Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,823)

Search Parameters:
Keywords = fiber sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2133 KiB  
Article
Effects of Chromatic Dispersion on BOTDA Sensor
by Qingwen Hou, Mingjun Kuang, Jindong Wang, Jianping Guo and Zhengjun Wei
Photonics 2025, 12(7), 726; https://doi.org/10.3390/photonics12070726 (registering DOI) - 17 Jul 2025
Abstract
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically [...] Read more.
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically analyzed the dispersion-induced pulse broadening effect and its impact on the Brillouin gain spectrum (BGS). Numerical simulations revealed that dispersion leads to a moderate broadening of pump pulses, resulting in slight changes to BGS characteristics, including increased peak power and reduced linewidth. To explore the interplay between dispersion and nonlinearity, we built a gain-based BOTDA experimental system and tested two types of fibers, namely standard single-mode fiber (SMF) with anomalous dispersion and dispersion-compensating fiber (DCF) with normal dispersion. Experimental results show that SMF is more prone to modulation instability (MI), which significantly degrades the signal-to-noise ratio (SNR) of the BGS. In contrast, DCF effectively suppresses MI and provides a more stable Brillouin signal. Despite SMF exhibiting narrower BGS linewidths, DCF achieves a higher SNR, aligning with theoretical predictions. These findings highlight the importance of fiber dispersion properties in BOTDA design and suggest that using normally dispersive fibers like DCF can improve sensing performance in long-range, high-power applications. Full article
Show Figures

Figure 1

20 pages, 16333 KiB  
Review
The Burgeoning Importance of Nanomotion Sensors in Microbiology and Biology
by Marco Girasole and Giovanni Longo
Biosensors 2025, 15(7), 455; https://doi.org/10.3390/bios15070455 - 15 Jul 2025
Viewed by 71
Abstract
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy [...] Read more.
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy cantilevers, but now they are expanding into new, more intriguing setups. The idea is to convert the inherent nanoscale movements of living organisms—a direct manifestation of their metabolic activity—into measurable signals. This review highlights the evolution and diverse applications of nanomotion sensing. Key methodologies include Atomic Force Microscopy-based sensors, optical nanomotion detection, graphene drum sensors, and optical fiber-based sensors, each offering unique advantages in sensitivity, cost, and applicability. The analysis of complex nanomotion data is increasingly supported by advanced modeling and the integration of artificial intelligence and machine learning, enhancing pattern recognition and automation. The versatility and real-time, label-free nature of nanomotion sensing position it as a transformative tool that could revolutionize diagnostics, therapeutics, and fundamental biological research. Full article
Show Figures

Figure 1

11 pages, 2799 KiB  
Article
Development of LPFG-Based Seawater Concentration Monitoring Sensors Packaged by BFRP
by Zhe Zhang, Tongchun Qin, Yuping Bao and Jianping He
Micromachines 2025, 16(7), 810; https://doi.org/10.3390/mi16070810 - 14 Jul 2025
Viewed by 137
Abstract
Leveraging the sensitivity of long-period fiber grating (LPFG) to changes in the environmental refractive index, an LPFG-based seawater concentration monitoring sensor is proposed. Considering the highly saltine and alkali characteristics of the sensor’s operating environment, the proposed sensor is packaged by basalt fiber-reinforced [...] Read more.
Leveraging the sensitivity of long-period fiber grating (LPFG) to changes in the environmental refractive index, an LPFG-based seawater concentration monitoring sensor is proposed. Considering the highly saltine and alkali characteristics of the sensor’s operating environment, the proposed sensor is packaged by basalt fiber-reinforced polymer (BFRP), and the sensor’s sensitivities were studied by sodium chloride and calcium chloride solution concentration experiments and one real-time sodium chloride solution concentration monitoring experiment. The test results show the wavelength of LPFG, a 3 dB bandwidth and a peak loss of LPFG’s spectrogram change with changes in the concentration of sodium chloride or calcium chloride solutions, but only the wavelength has a good linear relationship with the change in solution concentration, and the sensing coefficient is −0.160 nm/% in the sodium chloride solution and −0.225 nm/% in the calcium chloride solution. The real-time monitoring test further verified the sensor’s sensing performance, with an absolute measurement error of less than 1.8%. The BFRP packaged sensor has good corrosion resistance and a simple structure, and it has a certain application value in the monitoring of salinity in the marine environment and coastal soil. Full article
Show Figures

