Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (351)

Search Parameters:
Keywords = fiber-integrated device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1899 KB  
Article
Packaging of 128-Channel Optical Phased Array for LiDAR
by Abu Sied, Eun-Su Lee, Kwon-Wook Chun, Jinung Jin and Min-Cheol Oh
Photonics 2026, 13(1), 88; https://doi.org/10.3390/photonics13010088 - 20 Jan 2026
Abstract
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential [...] Read more.
We developed a complete packaging strategy for a 128-channel optical phased array (OPA) for Light Detection and Ranging (LiDAR) applications operating at a 1550 nm wavelength. The process comprised three major steps: waveguide end-facet polishing, fiber-to-optical waveguide pigtailing, and electrical wire bonding. Sequential polishing with silicon carbide paper followed by colloidal silica reduced coupling losses to 0.74 dB per facet. An automated fiber alignment setup was used to perform edge coupling. The electrical connections, formed under optimized wire-bonding conditions (18 mW ultrasonic power), achieved a bond strength of 4.66 gf while maintaining electrode-pad integrity. The final packaged device demonstrated uniform optical throughput, with a throughput power variation maintained below 0.2 dB following the packaging process, and a uniform electrical resistance of 0.48% across all 128 channels, verifying the process stability and packaging integrity. These results confirmed that the proposed packaging scheme offers a dependable route for photonic integration in LiDAR applications. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics and Future Prospects)
Show Figures

Figure 1

10 pages, 1498 KB  
Article
Accuracy Tests of a Dual-Class Hybrid FBG/PZT Photonic Current Transducer Featuring a Novel Passive Autoranging Circuit
by Burhan Mir, Grzegorz Fusiek and Pawel Niewczas
Sensors 2026, 26(2), 663; https://doi.org/10.3390/s26020663 - 19 Jan 2026
Viewed by 56
Abstract
This paper reports, for the first time, the characterization and measurement accuracy evaluation of a photonic current transducer (PCT) featuring a hybrid fiber Bragg grating/piezoelectric transducer (FBG/PZT) and an integrated passive autoranging (AR) circuit. The enhanced sensor is designed to meet both metering-class [...] Read more.
This paper reports, for the first time, the characterization and measurement accuracy evaluation of a photonic current transducer (PCT) featuring a hybrid fiber Bragg grating/piezoelectric transducer (FBG/PZT) and an integrated passive autoranging (AR) circuit. The enhanced sensor is designed to meet both metering-class (0,2 S) and protection-class (5P15) requirements simultaneously—capabilities not yet demonstrated by any other device in the industry that also supports remote interrogation and multiplexing of multiple sensors. The autoranging technique employs MOSFET switches to dynamically adjust the burden resistance, preventing FBG/PZT voltage saturation during fault or thermal-current events while maintaining adequate sensitivity at lower currents. Experimental results show that integrating the PCT with the passive AR circuit significantly extends the device’s dynamic range, reduces current-measurement errors, and demonstrates potential compliance with both 0,2 S metering- and 5P15 protection-class requirements. The results also confirm that the sensor operates correctly across this extended range. Full article
(This article belongs to the Special Issue Optical Sensing in Power Systems)
Show Figures

Figure 1

68 pages, 9076 KB  
Review
Collagen Type I as a Biological Barrier Interface in Biomimetic Microfluidic Devices: Properties, Applications, and Challenges
by Valentina Grumezescu and Liviu Duta
Biomimetics 2026, 11(1), 66; https://doi.org/10.3390/biomimetics11010066 - 13 Jan 2026
Viewed by 434
Abstract
Collagen type I has become a practical cornerstone for constructing biologically meaningful barrier interfaces in microfluidic systems. Its fibrillar architecture, native ligand display, and susceptibility to cell-mediated remodeling support epithelial and endothelial polarization, tight junctions, and transport behaviors that are difficult to achieve [...] Read more.
Collagen type I has become a practical cornerstone for constructing biologically meaningful barrier interfaces in microfluidic systems. Its fibrillar architecture, native ligand display, and susceptibility to cell-mediated remodeling support epithelial and endothelial polarization, tight junctions, and transport behaviors that are difficult to achieve with purely synthetic barrier interfaces. Recent advances pair these biological strengths with tighter engineering control. For example, ultrathin collagen barriers (tens of micrometers or less) enable faster molecular exchange and short-range signaling; gentle crosslinking and composite designs limit gel compaction and delamination under flow; and patterning/bioprinting introduce alignment, graded porosity, and robust integration into device geometries. Applications now span intestine, vasculature, skin, airway, kidney, and tumor–stroma interfaces, with readouts including transepithelial/transendothelial electrical resistance (TEER), tracer permeability, and image-based quality control of fiber architecture. Persistent constraints include batch variability, long-term mechanical drift, limited standardization of fibrillogenesis conditions, and difficulties scaling fabrication without loss of bioactivity. Priorities include reporting standards for microstructure and residual crosslinker, chips for continuous monitoring, immune-competent co-cultures, and closer collaboration across materials science, microfabrication, computational modelling, and clinical pharmacology. Thus, this review synthesizes the state-of-the-art and offers practical guidance on technological readiness and future directions for using collagen type I as a biological barrier interface in biomimetic microfluidic systems. Full article
Show Figures

