Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (733)

Search Parameters:
Keywords = fiber crop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 18446 KiB  
Article
Spatial Forecasting and Social Acceptance of Human-Wildlife Conflicts Involving Semi-Aquatic Species in Romania
by Alexandru Gridan, Claudiu Pașca, Georgeta Ionescu, George Sîrbu, Cezar Spătaru, Ovidiu Ionescu and Darius Hardalau
Diversity 2025, 17(8), 559; https://doi.org/10.3390/d17080559 - 7 Aug 2025
Abstract
Human-Wildlife conflict (HWC) presents a growing challenge for wildlife conservation, especially as species recover and reoccupy human-dominated landscapes, creating tensions between ecological goals and local livelihoods. Such conflicts are increasingly reported across Europe, including Romania, involving semi-aquatic species like the Eurasian beaver ( [...] Read more.
Human-Wildlife conflict (HWC) presents a growing challenge for wildlife conservation, especially as species recover and reoccupy human-dominated landscapes, creating tensions between ecological goals and local livelihoods. Such conflicts are increasingly reported across Europe, including Romania, involving semi-aquatic species like the Eurasian beaver (Castor fiber L.) and Eurasian otter (Lutra lutra L.). Enhancing coexistence with wildlife through the integration of conflict mapping, stakeholder engagement, and spatial analysis into conservation planning is therefore essential for ensuring the long-term protection of conflict species. A mixed-methods approach was used, including structured surveys among stakeholders, standardized damage report collection from institutions, and expert field assessments of species activity. The results indicate that while most respondents recognize the legal protection of both species, a minority have experienced direct conflict, primarily with beavers through flooding and crop damage. Tolerance varied markedly among demographic groups: researchers and environmental agency staff were most accepting, whereas farmers and fish farm owners were the least accepting; respondents with no personal damage experience and those with university or post-secondary education also displayed significantly higher acceptance toward both species. Institutional reports confirmed multiple beaver-related damage sites, and through field validation, conflict forecast zones with spatial clustering in Harghita, Brașov, Covasna, and Sibiu counties were developed. These findings underscore the importance of conflict forecasting maps, understanding the coexistence dynamics and drivers of acceptance, and the need to maintain high acceptance levels toward the studied species. The developed maps can serve as a basis for targeted interventions, helping to balance ecological benefits with socioeconomic concerns. Full article
(This article belongs to the Special Issue Restoring and Conserving Biodiversity: A Global Perspective)
Show Figures

Figure 1

15 pages, 8138 KiB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 136
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

16 pages, 1109 KiB  
Review
Development and Future Prospects of Bamboo Gene Science
by Xiaolin Di, Xiaoming Zou, Qingnan Wang and Huayu Sun
Int. J. Mol. Sci. 2025, 26(15), 7259; https://doi.org/10.3390/ijms26157259 - 27 Jul 2025
Viewed by 239
Abstract
Bamboo gene science has witnessed significant advancements over the past two decades, driven by breakthroughs in gene cloning, marker-assisted breeding, sequencing, gene transformation, and gene editing technologies. These developments have not only enhanced our understanding of bamboo’s genetic diversity and adaptability but also [...] Read more.
Bamboo gene science has witnessed significant advancements over the past two decades, driven by breakthroughs in gene cloning, marker-assisted breeding, sequencing, gene transformation, and gene editing technologies. These developments have not only enhanced our understanding of bamboo’s genetic diversity and adaptability but also provided critical tools for its genetic improvement. Compared to other crops, bamboo faces unique challenges, including its long vegetative growth cycle, environmental dependency, and limited genetic transformation efficiency. Then, the launch of China’s “Bamboo as a Substitute for Plastic” initiative in 2022, supported by the International Bamboo and Rattan Organization, has opened new opportunities for bamboo gene science as well as for bamboo production systems. This policy framework has spurred research into bamboo genetic regulation, fiber-oriented recombination, and green separation technologies, aiming to develop sustainable alternatives to plastic. Future research directions include overcoming bamboo’s environmental limitations, improving genetic transformation efficiency, and deciphering the mechanisms behind its flowering. By addressing these challenges, bamboo genetic science can enhance its economic and ecological value, contributing to global sustainability goals and the “dual-carbon” strategy. Full article
(This article belongs to the Special Issue Molecular Research in Bamboo, Tree, Grass, and Other Forest Products)
Show Figures