Figure 1

12 pages, 2724 KiB  
Article
Non-Adiabatically Tapered Optical Fiber Humidity Sensor with High Sensitivity and Temperature Compensation
by Zijun Liang, Chao Wang, Yaqi Tang, Shoulin Jiang, Xianjie Zhong, Zhe Zhang and Rui Dai
Sensors 2025, 25(14), 4390; https://doi.org/10.3390/s25144390 - 14 Jul 2025
Viewed by 184
Abstract
We demonstrate an all-fiber, high-sensitivity, dual-parameter sensor for humidity and temperature. The sensor consists of a symmetrical, non-adiabatic, tapered, single-mode optical fiber, operating at the wavelength near the dispersion turning point, and a cascaded fiber Bragg grating (FBG) for temperature compensation. At one [...] Read more.
We demonstrate an all-fiber, high-sensitivity, dual-parameter sensor for humidity and temperature. The sensor consists of a symmetrical, non-adiabatic, tapered, single-mode optical fiber, operating at the wavelength near the dispersion turning point, and a cascaded fiber Bragg grating (FBG) for temperature compensation. At one end of the fiber’s tapered region, part of the fundamental mode is coupled to a higher-order mode, and vice versa at the other end. Under the circumstances that the two modes have the same group index, the transmission spectrum would show an interference fringe with uneven dips. In the tapered region of the sensor, some of the light transmits to the air, so it is sensitive to changes in the refractive index caused by the ambient humidity. In the absence of moisture-sensitive materials, the humidity sensitivity of our sensor sample can reach −286 pm/%RH. In order to address the temperature and humidity crosstalk and achieve a dual-parameter measurement, we cascaded a humidity-insensitive FBG. In addition, the sensor has a good humidity stability and a response time of 0.26 s, which shows its potential in fields such as medical respiratory dynamic monitoring. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 3864 KiB  
Article
Composite Metal Oxide Nanopowder-Based Fiber-Optic Fabry–Perot Interferometer for Protein Biomarker Detection
by Ulpan Balgimbayeva, Zhanar Kalkozova, Kuanysh Seitkamal, Daniele Tosi, Khabibulla Abdullin and Wilfried Blanc
Biosensors 2025, 15(7), 449; https://doi.org/10.3390/bios15070449 - 13 Jul 2025
Viewed by 212
Abstract
In this paper, we present the development of a new semi-distributed interferometer (SDI) biosensor with a Zn, Cu, and Co metal oxide nanopowder coating for the detection of a kidney disease biomarker as a model system. The combination of nanopowder coating with the [...] Read more.
In this paper, we present the development of a new semi-distributed interferometer (SDI) biosensor with a Zn, Cu, and Co metal oxide nanopowder coating for the detection of a kidney disease biomarker as a model system. The combination of nanopowder coating with the SDI platform opens up unique opportunities for improving measurement reproducibility while maintaining high sensitivity. The fabrication of sensors is simple, which involves one splice and subsequent cutting at the end of an optical fiber. To ensure specific detection of the biomarker, a monoclonal antibody was immobilized on the surface of the probe. The biosensor has demonstrated an impressive ability to detect biomarkers in a wide range of concentrations, from 1 aM to 100 nM. The theoretical limit of detection was 126 fM, and the attomolar detection level was experimentally achieved. The sensors have achieved a maximum sensitivity of 190 dB/RIU and operate with improved stability and reduced dispersion. Quantitative analysis revealed that the sensor’s response gradually increases with increasing concentration. The signal varies from 0.05 dB at 1 aM to 0.81 dB at 100 nM, and the linear correlation coefficient was R2 = 0.96. The sensor showed excellent specificity and reproducibility, maintaining detection accuracy at about 10−4 RIU. This opens up new horizons for reliable and highly sensitive biomarker detection, which can be useful for early disease diagnosis and monitoring using a cost-effective and reproducible sensor system. Full article
(This article belongs to the Special Issue New Progress in Optical Fiber-Based Biosensors—2nd Edition)
Show Figures