Graphical abstract

24 pages, 1445 KB  
Review
Usefulness of Transanal Irrigation and Colon Hydrotherapy in the Treatment of Chronic Constipation and Beyond: A Review with New Perspectives for Bio-Integrated Medicine
by Raffaele Borghini, Francesco Borghini, Alessia Spagnuolo, Agnese Borghini and Giovanni Borghini
Gastrointest. Disord. 2026, 8(1), 6; https://doi.org/10.3390/gidisord8010006 - 12 Jan 2026
Viewed by 401
Abstract
Transanal Irrigation (TAI) and Colon Hydrotherapy (CHT) represent emerging therapeutic options that may complement first-line interventions or serve as rescue treatments for chronic constipation and fecal incontinence. Their clinical utility depends on patient characteristics, specific therapeutic goals, device features, and probe type, as [...] Read more.
Transanal Irrigation (TAI) and Colon Hydrotherapy (CHT) represent emerging therapeutic options that may complement first-line interventions or serve as rescue treatments for chronic constipation and fecal incontinence. Their clinical utility depends on patient characteristics, specific therapeutic goals, device features, and probe type, as well as the procedural setting. This review presents the various pathophysiological contexts in which these techniques can be applied, analyzing their specific characteristics and potential pros and cons. Moreover, these interventions are also considered within a Psycho-Neuro-Endocrino-Immunological (PNEI) framework, given the potential influence of intestinal function and microbiota modulation on the bidirectional communication pathways linking the enteric nervous system, neuroendocrine regulation, immune activity, and global patient well-being. Since there is not yet enough scientific data on this topic, future research should prioritize randomized controlled trials comparing these techniques with other standard treatments (e.g., laxatives or dietary fiber) in defined patient populations. Longitudinal studies will also be essential to clarify long-term safety, potential effects on microbiota, and both risks and benefits. Standardization of technical procedures also remains a critical need, especially regarding professional competencies, operating parameters (e.g., instilled volumes and pressure ranges), and reproducible protocols. Moreover, future investigations should incorporate objective outcome measures, as colonic transit time, stool form and frequency, indices of inflammation or intestinal wall integrity, and changes to microbiome composition. In conclusion, TAI and CHT have the potential to serve as important interventions for the treatment and prevention of chronic constipation and intestinal dysbiosis, as well as their broader systemic correlates, in the setting of bio-integrated medicine. Full article
Show Figures