Figure 1

27 pages, 4682 KiB  
Article
DERIENet: A Deep Ensemble Learning Approach for High-Performance Detection of Jute Leaf Diseases
by Mst. Tanbin Yasmin Tanny, Tangina Sultana, Md. Emran Biswas, Chanchol Kumar Modok, Arjina Akter, Mohammad Shorif Uddin and Md. Delowar Hossain
Information 2025, 16(8), 638; https://doi.org/10.3390/info16080638 - 27 Jul 2025
Viewed by 218
Abstract
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability [...] Read more.
Jute, a vital lignocellulosic fiber crop with substantial industrial and ecological relevance, continues to suffer considerable yield and quality degradation due to pervasive foliar pathologies. Traditional diagnostic modalities reliant on manual field inspections are inherently constrained by subjectivity, diagnostic latency, and inadequate scalability across geographically distributed agrarian systems. To transcend these limitations, we propose DERIENet, a robust and scalable classification approach within a deep ensemble learning framework. It is meticulously engineered by integrating three high-performing convolutional neural networks—ResNet50, InceptionV3, and EfficientNetB0—along with regularization, batch normalization, and dropout strategies, to accurately classify jute leaf diseases such as Cercospora Leaf Spot, Golden Mosaic Virus, and healthy leaves. A key methodological contribution is the design of a novel augmentation pipeline, termed Geometric Localized Occlusion and Adaptive Rescaling (GLOAR), which dynamically modulates photometric and geometric distortions based on image entropy and luminance to synthetically upscale a limited dataset (920 images) into a significantly enriched and diverse dataset of 7800 samples, thereby mitigating overfitting and enhancing domain generalizability. Empirical evaluation, utilizing a comprehensive set of performance metrics—accuracy, precision, recall, F1-score, confusion matrices, and ROC curves—demonstrates that DERIENet achieves a state-of-the-art classification accuracy of 99.89%, with macro-averaged and weighted average precision, recall, and F1-score uniformly at 99.89%, and an AUC of 1.0 across all disease categories. The reliability of the model is validated by the confusion matrix, which shows that 899 out of 900 test images were correctly identified and that there was only one misclassification. Comparative evaluations of the various ensemble baselines, such as DenseNet201, MobileNetV2, and VGG16, and individual base learners demonstrate that DERIENet performs noticeably superior to all baseline models. It provides a highly interpretable, deployment-ready, and computationally efficient architecture that is ideal for integrating into edge or mobile platforms to facilitate in situ, real-time disease diagnostics in precision agriculture. Full article
Show Figures

Figure 1

22 pages, 1513 KiB  
Article
Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
by Melek Demircan, Emine Serap Kizil Aydemir and Koray Kaçan
Agronomy 2025, 15(8), 1796; https://doi.org/10.3390/agronomy15081796 - 25 Jul 2025
Viewed by 192
Abstract
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the [...] Read more.
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the 2020–2021 growing season. The experiment included 15 treatments comprising monocultures and mixed sowing at different ratios. Measurements included morphological traits, forage yield components (green herbage, hay, and crude protein), fiber content, botanical composition, and weed biomass. The results reveal significant differences among treatments in terms of growth parameters and forage performance. Monocultures of IFVN 567 and Bartigra showed the highest green and hay yields, while mixtures such as IFVN 567 + Trinova and IFVN 567 + Bartigra outperformed in terms of land equivalent ratio (LER) and protein yield, demonstrating a clear advantage in land use efficiency. Furthermore, these mixtures showed superior weed suppression compared to monocultures. Overall, the findings suggest that carefully selected vetch–ryegrass combinations can enhance forage productivity, nutritional quality, and weed management under organic systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 236
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