Figure 1

12 pages, 3546 KiB  
Article
A Hybrid Optical Fiber Detector for the Simultaneous Measurement of Dust Concentration and Temperature
by Chuanwei Zhai and Li Xiong
Sensors 2025, 25(14), 4333; https://doi.org/10.3390/s25144333 - 11 Jul 2025
Viewed by 159
Abstract
This work presents a hybrid optical fiber detector by combining the sensing mechanism of the fiber Bragg grating (FBG) and the light extinction method to enable the simultaneous measurement of dust concentration and temperature. Compared with the existing dust concentration sensors, the proposed [...] Read more.
This work presents a hybrid optical fiber detector by combining the sensing mechanism of the fiber Bragg grating (FBG) and the light extinction method to enable the simultaneous measurement of dust concentration and temperature. Compared with the existing dust concentration sensors, the proposed detector offers three key advantages: intrinsic safety, dual-parameter measurement capability, and potentially network-based monitoring. The critical sensing components of the proposed detector consist of two optical collimators and an FBG. Using the extinction effect of light between the two collimators, the dust concentration and temperature are simultaneously determined by monitoring the intensity and the wavelength of the FBG reflectance spectrum, respectively. The measurement feasibility has been evaluated demonstrating that the two parameters of interest can be effectively sensed with minimally coupled outputs of ±3 pm and ±0.1 mW, respectively. Calibration experiments demonstrate that the change in the intensity of light from the FBG is exponentially related to the dust concentration variation with fitting coefficients equal to 0.948, 0.946, and 0.945 for 200 meshes, 300 meshes, and 400 meshes, respectively. The detector’s relative measurement errors were validated against the weighing method, confirming low measurement deviations. Full article
(This article belongs to the Special Issue Advances in the Design and Application of Optical Fiber Sensors)
Show Figures

Figure 1

28 pages, 7517 KiB  
Review
A Review of the Research Progress on Optical Fiber Sensors Based on C-Type Structures
by Zhijun Gao, Zhenbo Li and Yu Ying
Photonics 2025, 12(7), 695; https://doi.org/10.3390/photonics12070695 - 10 Jul 2025
Viewed by 248
Abstract
With the continuous advancement of optical fiber micromachining technology, C-type optical fibers have demonstrated significant potential in the field of optical fiber sensing. By partially or completely removing specific regions of the cladding, a “leakage window” is created, enabling interaction between the optical [...] Read more.
With the continuous advancement of optical fiber micromachining technology, C-type optical fibers have demonstrated significant potential in the field of optical fiber sensing. By partially or completely removing specific regions of the cladding, a “leakage window” is created, enabling interaction between the optical field and external substances. This structure has facilitated the development of various sensors. This paper reviews recent progress in the research and applications of C-type optical fibers in optical sensing. Based on sensing principles and application scenarios, C-type optical fiber sensors can be categorized into two main types: interferometric and photonic crystal types. This article discusses the fundamental operating principles and structural characteristics of each type, and provides a detailed comparison of their respective advantages and disadvantages. Studies have shown that sensors based on C-type fiber structures offer notable benefits such as simple fabrication, excellent mechanical performance, strong anti-interference capability, and high sensitivity. Therefore, they hold great promise for applications in intelligent monitoring, environmental detection, and healthcare. Finally, this review outlines future research directions for C-type fiber sensors. As technology continues to evolve, future studies are expected to focus on improving sensor stability, expanding application scenarios, and addressing challenges in current fabrication techniques. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