Figure 1

16 pages, 10732 KB  
Article
Two-Dimensional Magnetic Orientation of Steel Fibers in Large Slab Elements Made of HPFRC Using an Industrial Robot
by Kristýna Carrera, Petr Konrád, Karel Künzel, Přemysl Kheml, Radoslav Sovják, Michal Mára, Jindřich Fornůsek and Petr Konvalinka
Materials 2026, 19(1), 125; https://doi.org/10.3390/ma19010125 - 30 Dec 2025
Viewed by 286
Abstract
Steel fiber-reinforced concrete (SFRC) can exhibit markedly improved mechanical performance when the fibers are preferentially aligned along the principal tensile stress directions. One method of aligning steel fibers is using magnetic methods. However, most existing magnetic alignment techniques rely on solenoids and are [...] Read more.
Steel fiber-reinforced concrete (SFRC) can exhibit markedly improved mechanical performance when the fibers are preferentially aligned along the principal tensile stress directions. One method of aligning steel fibers is using magnetic methods. However, most existing magnetic alignment techniques rely on solenoids and are restricted to one-dimensional alignment and relatively small specimen sizes. This paper presents a novel planar magnetic orientation device capable of producing arbitrary two-dimensional fiber layouts and demonstrates its applicability from laboratory-scale proof-of-concept tests to large high-performance fiber-reinforced concrete (HPFRC) structural elements. The concept is first verified on transparent ultrasound gel specimens, where image analysis confirms fiber orientation in the prescribed angles. The method is then applied to small prismatic HPFRC specimens (40 mm × 40 mm × 160 mm) with fiber contents of 0.5%, 1.0%, and 1.5%, exposed to different magnetic field intensities (80 mT–140 mT). Flexural tests show increases in average flexural strength compared to non-oriented reference specimens, with 100 mT providing the most efficient alignment for the investigated mixture. A non-destructive electromagnetic method based on the measurement of the quality factor Q of a coil correlates well with flexural strength. Finally, the device is integrated with an industrial robot and used to orient fibers in large HPFRC slabs (1000 mm × 410 mm), achieving an average increase in flexural tensile strength of about 64% relative to non-oriented slabs. The results demonstrate that planar magnetic orientation is a promising approach for tailoring fiber layouts in SFRC structural elements and for enabling automated, programmable manufacturing. Full article
Show Figures

Figure 1

15 pages, 5378 KB  
Article
Centrifugal Fiber-Spinning Device Using Two Pairs of Counter-Facing Syringes for Fabricating Composite Micro/Nanofibers and Three-Dimensional Cell Culture
by Asuka Shinagawa and Shogo Miyata
Polymers 2026, 18(1), 16; https://doi.org/10.3390/polym18010016 - 21 Dec 2025
Viewed by 294
Abstract
Biomimetic scaffolds are required in tissue engineering to provide structural support as well as promote cell adhesion, proliferation, and differentiation. Fibrous scaffolds composed of micro- and nanofibers replicate the architecture of the native extracellular matrix. Electrospinning is widely used for fabricating nanofibers; however, [...] Read more.
Biomimetic scaffolds are required in tissue engineering to provide structural support as well as promote cell adhesion, proliferation, and differentiation. Fibrous scaffolds composed of micro- and nanofibers replicate the architecture of the native extracellular matrix. Electrospinning is widely used for fabricating nanofibers; however, constructing fibrous scaffolds that integrate multiple fiber scales into a single structure is difficult. We addressed this issue by developing a fiber-spinning device using two pairs of counter-facing syringes that simultaneously produce micro- and nanofibers under different processing conditions. Poly(ε-caprolactone) solutions are ejected through needle-type nozzles via centrifugal force, and fiber diameter is controlled by adjusting the polymer concentration and nozzle diameter. We fabricated scaffolds with the proposed device, which exhibited a random three-dimensional fibrous network in which microfibers and nanofibers were homogeneously integrated. C2C12 myoblasts cultured on the composite scaffolds strongly adhered to the fibrous network, remained viable, and extended along the fibers to form multinucleated cells within the structure. The developed system produced composite micro/nanofiber scaffolds with tunable morphology and biocompatibility, providing a platform for fibrous tissue engineering applications. Full article
(This article belongs to the Special Issue Polymer Microfabrication and 3D/4D Printing)
Show Figures

