and scalable next-generation network architectures capable of supporting diverse real-time and high-bandwidth applications. This paper provides a comprehensive review of the current state and emerging trends in integrated photonics for IoT sensors, RoF, Fog and Cloud computing systems. It also outlines open research opportunities in photonic devices and system-level integration, aimed at advancing performance, energy-efficiency, and scalability in next-generation distributed computing networks. Full article
(This article belongs to the Special Issue New Trends in Next-Generation Optical Networks)
Show Figures

Figure 1

19 pages, 1706 KiB  
Article
Demonstration of 50 Gbps Long-Haul D-Band Radio-over-Fiber System with 2D-Convolutional Neural Network Equalizer for Joint Phase Noise and Nonlinearity Mitigation
by Yachen Jiang, Sicong Xu, Qihang Wang, Jie Zhang, Jingtao Ge, Jingwen Lin, Yuan Ma, Siqi Wang, Zhihang Ou and Wen Zhou
Sensors 2025, 25(12), 3661; https://doi.org/10.3390/s25123661 - 11 Jun 2025
Viewed by 440
Abstract
High demand for 6G wireless has made photonics-aided D-band (110–170 GHz) communication a research priority. Photonics-aided technology integrates optical and wireless communications to boost spectral efficiency and transmission distance. This study presents a Radio-over-Fiber (RoF) communication system utilizing photonics-aided technology for 4600 m [...] Read more.
High demand for 6G wireless has made photonics-aided D-band (110–170 GHz) communication a research priority. Photonics-aided technology integrates optical and wireless communications to boost spectral efficiency and transmission distance. This study presents a Radio-over-Fiber (RoF) communication system utilizing photonics-aided technology for 4600 m long-distance D-band transmission. We successfully show the transmission of a 50 Gbps (25 Gbaud) QPSK signal utilizing a 128.75 GHz carrier frequency. Notwithstanding these encouraging outcomes, RoF systems encounter considerable obstacles, including pronounced nonlinear distortions and phase noise related to laser linewidth. Numerous factors can induce nonlinear impairments, including high-power amplifiers (PAs) in wireless channels, the operational mechanisms of optoelectronic devices (such as electrical amplifiers, modulators, and photodiodes), and elevated optical power levels during fiber transmission. Phase noise (PN) is generated by laser linewidth. Despite the notable advantages of classical Volterra series and deep neural network (DNN) methods in alleviating nonlinear distortion, they display considerable performance limitations in adjusting for phase noise. To address these problems, we propose a novel post-processing approach utilizing a two-dimensional convolutional neural network (2D-CNN). This methodology allows for the extraction of intricate features from data preprocessed using traditional Digital Signal Processing (DSP) techniques, enabling concurrent compensation for phase noise and nonlinear distortions. The 4600 m long-distance D-band transmission experiment demonstrated that the proposed 2D-CNN post-processing method achieved a Bit Error Rate (BER) of 5.3 × 10−3 at 8 dBm optical power, satisfying the soft-decision forward error correction (SD-FEC) criterion of 1.56 × 10−2 with a 15% overhead. The 2D-CNN outperformed Volterra series and deep neural network approaches in long-haul D-band RoF systems by compensating for phase noise and nonlinear distortions via spatiotemporal feature integration, hierarchical feature extraction, and nonlinear modelling. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

14 pages, 5764 KiB  
Article
First Real-Time 267.8 Tb/S 2 × 70.76 Km Integrated Communication and Sensing Field Trial over Deployed Seven-Core Fiber Cable Using 130 Gbaud PCS-64QAM 1.2 Tb/S OTN Transponders
by Jian Cui, Leimin Zhang, Yu Deng, Zhuo Liu, Chao Wu, Bin Hao, Ting Zhang, Yuxiao Wang, Bin Wu, Chengxing Zhang, Yong Chen, Lei Shen, Jie Luo, Yan Sun, Qi Wan, Cheng Chang, Bing Yan and Ninglun Gu
Photonics 2025, 12(6), 577; https://doi.org/10.3390/photonics12060577 - 6 Jun 2025
Viewed by 413
Abstract
Ultra-high-speed integrated communication and sensing (ICS) transmission techniques are highly desired for next-generation highly reliable optical transport networks (OTNs). The inherent multiple-channel advantage of uncoupled multi-core fibers (MCFs) empowers the evolution of ICS techniques. In this paper, we demonstrate an ultra-high-speed ICS OTN [...] Read more.
Ultra-high-speed integrated communication and sensing (ICS) transmission techniques are highly desired for next-generation highly reliable optical transport networks (OTNs). The inherent multiple-channel advantage of uncoupled multi-core fibers (MCFs) empowers the evolution of ICS techniques. In this paper, we demonstrate an ultra-high-speed ICS OTN system utilizing 130 Gbaud probability constellation shaping 64-ary quadrature amplitude modulation (PCS-64QAM) 1.2 Tb/s OTN transponders and polarization-based sensing technique over a field-deployed seven-core MCF cable for the first time. A real-time 267.8 Tb/s 2 × 70.76 km transmission is achieved by only utilizing C-band signals thanks to the high-performance 1.2 Tb/s OTN transponders. Moreover, the ICS system can sense environmental impacts on the MCF cable such as shaking, striking, etc., in real time. The capacity of the transmission system can also be further enhanced by using signals in the L-band. Our work demonstrates the feasibility of simultaneously achieving ultra-high-speed data transmission and the real-time sensing of environmental disturbances over a field-deployed MCF cable, which we believe is a crucial milestone for next-generation ultra-high-speed highly reliable optical transmission networks. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