12 pages, 921 KiB  
Article
Mixed Ensiling Increases Degradation Without Altering Attached Microbiota Through In Situ Ruminal Incubation Technique
by Xuanxuan Pu, Min Zhang, Jianjun Zhang, Xiumin Zhang, Shizhe Zhang, Bo Lin, Tianwei Wang, Zhiliang Tan and Min Wang
Animals 2025, 15(14), 2131; https://doi.org/10.3390/ani15142131 - 18 Jul 2025
Viewed by 221
Abstract
Mixed silage can disrupt the girder structure of rape straw, and thus facilitate ruminal degradation. Further investigation is warranted to validate this observation in vivo. The objective of this study was to investigate the degradation kinetics and bacterial colonization of mixed silage during [...] Read more.
Mixed silage can disrupt the girder structure of rape straw, and thus facilitate ruminal degradation. Further investigation is warranted to validate this observation in vivo. The objective of this study was to investigate the degradation kinetics and bacterial colonization of mixed silage during digestion using an in situ ruminal incubation technique. The experiment comprised two treatments: a mixture of rape straw and corn silage (control), and a mixed silage treatment of rape straw and whole crop corn (mixed silage). Three ruminally cannulated Holstein bulls were employed. Substrates were incubated for varying durations (4, 12, 24, 48, 72, 96, 120 and 216 h) to assess substrate degradation kinetics. Bacterial colonization were analyzed after 4- and 48-h incubation time. Mixed ensiling disrupted the fiber structure of rape straw, and thus had lower fiber content compared to the control, as NDF and ADF content ‌decreased by 55 g/kg (678 vs. 623 g/kg) and 27 g/kg (440 vs. 413 g/kg), respectively. Compared to the control group, ruminal DM disappearance of mixed silage significantly (p ≤ 0.05) increased from 315 to 366 g/kg (+16.2%) at an incubation time of 4 h, 552 to 638 g/kg (+15.6%) at 120 h, and 563 to 651 g/kg (+15.6%) at 216 h. Similarly, compared to the control group, NDF disappearance of mixed silage significantly (p ≤ 0.05) rose from 112 to 201 g/kg (+79.5%) at 4 h, 405 to 517 g/kg (+27.7%) at 120 h, and 429 to 532 g/kg (+24.0%) at 216 h. Compared to the control group, soluble and washout nutrient fractions (a) of DM or NDF fraction in mixed silage significantly (p ≤ 0.05) rose from 289 to 340 g/kg (+17.6%), potentially degradable fractions (b) of NDF increased from 310 to 370 g/kg (+19.4%), and the undegraded fraction of NDF (μNDF) decreased from 582 to 471 g/kg (−19.1%). Incubation time, apart from in the mixed ensiling treatment, altered the bacterial community. The study highlights that higher total potentially degradable fractions account for enhanced ruminal substrate degradation of mixed silage. Full article
Show Figures

Figure 1

25 pages, 6525 KiB  
Article
Response of Anatomical Structure and Active Component Accumulation in Apocynum venetum L. (Apocynaceae) Under Saline Stress and Alkali Stress
by Yanlei Zhang, Shaowei Hu, Xiaxia Wang, Jie Yue, Dongmei Chen, Mingzhi Han, Wanmin Qiao, Yifan Wang and Haixia Wang
Plants 2025, 14(14), 2223; https://doi.org/10.3390/plants14142223 - 18 Jul 2025
Viewed by 297
Abstract
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) [...] Read more.
Soil salinization, affecting approximately 954 million hectares globally, severely impairs plant growth and agricultural productivity. Apocynum venetum L., a perennial herbaceous plant with ecological and economic value, demonstrates remarkable tolerance to saline and alkali soils. This study investigated the effects of saline (NaCl) and alkali (Na2CO3 and NaHCO3) stress on the growth, anatomical adaptations, and metabolite accumulation of A. venetum (Apocynum venetum L.). Results showed that alkali stress (100 mM Na2CO3 and 50 mM NaHCO3) inhibited growth more than saline stress (NaCl 240 mM), reducing plant height by 29.36%. Anatomical adaptations included a 40.32% increase in the root cortex-to-diameter ratio (100 mM Na2CO3 and 50 mM NaHCO3), a 101.52% enlargement of xylem vessel diameter (NaCl 240 mM), and a 68.69% thickening of phloem fiber walls in the stem (NaCl 240 mM), enhancing water absorption, salt exclusion, and structural support. Additionally, leaf palisade tissue densification (44.68% increase at NaCl 160 mM), along with epidermal and wax layer adjustments, balanced photosynthesis and water efficiency. Metabolic responses varied with stress conditions. Root soluble sugar content increased 49.28% at NaCl 160 mM. Flavonoid accumulation in roots increased 53.58% at Na2CO3 100 mM and NaHCO3 50 mM, enhancing antioxidant defense. However, chlorophyll content and photosynthetic efficiency declined with increasing stress intensity. This study emphasizes the coordinated adaptations of A. venetum, providing valuable insights for the development of salt-tolerant crops. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