Graphical abstract

32 pages, 4104 KB  
Review
Toward Active Distributed Fiber-Optic Sensing: A Review of Distributed Fiber-Optic Photoacoustic Non-Destructive Testing Technology
by Yuliang Wu, Xuelei Fu, Jiapu Li, Xin Gui, Jinxing Qiu and Zhengying Li
Sensors 2026, 26(1), 59; https://doi.org/10.3390/s26010059 - 21 Dec 2025
Viewed by 593
Abstract
Distributed fiber-optic photoacoustic non-destructive testing (DFP-NDT) represents a paradigm shift from passive sensing to active probing, fundamentally transforming structural health monitoring through integrated fiber-based ultrasonic generation and detection capabilities. This review systematically examines DFP-NDT’s evolution by following the technology’s natural progression from fundamental [...] Read more.
Distributed fiber-optic photoacoustic non-destructive testing (DFP-NDT) represents a paradigm shift from passive sensing to active probing, fundamentally transforming structural health monitoring through integrated fiber-based ultrasonic generation and detection capabilities. This review systematically examines DFP-NDT’s evolution by following the technology’s natural progression from fundamental principles to practical implementations. Unlike conventional approaches that require external excitation mechanisms, DFP-NDT leverages photoacoustic transducers as integrated active components where fiber-optical devices themselves generate and detect ultrasonic waves. Central to this technology are photoacoustic materials engineered to maximize conversion efficiency—from carbon nanotube-polymer composites achieving 2.74 × 10−2 conversion efficiency to innovative MXene-based systems that combine high photothermal conversion with structural protection functionality. These materials operate within sophisticated microstructural frameworks—including tilted fiber Bragg gratings, collapsed photonic crystal fibers, and functionalized polymer coatings—that enable precise control over optical-to-thermal-to-acoustic energy conversion. Six primary distributed fiber-optic photoacoustic transducer array (DFOPTA) methodologies have been developed to transform single-point transducers into multiplexed systems, with low-frequency variants significantly extending penetration capability while maintaining high spatial resolution. Recent advances in imaging algorithms have particular emphasis on techniques specifically adapted for distributed photoacoustic data, including innovative computational frameworks that overcome traditional algorithmic limitations through sophisticated statistical modeling. Documented applications demonstrate DFP-NDT’s exceptional versatility across structural monitoring scenarios, achieving impressive performance metrics including 90 × 54 cm2 coverage areas, sub-millimeter resolution, and robust operation under complex multimodal interference conditions. Despite these advances, key challenges remain in scaling multiplexing density, expanding operational robustness for extreme environments, and developing algorithms specifically optimized for simultaneous multi-source excitation. This review establishes a clear roadmap for future development where enhanced multiplexed architectures, domain-specific material innovations, and purpose-built computational frameworks will transition DFP-NDT from promising laboratory demonstrations to deployable industrial solutions for comprehensive structural integrity assessment. Full article
(This article belongs to the Special Issue FBG and UWFBG Sensing Technology)
Show Figures

Figure 1

62 pages, 20491 KB  
Review
Research Progress in Thermal Functional Fibers
by Hui Zheng, Xiao Yang, Chunyang Wang, Yujie Xu, Haisheng Chen, Ting Zhang and Xinghua Zheng
Materials 2026, 19(1), 11; https://doi.org/10.3390/ma19010011 - 19 Dec 2025
Viewed by 554
Abstract
The utilization and transformation of heat have played pivotal roles in numerous significant stages of human societal evolution and advancement. Recently, more rigorous and precise requirements have been imposed on thermal functional materials for applications including microelectronic device cooling, personal thermal regulation in [...] Read more.
The utilization and transformation of heat have played pivotal roles in numerous significant stages of human societal evolution and advancement. Recently, more rigorous and precise requirements have been imposed on thermal functional materials for applications including microelectronic device cooling, personal thermal regulation in extreme environments, green building initiatives, flexible wearable electronics, and solar thermal collection. Thermal functional fibers offer advantages such as lightweight construction, versatile functional design, and integrated manufacturing capabilities. By modifying the composition, structure, and fabrication techniques of fibers, control over heat transfer, storage, and conversion processes can be optimized. This review underscores the latest developments in thermal functional fibers, emphasizing high thermal conductivity fibers, thermal insulation fibers, thermal radiation regulation fibers, phase-change thermal storage fibers, thermoelectric fibers, Joule heating fibers, photothermal conversion fibers, thermally actuated fibers, and multifunctional composite fibers. It elucidates how these various fibers enhance thermal performance through innovative material selection, fabrication methods, and structural design. Finally, the review discusses prevailing developmental trends, current challenges, and future directions in the design and fabrication of thermal functional fibers. Full article
Show Figures