46 pages, 2208 KiB  
Review
A Survey on Free-Space Optical Communication with RF Backup: Models, Simulations, Experience, Machine Learning, Challenges and Future Directions
by Sabai Phuchortham and Hakilo Sabit
Sensors 2025, 25(11), 3310; https://doi.org/10.3390/s25113310 - 24 May 2025
Viewed by 1978
Abstract
As sensor technology integrates into modern life, diverse sensing devices have become essential for collecting critical data that enables human–machine interfaces such as autonomous vehicles and healthcare monitoring systems. However, the growing number of sensor devices places significant demands on network capacity, which [...] Read more.
As sensor technology integrates into modern life, diverse sensing devices have become essential for collecting critical data that enables human–machine interfaces such as autonomous vehicles and healthcare monitoring systems. However, the growing number of sensor devices places significant demands on network capacity, which is constrained by the limitations of radio frequency (RF) technology. RF-based communication faces challenges such as bandwidth congestion and interference in densely populated areas. To overcome these challenges, a combination of RF with free-space optical (FSO) communication is presented. FSO is a laser-based wireless solution that offers high data rates and secure communication, similar to fiber optics but without the need for physical cables. However, FSO is highly susceptible to atmospheric turbulence and conditions such as fog and smoke, which can degrade performance. By combining the strengths of both RF and FSO, a hybrid FSO/RF system can enhance network reliability, ensuring seamless communication in dynamic urban environments. This review examines hybrid FSO/RF systems, covering both theoretical models and real-world applications. Three categories of hybrid systems, namely hard switching, soft switching, and relay-based mechanisms, are proposed, with graphical models provided to improve understanding. In addition, multi-platform applications, including autonomous, unmanned aerial vehicles (UAVs), high-altitude platforms (HAPs), and satellites, are presented. Finally, the paper identifies key challenges and outlines future research directions for hybrid communication networks. Full article
(This article belongs to the Special Issue Sensing Technologies and Optical Communication)
Show Figures

Figure 1

20 pages, 1305 KiB  
Article
Grouping-Based Dynamic Routing, Core, and Spectrum Allocation Method for Avoiding Spectrum Fragmentation and Inter-Core Crosstalk in Multi-Core Fiber Networks
by Funa Fukui, Tomotaka Kimura, Yutaka Fukuchi and Kouji Hirata
Future Internet 2025, 17(6), 232; https://doi.org/10.3390/fi17060232 - 23 May 2025
Viewed by 351
Abstract
In this paper, we propose a grouping-based dynamic routing, core, and spectrum allocation (RCSA) method for preventing spectrum fragmentation and inter-core crosstalk in elastic optical path networks based on multi-core fiber environments. Multi-core fibers enable us to considerably enhance the transmission capacity of [...] Read more.
In this paper, we propose a grouping-based dynamic routing, core, and spectrum allocation (RCSA) method for preventing spectrum fragmentation and inter-core crosstalk in elastic optical path networks based on multi-core fiber environments. Multi-core fibers enable us to considerably enhance the transmission capacity of optical links; however, this induces inter-core crosstalk, which degrades the quality of optical signals. We should thus avoid using the same frequency bands in adjacent cores in order to ensure high-quality communications. However, this simple strategy leads to inefficient use of frequency-spectrum resources, resulting in spectrum fragmentation and a high blocking probability for lightpath establishment. The proposed method allows one to overcome this difficulty by grouping lightpath-setup requests according to their required number of frequency slots. By assigning lightpath-setup requests belonging to the same group to cores according to their priority, the proposed method aims to suppress inter-core crosstalk. Furthermore, the proposed method is designed to mitigate spectrum fragmentation by determining the prioritized frequency bandwidth for lightpath-setup requests according to their required number of frequency slots. We show that the proposed method reduces the blocking of lightpath establishment while suppressing inter-core crosstalk through simulation experiments. Full article
Show Figures