14 pages, 684 KiB  
Article
Diversity and Biological Activity of Secondary Metabolites Produced by the Endophytic Fungus Penicillium ochrochlorae
by Jian Hu and Dan Qin
Fermentation 2025, 11(7), 394; https://doi.org/10.3390/fermentation11070394 - 10 Jul 2025
Viewed by 320
Abstract
In order to investigate bioactive natural products derived from the endophytic fungus Penicillium ochrochloron SWUKD4.1850, a comprehensive study focusing on secondary metabolites was conducted. This research led to the isolation of twenty distinct compounds, including a novel nortriterpenoid (compound 20), alongside nineteen [...] Read more.
In order to investigate bioactive natural products derived from the endophytic fungus Penicillium ochrochloron SWUKD4.1850, a comprehensive study focusing on secondary metabolites was conducted. This research led to the isolation of twenty distinct compounds, including a novel nortriterpenoid (compound 20), alongside nineteen compounds that had been previously characterized (compounds 119). The chemical structures of these compounds were elucidated using spectroscopic techniques and nuclear magnetic resonance (NMR) analyses. Compounds 117 were isolated for the first time as metabolites of P. ochrochloron. Except for compounds 114, significant structural similarity was discerned between the metabolites of the endophytic fungus and those of the host plant. Compound 20 is noted as the inaugural instance of a naturally occurring 27-nor-3,4-secocycloartane schinortriterpenoid, while compound 17 was identified in fungi for the first time. An antifungal assay showed that compound 10 displayed a broader antifungal spectrum and a stronger inhibitory effect towards four important plant pathogens, at inhibitory rates of 74.9 to 85.3%. The in vitro radical scavenging activities of compounds 1, 3, 8, 15, and 16 showed higher antioxidant activity than vitamin C. Moreover, a cytotoxic assay revealed that compound 20 had moderate cytotoxicity against the HL-60, SMMC-7721, and MCF-7 cell lines (IC50 6.5–17.8 μM). Collectively, these findings indicate that P. ochrochloron has abundant secondary metabolite synthesis ability in microbial metabolism and that these metabolites have good biological activity and have the potential to enhance plant disease resistance. Full article
Show Figures

Figure 1

37 pages, 5108 KiB  
Review
Advancements in Optical Fiber Sensors for pH Measurement: Technologies and Applications
by Alaa N. D. Alhussein, Mohammed R. T. M. Qaid, Timur Agliullin, Bulat Valeev, Oleg Morozov, Airat Sakhabutdinov and Yuri A. Konstantinov
Sensors 2025, 25(14), 4275; https://doi.org/10.3390/s25144275 - 9 Jul 2025
Viewed by 206
Abstract
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for [...] Read more.
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for real-time monitoring. This review offers a comprehensive analysis of recent advances in optical fiber-based pH sensors, covering key techniques such as fluorescence-based, absorbance-based, evanescent wave, and interferometric methods. Innovations in Fiber Bragg Grating and Surface Plasmon Resonance technologies are also examined. The discussion extends to the impact of pH-sensitive coatings—ranging from nanomaterials and polymeric films to graphene-based compounds—on enhancing sensor performance. Recent advancements have also enabled automation in data analysis and improvements in remote sensing capabilities. The review further compares the economic viability of optical fiber sensors with traditional electrochemical methods, while acknowledging persistent issues such as temperature cross-sensitivity, long-term stability, and fabrication costs. Overall, recent developments have broadened the functionality and application scope of these sensors by improving efficiency, accuracy, and scalability. Future research directions are outlined, including advanced optical interrogation techniques, such as Addressed Fiber Bragg Structures (AFBSs), microwave photonic integration, and optimized material selection. These approaches aim to enhance performance, reduce costs, and enable the broader adoption of optical fiber pH sensors. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

11 pages, 1085 KiB  
Article
A Passive Ladder-Shaped FBG Sensor Network with Fault Detection Using Time- and Wavelength-Division Multiplexing
by Keiji Kuroda
Sensors 2025, 25(14), 4261; https://doi.org/10.3390/s25144261 - 9 Jul 2025
Viewed by 195
Abstract
This article reports on the interrogation of fiber Bragg grating (FBG)-based sensors that have been multiplexed in a ladder topology. In each line of this topology, FBGs with different wavelengths are connected. In addition, delay fibers have been inserted between each line to [...] Read more.
This article reports on the interrogation of fiber Bragg grating (FBG)-based sensors that have been multiplexed in a ladder topology. In each line of this topology, FBGs with different wavelengths are connected. In addition, delay fibers have been inserted between each line to enable reflections from different lines to be distinguished. Seven FBGs are interrogated simultaneously by applying time- and wavelength-division multiplexing techniques. To improve the signal-to-noise ratio of the weak reflected signals, the heterodyne detection technique is applied. Through the simulation of three different failure cases, we evaluate the fault detection capability of our method. Full article
(This article belongs to the Special Issue FBG and UWFBG Sensing Technology)
Show Figures