Figure 1

36 pages, 11316 KB  
Systematic Review
Glaucoma Drainage Devices and Minimally Invasive Glaucoma Surgery—Evolution of Designs and Materials
by Hari Tunga, Neloy Shome, Amirmohammad Shafiee, Prisha Jonnalagadda, Noah Wong, Amirmahdi Shafiee, Sohan Bobba and Karanjit Kooner
Designs 2025, 9(6), 145; https://doi.org/10.3390/designs9060145 - 15 Dec 2025
Viewed by 1062
Abstract
Glaucoma is recognized as the second leading cause of blindness globally and a primary cause of irreversible blindness, estimated to affect over 80 million patients worldwide, including 4.5 million in the United States. Though the disease is multifactorial, the primary cause is elevated [...] Read more.
Glaucoma is recognized as the second leading cause of blindness globally and a primary cause of irreversible blindness, estimated to affect over 80 million patients worldwide, including 4.5 million in the United States. Though the disease is multifactorial, the primary cause is elevated intraocular pressure (IOP), which damages the optic nerve fibers that connect the eye to the brain, thus interfering with the quality of vision. Current treatments have evolved, which consist of medications, laser therapies, and surgical interventions such as filtering procedures, glaucoma drainage devices (GDDs), and current innovations of minimally invasive glaucoma surgeries (MIGS). This paper aims to discuss the history and evolution of the design and biomaterials employed in GDDs and MIGS. Through a comprehensive review of the literature, we trace the development of these devices from early concepts to modern implants, highlighting advancements in materials science and surgical integration. This historical analysis, ranging from the mid-19th century, reveals a trend towards enhanced biocompatibility, improved efficiency in IOP reduction, and reduced complications. We conclude that the ongoing evolution of GDDs and MIGS underscores a persistent commitment to advancing patient care in glaucoma, paving the way for future device innovations and therapeutic trends to treat glaucoma. Full article
Show Figures

Graphical abstract

17 pages, 2613 KB  
Article
Twisted and Coiled Artificial Muscle-Based Dynamic Fixing System for Wearable Robotics Applications
by Simone Leone, Salvatore Garofalo, Chiara Morano, Michele Perrelli, Luigi Bruno and Giuseppe Carbone
Actuators 2025, 14(12), 581; https://doi.org/10.3390/act14120581 - 1 Dec 2025
Viewed by 579
Abstract
Wearable robotic devices for rehabilitation and assistive applications face a critical challenge: discomfort induced by prolonged pressure at the human–robot interface. Conventional attachment systems with static straps or rigid cuffs frequently exceed pain tolerance thresholds, limiting clinical acceptance and patient adherence. This study [...] Read more.
Wearable robotic devices for rehabilitation and assistive applications face a critical challenge: discomfort induced by prolonged pressure at the human–robot interface. Conventional attachment systems with static straps or rigid cuffs frequently exceed pain tolerance thresholds, limiting clinical acceptance and patient adherence. This study presents a novel dynamic pressure modulation system using thermally activated Twisted and Coiled Artificial Muscles (TCAMs). The system integrates a lightweight lattice structure (0.1 kg) with biocompatible silicone coating incorporating two TCAMs fabricated from silver-coated nylon 6,6 fibers (Shieldex 235/36 × 4 HCB). Electrothermal activation via 2 A constant current induces axial contraction, dynamically regulating circumferential pressure from 0.05 kgf/cm2 to 0.50 kgf/cm2 within physiological comfort ranges. Experimental validation on a wrist-worn prototype demonstrates precise pressure control, rapid response (5–10 s), and thermal safety through 8 mm Ecoflex insulation. The system enables on-demand interface stiffening during robotic actuation and controlled pressure release during rest periods, significantly enhancing comfort and device tolerability. This approach represents a promising solution for clinically viable wearable robotic devices supporting upper limb rehabilitation and activities of daily living. Full article
(This article belongs to the Special Issue Recent Advances in Soft Actuators, Robotics and Intelligence)
Show Figures