20 pages, 2609 KiB  
Article
Priming ‘Santa Isabel’ Pea (Pisum sativum L.) Seeds with NaCl and H2O2 as a Strategy to Promote Germination
by Javier Giovanni Álvarez-Herrera, Julián Stiven Lozano and Oscar Humberto Alvarado-Sanabria
Seeds 2025, 4(3), 34; https://doi.org/10.3390/seeds4030034 - 17 Jul 2025
Viewed by 246
Abstract
Peas possess significant nutritional properties due to their high protein levels, carbohydrates, fiber, and vitamins. Increased climate variability can lead to water stress in crops like peas. Therefore, priming plants through seed priming is a technique that has proven effective as a pre-conditioning [...] Read more.
Peas possess significant nutritional properties due to their high protein levels, carbohydrates, fiber, and vitamins. Increased climate variability can lead to water stress in crops like peas. Therefore, priming plants through seed priming is a technique that has proven effective as a pre-conditioning method for plants to cope with more severe future stresses. Different doses and soaking times of ‘Santa Isabel’ pea seeds in NaCl and H2O2 were evaluated to enhance and promote germination. Two experiments were conducted under controlled conditions (average temperature 15.8 °C) through a completely randomized design with a 4 × 3 factorial arrangement, comprising 12 treatments in each trial. In the first trial, NaCl doses (0, 50, 100, or 150 mM) and the soaking time of the seeds in NaCl (12, 24, or 36 h) were examined. In the second trial, H2O2 doses (0, 20, 40, or 60 mM) were tested with the same imbibition times. The 50 mM NaCl dose at 24 h demonstrated the best values for germination rate index, mean germination time, germination rate (GR), and germination potential (GP). Seed imbibition for 24 h in NaCl, as well as in H2O2, is the ideal time to achieve the best GR and GP. The dry mass of leaf and stipule recorded the highest values with a 60 mM dose of H2O2 and 24 h of imbibition. An application of 150 mM NaCl resulted in the highest values of germinated seed dry mass, while causing lower dry mass in roots, stems, leaves, and stipules; however, it maintained similar total dry mass values. Full article
Show Figures

Figure 1

24 pages, 1190 KiB  
Review
An Overview of Buckwheat—A Superfood with Applicability in Human Health and Food Packaging
by Alexandra Andreea Lițoiu, Adriana Păucean, Claudiu Lung, Alexandru Zmuncilă and Maria Simona Chiș
Plants 2025, 14(14), 2200; https://doi.org/10.3390/plants14142200 - 16 Jul 2025
Viewed by 1019
Abstract
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, [...] Read more.
Buckwheat, a dicotyledonous pseudocereal from the Polygonaceae family, has emerged as a crop of scientific and industrial interest due to its exceptional phytochemical profile, adaptability to different environments, and minimal agronomic input requirements. This paper aims to highlight the proximate composition (carbohydrates, protein, dietary fiber, lipids, starch, vitamins, and minerals) of the buckwheat principal species, Fagopyrum esculentum Moench (common buckwheat) and Fagopyrum tataricum (L.) Gaertn (Tartary buckwheat). Other bioactive compounds, including flavonoids (e.g., rutin, quercetin), phenolic acids, and anthocyanins, were emphasized, together with their influence on human health. These constituents confer a broad range of biological activities such as anti-inflammatory, antimicrobial, antidiabetic, antihypertensive, and hypoglycemic effects. Moreover, buckwheat is inherently gluten-free, making it a valuable alternative in formulations targeting gluten-sensitive populations. Finally, the review addresses the possibility of using starch buckwheat as a raw material in starch-based films. Further research is needed to elucidate the potential of buckwheat starch as a viable material for the development of biodegradable food packaging films. Full article
(This article belongs to the Special Issue Bioactive Plants, Phytocompounds and Plant-Derived Food)
Show Figures