Figure 1

18 pages, 3315 KiB  
Article
Fiber Eavesdropping Detection and Location in Optical Communication System
by Yuang Li, Yuyuan Liang, Mingrui Zhang, Shuang Wei, Huatao Zhu, Yajie Li, Yongli Zhao and Jie Zhang
Photonics 2025, 12(5), 501; https://doi.org/10.3390/photonics12050501 - 16 May 2025
Viewed by 497
Abstract
Fiber eavesdropping severely endangers the confidentiality of data transmitted in optical networks. Therefore, it is necessary to explore how to detect and locate fiber eavesdropping in an effective approach. To leverage the advantages of the state of polarization (SOP) in detecting various abnormal [...] Read more.
Fiber eavesdropping severely endangers the confidentiality of data transmitted in optical networks. Therefore, it is necessary to explore how to detect and locate fiber eavesdropping in an effective approach. To leverage the advantages of the state of polarization (SOP) in detecting various abnormal events while addressing its challenges in acquiring the SOP of different fiber links, we propose a multi-channel joint SOP estimation scheme to estimate the SOP of different fiber spans. Based on the proposed scheme, we provide a comprehensive solution for fiber eavesdropping location and detection in optical communication systems. In this solution, the estimated SOP and optical performance monitoring (OPM) data are utilized for rapid fiber eavesdropping detection and coarse location at the span level. The effectiveness of the solution is validated by experiments. In the aspect of detection, we achieve the detection of the start or end of fiber eavesdropping, the overlapping of fiber eavesdropping and abnormal events, and other abnormal events. The overall accuracy is 99.77%. In the aspect of location, we can locate the fiber span that has been eavesdropped. Full article
(This article belongs to the Special Issue Photonics for Emerging Applications in Communication and Sensing II)
Show Figures

Figure 1

22 pages, 6192 KiB  
Article
Advanced DFE, MLD, and RDE Equalization Techniques for Enhanced 5G mm-Wave A-RoF Performance at 60 GHz
by Umar Farooq and Amalia Miliou
Photonics 2025, 12(5), 496; https://doi.org/10.3390/photonics12050496 - 16 May 2025
Viewed by 714
Abstract
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality [...] Read more.
This article presents the decision feedback equalizer (DFE), the maximum likelihood detection (MLD), and the radius-directed equalization (RDE) algorithms designed in MATLAB-R2018a to equalize the received signal in a dispersive optical link up to 120 km. DFE is essential for improving signal quality in several communication systems, including WiFi networks, cable modems, and long-term evolution (LTE) systems. Its capacity to mitigate inter-symbol interference (ISI) and rapidly adjust to channel variations renders it a flexible option for high-speed data transfer and wireless communications. Conversely, MLD is utilized in applications that require great precision and dependability, including multi-input–multi-output (MIMO) systems, satellite communications, and radar technology. The ability of MLD to optimize the probability of accurate symbol detection in complex, high-dimensional environments renders it crucial for systems where signal integrity and precision are critical. Lastly, RDE is implemented as an alternative algorithm to the CMA-based equalizer, utilizing the idea of adjusting the amplitude of the received distorted symbol so that its modulus is closer to the ideal value for that symbol. The algorithms are tested using a converged 5G mm-wave analog radio-over-fiber (A-RoF) system at 60 GHz. Their performance is measured regarding error vector magnitude (EVM) values before and after equalization for different optical fiber lengths and modulation formats (QPSK, 16-QAM, 64-QAM, and 128-QAM) and shows a clear performance improvement of the output signal. Moreover, the performance of the proposed algorithms is compared to three commonly used algorithms: the simple least mean square (LMS) algorithm, the constant modulus algorithm (CMA), and the adaptive median filtering (AMF), demonstrating superior results in both QPSK and 16-QAM and extending the transmission distance up to 120 km. DFE has a significant advantage over LMS and AMF in reducing the inter-symbol interference (ISI) in a dispersive channel by using previous decision feedback, resulting in quicker convergence and more precise equalization. MLD, on the other hand, is highly effective in improving detection accuracy by taking into account the probability of various symbol sequences achieving lower error rates and enhancing performance in advanced modulation schemes. RDE performs best for QPSK and 16-QAM constellations among all the other algorithms. Furthermore, DFE and MLD are particularly suitable for higher-order modulation formats like 64-QAM and 128-QAM, where accurate equalization and error detection are of utmost importance. The enhanced functionalities of DFE, RDE, and MLD in managing greater modulation orders and expanding transmission range highlight their efficacy in improving the performance and dependability of our system. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