Figure 1

17 pages, 3671 KB  
Review
A Review of Transverse Mode Adaptive Control Based on Photonic Lanterns
by Yao Lu, Zongfu Jiang, Zilun Chen, Zhuruixiang Sun and Tong Liu
Micromachines 2025, 16(12), 1347; https://doi.org/10.3390/mi16121347 - 28 Nov 2025
Viewed by 455
Abstract
With the widespread application of fiber laser technology in industries, communications, medical fields, and beyond, the demand for controlling the spatial modes of their output beams has been increasingly growing. Traditional mode control methods are constrained by factors such as device power thresholds, [...] Read more.
With the widespread application of fiber laser technology in industries, communications, medical fields, and beyond, the demand for controlling the spatial modes of their output beams has been increasingly growing. Traditional mode control methods are constrained by factors such as device power thresholds, system complexity, and cost, making it difficult to meet the requirements for high-power, high-purity, and rapidly switchable multimode regulation. This paper reviews adaptive mode control technology based on photonic lanterns (PLs). By integrating ideas from adaptive optics and photonics, this technology utilizes photonic lanterns to achieve efficient mode evolution from single-mode to multimode fibers. Combined with optimization algorithms, it enables real-time regulation of input phases, thereby producing stable, high-purity target modes or mode superposition fields at the multimode output end. The paper systematically introduces the structural classifications, propagation characteristics, and fabrication processes of photonic lanterns, as well as the mode evolution mechanisms in different types of photonic lanterns. It elaborates in detail on the structural design, algorithm implementation, and experimental validation of the adaptive control system based on photonic lanterns. Furthermore, it explores the application prospects of this technology in areas such as suppressing transverse mode instability, mode-division multiplexing communications, particle manipulation, and high-resolution spectral measurements. The results demonstrate that the all-fiber adaptive mode control system based on photonic lanterns offers advantages such as compact structure, low loss, fast response, and strong scalability. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

12 pages, 3473 KB  
Article
Transmission Efficiency of a MEMS Laser Fuze for Safety and Arming
by Kuang Fang, Shanglong Xu, Wenzhi Qin, Jiangnan Ran, Chao Chen, Peng Yang and Yalong Dai
Micromachines 2025, 16(12), 1345; https://doi.org/10.3390/mi16121345 - 28 Nov 2025
Viewed by 1996
Abstract
Owing to their superior performance in countering electromagnetic interference on the battlefield, laser fuzes have become a promising candidate for application in munition systems. However, as the short-pulse laser is activated by an electrical signal, the possibility of accidental emissions caused by logic [...] Read more.
Owing to their superior performance in countering electromagnetic interference on the battlefield, laser fuzes have become a promising candidate for application in munition systems. However, as the short-pulse laser is activated by an electrical signal, the possibility of accidental emissions caused by logic device failure cannot be ruled out, making it vulnerable under the effects of strong electromagnetic coupling. Integrating an encrypted, MEMS-based Safety and Arming Device (SAD) into the energy channel to control the propagation of short-pulse lasers can significantly enhance the safety level of munition systems. In the present work, the effect of MEMS SAD integration on laser propagation is investigated. The results demonstrate that the insertion of a MEMS SAD does not introduce significant attenuation of short-pulse laser propagation. A firing test is conducted using the laser-driven flyer detonator to verify the safety, charging mechanism, and function to provide a comprehensive characterization of the laser fuze. To guarantee the initiation of insensitive explosives, the coupling efficiency and laser transmission energy density of multi-mode quartz fibers are studied. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

28 pages, 2358 KB  
Review
A Review of All-Optical Pattern Matching Systems
by Mingming Sun, Xin Li, Lin Bao, Wensheng Zhai, Ying Tang and Shanguo Huang
Photonics 2025, 12(12), 1166; https://doi.org/10.3390/photonics12121166 - 27 Nov 2025
Viewed by 544
Abstract
As optical networks continue to evolve toward higher speed and larger capacity, conventional security mechanisms relying on optoelectronic conversion are facing increasing limitations. The optical photonic firewall, as an emerging optical-layer security device, enables direct inspection in the optical domain, making its core [...] Read more.
As optical networks continue to evolve toward higher speed and larger capacity, conventional security mechanisms relying on optoelectronic conversion are facing increasing limitations. The optical photonic firewall, as an emerging optical-layer security device, enables direct inspection in the optical domain, making its core technology—All-Optical Pattern Matching (AOPM)—a focal point of current research. This review provides a comprehensive survey of AOPM systems. It first introduces the main components of AOPM, namely symbol matching and system architectures, and analyzes their representative implementations. For low-order modulation formats such as OOK and BPSK, the review highlights matching schemes enabled by semiconductor optical amplifier (SOA) and highly nonlinear fiber (HNLF) logic gates, as well as their potential for reconfigurable extension. Building upon this foundation, the paper focuses on systems for high-order modulation formats including QPSK, 8PSK, and 16QAM, covering dimensionality-reduction-based approaches (e.g., PSA-based phase compression, squarer-based phase multiplication, constellation-mapping-based format conversion), direct symbol matching methods (e.g., phase interference, generalized XNOR, real-time Fourier transform correlation), and reconfigurable designs for multi-format adaptability. Furthermore, the review discusses optimization challenges under non-ideal conditions, such as noise accumulation, phase misalignment, and phase-locking-free operation. Finally, it outlines future directions in robust high-order modulation handling, photonic integration, and AI-driven intelligent matching, offering guidance for the development of optical-layer security technologies. Full article
Show Figures