Figure 1

20 pages, 1340 KiB  
Article
Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems
by Priyanka Belbase, Krishnaswamy Jayachandran and Maruthi Sridhar Balaji Bhaskar
Soil Syst. 2025, 9(3), 75; https://doi.org/10.3390/soilsystems9030075 - 14 Jul 2025
Viewed by 326
Abstract
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized [...] Read more.
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized crops, little is known about how pitaya growth, physiology and nutrient uptake change throughout the production period. This study aims to evaluate the impact of high tunnels and varying rates of vermicompost on three varieties of pitaya, White Pitaya (WP), Yellow Pitaya (YP), and Red Pitaya (RP), to assess the soil and plant nutrient dynamics, spectral reflectance changes and plant growth. Plants were assessed at 120 and 365 DAP (Days After Plantation). YP thrived in a high tunnel compared to an open environment in terms of survival before 120 DAP, with no diseased incidence and higher nutrient retention. The nutrient accumulation in the RP, WP, and YP shoot samples 120 DAP were ranked in the following order, K > N > Ca > Mg > P > Fe > Zn > B > Mn, while 365 DAP, they were ranked as K > Ca > N > Mg > P > S > Fe > Zn > B > Mn. The nutrient accumulation in the RP, WP, and YP, soil samples 120 and 365 DAP were ranked in the following order: N > Ca > Mg > P > K > Na > Zn. Soil nutrients showed a higher concentration of Na and K grown inside the high tunnels in all three pitaya species due to the increased concentration of soluble salts. Spectral reflectance analysis showed that RP and WP had higher reflectance in the visible and NIR region compared to YP due to their higher plant biomass and canopy cover. This study emphasizes the importance of environmental conditions, nutrition strategies, and plant physiology in the different pitaya plant species. The results suggest that high tunnels with appropriate vermicompost can enhance pitaya growth and development. Full article
Show Figures

Figure 1

31 pages, 2704 KiB  
Review
Nanofabrication Techniques for Enhancing Plant–Microbe Interactions in Sustainable Agriculture
by Wajid Zaman, Atif Ali Khan Khalil, Adnan Amin and Sajid Ali
Nanomaterials 2025, 15(14), 1086; https://doi.org/10.3390/nano15141086 - 14 Jul 2025
Viewed by 530
Abstract
Nanomaterials have emerged as a transformative technology in agricultural science, offering innovative solutions to improve plant–microbe interactions and crop productivity. The unique properties, such as high surface area, tunability, and reactivity, of nanomaterials, including nanoparticles, carbon-based materials, and electrospun fibers, render them ideal [...] Read more.
Nanomaterials have emerged as a transformative technology in agricultural science, offering innovative solutions to improve plant–microbe interactions and crop productivity. The unique properties, such as high surface area, tunability, and reactivity, of nanomaterials, including nanoparticles, carbon-based materials, and electrospun fibers, render them ideal for applications such as nutrient delivery systems, microbial inoculants, and environmental monitoring. This review explores various types of nanomaterials employed in agriculture, focusing on their role in enhancing microbial colonization and soil health and optimizing plant growth. Key nanofabrication techniques, including top-down and bottom-up manufacturing, electrospinning, and nanoparticle synthesis, are discussed in relation to controlled release systems and microbial inoculants. Additionally, the influence of surface properties such as charge, porosity, and hydrophobicity on microbial adhesion and colonization is examined. Moreover, the potential of nanocoatings and electrospun fibers to enhance seed protection and promote beneficial microbial interactions is investigated. Furthermore, the integration of nanosensors for detecting pH, reactive oxygen species, and metabolites offers real-time insights into the biochemical dynamics of plant–microbe systems, applicable to precision farming. Finally, the environmental and safety considerations regarding the use of nanomaterials, including biodegradability, nanotoxicity, and regulatory concerns, are addressed. This review emphasizes the potential of nanomaterials to revolutionize sustainable agricultural practices by improving crop health, nutrient efficiency, and environmental resilience. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

19 pages, 8839 KiB  
Article
Potential Expansion of Root Chicory Cultivation Areas in Chile
by Donna Cortez, Manuel Paneque and Celián Román-Figueroa
Agronomy 2025, 15(7), 1675; https://doi.org/10.3390/agronomy15071675 - 10 Jul 2025
Viewed by 313
Abstract
Root chicory (Cichorium intybus var. sativum) is a major source of inulin, a fiber with many dietary and medicinal uses. Chile is the only country outside Europe that produces inulin and is the third largest exporter worldwide. Root chicory cultivation has [...] Read more.
Root chicory (Cichorium intybus var. sativum) is a major source of inulin, a fiber with many dietary and medicinal uses. Chile is the only country outside Europe that produces inulin and is the third largest exporter worldwide. Root chicory cultivation has increased by 242% in Chile since 2006, highlighting its potential for expansion into new territories. In this study, land suitability (without restriction, mild restriction, moderate restriction, and unsuitable) for root chicory cultivation and its potential productivity were determined using Geographic Information System (GIS) and analytical hierarchy process (AHP). The regions where root chicory is currently produced (between the Maule and La Araucanía regions) showed the best suitability, as did the Valparaíso and O’Higgins regions. The potential maximum productivity ranged from 20 to 27 t DW ha−1, mainly concentrated in the Los Lagos region, despite the absence of land without restriction. This could be attributed to the high water availability in this region, which is consistent with the expected displacement of crop areas due to climate change. Field studies in the Los Lagos region are recommended to evaluate the feasibility of expanding root chicory cultivation in these areas. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