21 pages, 6467 KiB  
Article
Research on High-Precision Time–Frequency Phase-Synchronization Transmission Technology for Free-Space Optical Communication Systems on Mobile Platforms
by Fengrui Liu, Ning Sun, Jia Wei, Yingkai Zhao, Xingfa Wang, Weijie Zhang and Jianguo Liu
Photonics 2025, 12(5), 467; https://doi.org/10.3390/photonics12050467 - 10 May 2025
Viewed by 471
Abstract
This paper proposes a free-space time–frequency phase (TFP)-synchronization transmission architecture based on optoelectronic hybrid technology, addressing the high-precision TFP synchronization and high-speed communication requirements between mobile platforms in distributed collaborative positioning and other applications. The proposed scheme utilizes symmetric free-space optical (FSO) links [...] Read more.
This paper proposes a free-space time–frequency phase (TFP)-synchronization transmission architecture based on optoelectronic hybrid technology, addressing the high-precision TFP synchronization and high-speed communication requirements between mobile platforms in distributed collaborative positioning and other applications. The proposed scheme utilizes symmetric free-space optical (FSO) links to effectively suppress drift errors, integrating the high bandwidth of optical links and the high stability of microwave links, enabling one-to-many networking synchronization between mobile platforms. The system adopts optical wireless transmission technology based on pseudo-code regenerative ranging, integrating 1.5 Gbps high-speed data transmission with high-precision TFP-synchronization functionality. An experimental system consisting of a main station and two auxiliary stations was established in an outdoor mobile platform scenario. Experimental results show that while achieving high-speed communication, the frequency synchronization precision is 0.0131 ppb, frequency stability is in the order of 10−10@1 s, and phase synchronization precision is approximately 3.56°. The system achieves time synchronization precision at the picosecond level. The proposed technology is highly suitable for high-precision synchronization communication in scenarios lacking fiber-optic infrastructure, effectively fulfilling rigorous requirements in mobile platform applications such as distributed collaborative positioning. Full article
Show Figures

Figure 1

14 pages, 2088 KiB  
Review
Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks
by Sunghyun Bae and Seok-Tae Koh
Photonics 2025, 12(5), 418; https://doi.org/10.3390/photonics12050418 - 27 Apr 2025
Viewed by 755
Abstract
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity [...] Read more.
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity to end users for whom security is critical. Such integration can address the inherent security vulnerabilities in current OANs, which are primarily based on time-division multiplexing passive optical networks (TDM-PONs). However, integrating QKD into PONs poses significant challenges due to Raman noise and other detrimental effects induced by PON signals, which intensify as the launched power of PONs increases to support higher transmission speeds. In this study, we review recent advancements in both QKD and access network technologies, evaluate the technical feasibility of QKD-OAN integration, and propose cost-effective strategies to facilitate the widespread deployment of QKD in future access networks. Full article
(This article belongs to the Special Issue Optical Signal Processing for Advanced Communication Systems)
Show Figures