Figure 1

14 pages, 2444 KB  
Article
Optical Path Testing for Fiber Optic Current Transformers Using Optical Frequency Domain Reflectometry
by Yongqiang Wen, Guangtian Ma, Peng Xiang and Li Xia
Photonics 2025, 12(12), 1159; https://doi.org/10.3390/photonics12121159 - 25 Nov 2025
Viewed by 358
Abstract
The long-term operational stability of a fiber optic current transformer (FOCT) is critically dependent on the integrity of its internal fiber optic loop. Conventional testing methods often fall short in providing high-precision, spatially resolved diagnosis of FOCT internal fiber links. To overcome this [...] Read more.
The long-term operational stability of a fiber optic current transformer (FOCT) is critically dependent on the integrity of its internal fiber optic loop. Conventional testing methods often fall short in providing high-precision, spatially resolved diagnosis of FOCT internal fiber links. To overcome this limitation, this paper proposes a distributed sensing and testing scheme based on Optical Frequency Domain Reflectometry (OFDR). The implemented OFDR system offers a measurement range of up to several hundred meters, with a spatial resolution of 10 μm and a localization accuracy of 1 mm. Capitalizing on these capabilities, the proposed approach enables a comprehensive inspection of the FOCT sensing coil and lead fibers. At the same time, the OFDR response of various devices in the FOCT system is analyzed, while providing precise measurements of both optical loss and reflectance. In addition, the temperature stress variation of the sensing coil is measured by using the sensing characteristics of OFDR. This work provides a powerful and indispensable tool for FOCT factory testing, field fault diagnosis, and condition monitoring, contributing significantly to the safety and stability of smart grid systems. Full article
Show Figures

Figure 1

11 pages, 1842 KB  
Article
Bidirectional Wavelength Tuning in an Optofluidic Fiber Microcavity Laser Directed by Rhodamine 6G and Co-Dopants
by Huimin Shi, Chao Wang, Lixia Wang, Limian Ren, Junjun Wu, Xinyu Men and Pan Wang
Photonics 2025, 12(12), 1147; https://doi.org/10.3390/photonics12121147 - 21 Nov 2025
Viewed by 418
Abstract
Achieving controllable wavelength tuning in optofluidic whispering gallery mode microcavity lasers is crucial for high-throughput, multi-sample, multiplexed biochemical sensing and multifunctional integrated photonic devices. This paper develops a bidirectionally wavelength-tunable optofluidic fiber whispering gallery mode microcavity laser driven by Rhodamine 6G co-doped with [...] Read more.
Achieving controllable wavelength tuning in optofluidic whispering gallery mode microcavity lasers is crucial for high-throughput, multi-sample, multiplexed biochemical sensing and multifunctional integrated photonic devices. This paper develops a bidirectionally wavelength-tunable optofluidic fiber whispering gallery mode microcavity laser driven by Rhodamine 6G co-doped with different acceptor dyes. Experimentally, a thin-walled silica ring inside a hollow-core anti-resonant fiber served as the optical microcavity, with a fixed 2.5 mM Rhodamine 6G co-doped with other dyes as the gain medium. The results revealed that when co-doped with Rhodamine B or Cy3, the single-longitudinal-mode laser emission wavelength exhibited a red shift with increasing co-dopant concentration. Conversely, when co-doped with Cy5, the laser output wavelength showed a distinct blue shift. This unique bidirectional tuning characteristic originates from the different fluorescence resonance energy transfer efficiencies between the co-dopants and Rhodamine 6G, and their competitive modulation of the system’s effective gain spectrum. The study offers a novel and flexible strategy for achieving wide-range, controllable wavelength tuning on a single laser platform, with significant potential for applications in biochemical sensing and multifunctional integrated photonic devices. Full article
(This article belongs to the Special Issue Research and Applications of Optical Fibers)
Show Figures

Figure 1

Back to TopTop