18 pages, 10178 KiB  
Article
Effects of Legume–Grass Mixture Combinations and Planting Ratios on Forage Productivity and Nutritional Quality in Typical Sand-Fixing Vegetation Areas of the Mu Us Sandy Land
by Yuqing Mi, Hongbin Xu, Lei Zhang, Ruihua Pan, Shengnan Zhang, Haiyan Gao, Haibing Wang and Chunying Wang
Agriculture 2025, 15(14), 1474; https://doi.org/10.3390/agriculture15141474 - 9 Jul 2025
Viewed by 376
Abstract
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of [...] Read more.
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of the Mu Us Sandy Land remains scarce. These knowledge gaps have hindered the synergistic integration of forage production and ecological restoration in the region. This study conducted mixed cropping trials in the sand-fixing vegetation zone of the Mu Us Sandy Land using Dahurian wildrye (Elymus dahuricus), Mongolian wheatgrass (Agropyron mongolicum), and Standing milkvetch (Astragalus adsurgens) to investigate the effects of species combinations and planting ratios on forage productivity and nutritional quality, aiming to determine the optimal planting strategy. Results showed that in the first establishment year, the yield of all mixed cropping systems significantly exceeded that of monocultured Dahurian wildrye and Mongolian wheatgrass. All mixed cropping combinations exhibited land equivalent ratios (LER) and relative yield totals (RYT) below 1, indicating varying degrees of interspecific competition during the first year, with grass species generally demonstrating stronger competitive abilities than legumes. Mixed-cropped forages showed higher crude protein, crude fat, and crude ash content compared to monocultures, alongside lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) levels, suggesting improved relative feed value (RFV). Among the combinations, E5A5 and E6A4 (5:5 and 6:4 ratio of Dahurian wildrye to Standing milkvetch) achieved higher RFV, with RFV gradually declining as the legume proportion decreased. In conclusion, both monoculture and legume–grass mixed cropping are viable in the Mu Us Sandy Land’s sand-fixing vegetation areas and the E5A5 combination (5:5 ratio of Dahurian wildrye to Standing milkvetch) as having the highest overall score, demonstrating that this mixed cropping ratio optimally balances yield and nutritional quality, making it the recommended planting protocol for the region. This mixed cropping system offers a theoretical foundation for efficiently establishing artificial pastures in the Mu Us Sandy Land, supporting regional pastoral industry development and desertification mitigation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

19 pages, 1957 KiB  
Article
Resource-Efficient Cotton Network: A Lightweight Deep Learning Framework for Cotton Disease and Pest Classification
by Zhengle Wang, Heng-Wei Zhang, Ying-Qiang Dai, Kangning Cui, Haihua Wang, Peng W. Chee and Rui-Feng Wang
Plants 2025, 14(13), 2082; https://doi.org/10.3390/plants14132082 - 7 Jul 2025
Cited by 2 | Viewed by 429
Abstract
Cotton is the most widely cultivated natural fiber crop worldwide, yet it is highly susceptible to various diseases and pests that significantly compromise both yield and quality. To enable rapid and accurate diagnosis of cotton diseases and pests—thus supporting the development of effective [...] Read more.
Cotton is the most widely cultivated natural fiber crop worldwide, yet it is highly susceptible to various diseases and pests that significantly compromise both yield and quality. To enable rapid and accurate diagnosis of cotton diseases and pests—thus supporting the development of effective control strategies and facilitating genetic breeding research—we propose a lightweight model, the Resource-efficient Cotton Network (RF-Cott-Net), alongside an open-source image dataset, CCDPHD-11, encompassing 11 disease categories. Built upon the MobileViTv2 backbone, RF-Cott-Net integrates an early exit mechanism and quantization-aware training (QAT) to enhance deployment efficiency without sacrificing accuracy. Experimental results on CCDPHD-11 demonstrate that RF-Cott-Net achieves an accuracy of 98.4%, an F1-score of 98.4%, a precision of 98.5%, and a recall of 98.3%. With only 4.9 M parameters, 310 M FLOPs, an inference time of 3.8 ms, and a storage footprint of just 4.8 MB, RF-Cott-Net delivers outstanding accuracy and real-time performance, making it highly suitable for deployment on agricultural edge devices and providing robust support for in-field automated detection of cotton diseases and pests. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

Back to TopTop