Figure 1

14 pages, 2643 KiB  
Article
Characteristics of a Miniature Fiber-Optic Inorganic Scintillator Detector for Electron-Beam Therapy Dosimetry
by Zhuang Qin, Ziyin Chen, Bo He, Weimin Sun and Yachen Gao
Sensors 2025, 25(14), 4243; https://doi.org/10.3390/s25144243 - 8 Jul 2025
Viewed by 236
Abstract
Over the past few decades, electron beams have been widely used to treat malignant and benign tumors located in the superficial regions of patients. This study utilized an inorganic scintillator (Gd2O2S:Tb)-based radiation detector to test its response characteristics in [...] Read more.
Over the past few decades, electron beams have been widely used to treat malignant and benign tumors located in the superficial regions of patients. This study utilized an inorganic scintillator (Gd2O2S:Tb)-based radiation detector to test its response characteristics in an electron-beam radiotherapy environment, in order to determine the application potential of this detector in electron-beam therapy. Owing to the extremely high time resolution of this inorganic scintillator detector (ISD), it is even capable of measuring the pulse information of electron beams generated by the accelerator. The results indicate that for certain accelerator models, such as the IX3937, the pulse pattern of the output electron beam is notably different from that during the output of X-rays, showing no significant periodicity. The experimental results also demonstrate that this ISD exhibits excellent repeatability and dose linearity (R2 of 0.9993) when measuring electron beams. Finally, the PDD (Percentage Depth Dose) curves and OAR (Off-Axis Ratio) curves of the ISD were also tested under electron-beam conditions at 6 MeV and 9 MeV, respectively. Full article
Show Figures

Figure 1

11 pages, 3937 KiB  
Article
Dynamic Wheel Load Measurements by Optical Fiber Interferometry
by Daniel Kacik, Ivan Martincek and Peihong Cheng
Infrastructures 2025, 10(7), 175; https://doi.org/10.3390/infrastructures10070175 - 7 Jul 2025
Viewed by 157
Abstract
This study proposes a Fabry–Perot interferometric system and an associated evaluation method for measuring the weight of moving trains. An optical fiber sensor, comprising a sensing fiber and a supporting structure, is securely bonded to the rail foot. As a train traverses the [...] Read more.
This study proposes a Fabry–Perot interferometric system and an associated evaluation method for measuring the weight of moving trains. An optical fiber sensor, comprising a sensing fiber and a supporting structure, is securely bonded to the rail foot. As a train traverses the track, the resulting localized bending induces a change in the sensing fiber’s length, which manifests as a quantifiable phase shift in the interference signal. We developed a physical–mathematical model, based on three Gaussian functions, to describe the temporal change in sensing fiber length caused by the passage of a single bogie. This model enables the determination of a proportionality constant to accurately convert the measured phase change into train weight. Model validation was performed using a train set, including a locomotive and four variably loaded wagons, traveling at 15.47 km/h. This system offers a novel and effective approach for real-time train weight monitoring. Full article
Show Figures

Figure 1

20 pages, 7140 KiB  
Article
Preparation of Carbon Fiber Electrodes Modified with Silver Nanoparticles by Electroplating Method
by Yuhang Wang, Rui Li, Tianyuan Hou, Zhenming Piao, Yanxin Lv, Changsheng Liu and Yi Xin
Materials 2025, 18(13), 3201; https://doi.org/10.3390/ma18133201 - 7 Jul 2025
Viewed by 277
Abstract
To solve the problems of carbon fiber (CF) electrodes, including poor frequency response and large potential drift, CFs were subjected to a roughening pretreatment process combining thermal oxidation and electrochemical anodic oxidation and then modified with Ag nanoparticles (AgNPs) using electroplating to prepare [...] Read more.
To solve the problems of carbon fiber (CF) electrodes, including poor frequency response and large potential drift, CFs were subjected to a roughening pretreatment process combining thermal oxidation and electrochemical anodic oxidation and then modified with Ag nanoparticles (AgNPs) using electroplating to prepare a CF electric field sensor. The surface morphology of the as-prepared AgNP-CF electric field sensor was characterized via optical microscopy, scanning electron microscopy, XPS, and energy-dispersive spectroscopy, and its impedance, polarization drift, self-noise, and temperature drift values were determined. Results show that the surface modification of the AgNP-CF electric field sensor is uniform, and its specific surface area is considerably increased. The electrode potential drift, characteristic impedance, self-noise, and temperature drift are 52.1 µV/24 h, 3.6 Ω, 2.993 nV/√Hz@1 Hz, and less than 70 µV/°C, respectively. Additionally, the AgNP-CF electric field sensor demonstrates low polarization and high stability. In field and simulated ocean tests, the AgNP-CF electrode exhibits excellent performance in the field and underwater environments, which renders it promising for the measurement of the ocean and geoelectric fields owing to its advantages, such as low noise and high stability. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