Figure 1

20 pages, 5129 KiB  
Article
Multi-Band Analog Radio-over-Fiber Mobile Fronthaul System for Indoor Positioning, Beamforming, and Wireless Access
by Hang Yang, Wei Tian, Jianhua Li and Yang Chen
Sensors 2025, 25(7), 2338; https://doi.org/10.3390/s25072338 - 7 Apr 2025
Viewed by 649
Abstract
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote [...] Read more.
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote beamforming capabilities to achieve wireless access to the targets. Vector signals centered at 3, 4, 5, and 6 GHz for indoor positioning and centered at 30 GHz for wireless access are generated centrally in the distributed unit (DU) and fiber-distributed to the active antenna unit (AAU) in the multi-band analog radio-over-fiber mobile fronthaul system. Target positioning is achieved by radiating electromagnetic waves indoors through four omnidirectional antennas in conjunction with a pre-trained neural network, while high-speed wireless communication is realized through a phased array antenna (PAA) comprising four antenna elements. Remote beamforming for the PAA is implemented through the integration of an optical true time delay pool in the multi-band analog radio-over-fiber mobile fronthaul system. This integration decouples the weight control of beamforming from the AAU, enabling centralized control of beam direction at the DU and thereby reducing the complexity and cost of the AAU. Simulation results show that the average accuracy of localization classification can reach 86.92%, and six discrete beam directions are achieved via the optical true time delay pool. In the optical transmission layer, when the received optical power is 10 dBm, the error vector magnitudes (EVMs) of vector signals in all frequency bands remain below 3%. In the wireless transmission layer, two beam directions were selected for verification. Once the beam is aligned with the target device at maximum gain and the received signal is properly processed, the EVM of millimeter-wave vector signals remains below 11%. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 5419 KiB  
Article
Fiber/Free-Space Optics with Open Radio Access Networks Supplements the Coverage of Millimeter-Wave Beamforming for Future 5G and 6G Communication
by Cheng-Kai Yao, Hsin-Piao Lin, Chiun-Lang Cheng, Ming-An Chung, Yu-Shian Lin, Wen-Bo Wu, Chun-Wei Chiang and Peng-Chun Peng
Fibers 2025, 13(4), 39; https://doi.org/10.3390/fib13040039 - 2 Apr 2025
Cited by 2 | Viewed by 922
Abstract
Conceptually, this paper aims to help reduce the communication blind spots originating from the design of millimeter-wave (mmW) beamforming by deploying radio units of an open radio access network (O-RAN) with free-space optics (FSOs) as the backhaul and the fiber-optic link as the [...] Read more.
Conceptually, this paper aims to help reduce the communication blind spots originating from the design of millimeter-wave (mmW) beamforming by deploying radio units of an open radio access network (O-RAN) with free-space optics (FSOs) as the backhaul and the fiber-optic link as the fronthaul. At frequencies exceeding 24 GHz, the transmission reach of 5G/6G beamforming is limited to a few hundred meters, and the periphery area of the sector operational range of beamforming introduces a communication blind spot. Using FSOs as the backhaul and a fiber-optic link as the fronthaul, O-RAN empowers the radio unit to extend over greater distances to supplement the communication range that mmW beamforming cannot adequately cover. Notably, O-RAN is a prime example of next-generation wireless networks renowned for their adaptability and open architecture to enhance the cost-effectiveness of this integration. A 200 meter-long FSO link for backhaul and a fiber-optic link of up to 10 km for fronthaul were erected, thereby enabling the reach of communication services from urban centers to suburban and remote rural areas. Furthermore, in the context of beamforming, reinforcement learning (RL) was employed to optimize the error vector magnitude (EVM) by dynamically adjusting the beamforming phase based on the communication user’s location. In summary, the integration of RL-based mmW beamforming with the proposed O-RAN communication setup is operational. It lends scalability and cost-effectiveness to current and future communication infrastructures in urban, peri-urban, and rural areas. Full article
Show Figures

Figure 1

16 pages, 3297 KiB  
Article
In-Field Quantum-Protected Control-Based Key Distribution with a Lossy Urban Fiber Link
by Vladlen Statiev, Abdufattokh Ashurov, Vladimir Semenov, Dmitrii Kozliuk, Vladislav Zemlyanov, Aleksei Kodukhov, Valeria Pastushenko, Valerii Vinokur and Markus Pflitsch
Quantum Rep. 2025, 7(2), 16; https://doi.org/10.3390/quantum7020016 - 28 Mar 2025
Viewed by 1209
Abstract
Quantum cryptography protocols offering unconditional protection open great rout to full information security in quantum era. Yet, implementing these protocols using the existing fiber networks remains challenging due to high signal losses reducing the efficiency of these protocols to zero. The recently proposed [...] Read more.
Quantum cryptography protocols offering unconditional protection open great rout to full information security in quantum era. Yet, implementing these protocols using the existing fiber networks remains challenging due to high signal losses reducing the efficiency of these protocols to zero. The recently proposed quantum-protected control-based key distribution (QCKD) addresses this issue by physically controlling interceptable losses and ensuring that leaked quantum states remain non-orthogonal. Here, we present the first in-field development and demonstration of the QCKD over an urban fiber link characterized by substantial losses. Using information-theoretic considerations, we configure the system ensuring security and investigate the interplay between line losses and secret key rates. As an example, we present calculation for the communication distance 4 km, QCKD rate 490 bits per second, and find that the corresponding system’s total loss is about 1.628 decibels. Our results, backed by the statistical analysis of the secret key, confirm QCKD’s robustness under real-world conditions, and establish it as a practical solution for quantum-safe communications over existing fiber infrastructures. Full article
Show Figures

Figure 1

Back to TopTop