20 pages, 2705 KiB  
Article
Temperature and Depth Sensor Based on Fiber Bragg Gratings with Temperature-Compensated Structure in Marine Environment
by Xinyu Zhao, Chenxi Wei, Lina Zeng, Lu Li, Shengjie Liu, Li Sun, Zaijin Li, Hao Chen, Guojun Liu, Yi Qu, Zichun Le, Yingchao Li, Lianhe Li and Lin Li
Coatings 2025, 15(7), 795; https://doi.org/10.3390/coatings15070795 - 6 Jul 2025
Viewed by 397
Abstract
A fiber Bragg grating (FBG)-based ocean temperature and depth sensor structure is proposed. The pressure sensing section employs a secondary sensitization design comprising a piston and the polycarbonate buffer, while the temperature sensing section utilizes an FBG encapsulated within a metal silver tube, [...] Read more.
A fiber Bragg grating (FBG)-based ocean temperature and depth sensor structure is proposed. The pressure sensing section employs a secondary sensitization design comprising a piston and the polycarbonate buffer, while the temperature sensing section utilizes an FBG encapsulated within a metal silver tube, accompanied by a temperature compensation structure. Simulation analyses verify the enhanced sensitivity of the proposed configuration. By selecting suitable materials for the piston, metal tube, and polymer, and optimizing the dimensions of key components, the sensitivity of the bare FBG sensor is significantly improved through the combined effects of the piston, polymer, and metal tube. After optimization, the sensor exhibits a pressure sensitivity of 1.33 nm/MPa and a temperature sensitivity of 102.77 pm/°C, meeting the high-precision detection requirements for ocean temperature and depth sensing. The experimental results show that the temperature sensitivity is 109.9 pm/°C within the temperature range of −5~35 °C, and that the pressure sensitivity is 1.63 nm/MPa within the pressure range of 1~10 MPa. These results confirm that the sensor is well-suited for high-precision ocean temperature and depth measurements. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

24 pages, 12784 KiB  
Article
A Fiber-Optic Six-Axis Force Sensor Based on a 3-UPU-Compliant Parallel Mechanism
by Jiachen Ma, Siyi Chen, Haiting Di and Ke Liu
Appl. Sci. 2025, 15(13), 7548; https://doi.org/10.3390/app15137548 - 4 Jul 2025
Viewed by 177
Abstract
Traditional six-axis force sensors are mostly based on resistance strain, piezoelectricity and capacitors, which have poor resistance to electromagnetic interference. In this paper, a six-axis force sensor based on bending-sensitive optical fibers is proposed. A 3-UPU-(universal joint–prismatic joint–universal joint) compliant parallel mechanism is [...] Read more.
Traditional six-axis force sensors are mostly based on resistance strain, piezoelectricity and capacitors, which have poor resistance to electromagnetic interference. In this paper, a six-axis force sensor based on bending-sensitive optical fibers is proposed. A 3-UPU-(universal joint–prismatic joint–universal joint) compliant parallel mechanism is adopted in the sensor. The bending-sensitive optical fiber is encapsulated to form a fiber encapsulation module (FEM). The configuration of the FEMs within the six-axis force sensor is investigated. Static and stiffness analyses of the sensor are conducted and a force mapping matrix for the sensor is established. Simulation experiments are performed to verify the correctness of the established force mapping matrix. The detection system of the sensor is fabricated and the experiments are carried out to evaluate the performance of the sensor. The experiment results show that the maximum values of type-I errors and type-II errors are 4.52%FS and 3.26%FS, respectively. The maximum hysteresis and repeatability errors are 2.78% and 3.27%. These results verify the effectiveness of the proposed sensor. Full article
Show Figures

Figure 1

Back to TopTop