Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,698)

Search Parameters:
Keywords = fiber composite material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 589 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 (registering DOI) - 4 Aug 2025
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
17 pages, 4552 KiB  
Article
Trans-Scale Progressive Failure Analysis Methodology for Composite Materials Incorporating Interfacial Phase Effect
by Zhijie Li, Fei Peng, Jian Zhao, Sujuan Guo, Lefei Hu and Yu Gong
Materials 2025, 18(15), 3667; https://doi.org/10.3390/ma18153667 (registering DOI) - 4 Aug 2025
Abstract
Fiber-reinforced resin matrix composites are generally composed of fibers and matrix with significantly different properties, which are non-uniform and anisotropic in nature. Macro-failure criteria generally view composite plies as a uniform whole and do not accurately reflect fiber- and matrix-scale failures. In this [...] Read more.
Fiber-reinforced resin matrix composites are generally composed of fibers and matrix with significantly different properties, which are non-uniform and anisotropic in nature. Macro-failure criteria generally view composite plies as a uniform whole and do not accurately reflect fiber- and matrix-scale failures. In this study, the interface phase effect between fiber and matrix has been introduced into the frame of trans-scale analysis to better model the failure process, and the equivalent mechanical property characterization model of the interface phase has also been established. Combined with the macro–micro-strain transfer method, the trans-scale correlation of the mechanical response of the composite laminates between the macro scale and the fiber, matrix and interface micro scale has been achieved. Based on the micro-scale failure criterion and the stiffness reduction strategy, the trans-scale failure analysis method of composite materials incorporating the interface phase effect has been developed, which can simultaneously predict the failure modes of the matrix, fiber and interface phase. A numerical implementation of the developed trans-scale failure analysis method considering interface phase was carried out using the Python and Abaqus 2020 joint simulation technique. Case studies were carried out for three material systems, and the prediction data of the developed trans-scale failure analysis methodology incorporating interface phase effects for composite materials, the prediction data of the Linde failure criterion and the experimental data were compared. The comparison with experimental data confirms that this method has good prediction accuracy, and compared with the Linde and Hashin failure methods, only it can predict the failure mode of the fiber–matrix interface. The case analysis shows that its prediction accuracy has been improved by about 2–3%. Full article
(This article belongs to the Special Issue Fatigue Damage, Fracture Mechanics of Structures and Materials)
Show Figures

Figure 1

23 pages, 2028 KiB  
Article
High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance
by Xia Zhang, Bo Xiao, Yongzhao Hou and Guangwu Wen
Materials 2025, 18(15), 3666; https://doi.org/10.3390/ma18153666 (registering DOI) - 4 Aug 2025
Abstract
 The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize [...] Read more.
 The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize a branched siloxane via ring-opening polymerization. A subsequent hydrosilylation reaction led to the formation of polyvinylsiloxane with a three-dimensional crosslinked structure. The precursor exhibited excellent fluidity, adjustable viscosity, and superior thermosetting characteristics, enabling efficient impregnation and densification of reinforcements through the polymer infiltration and pyrolysis process. Upon pyrolysis, the polyvinylsiloxane gradually converted from an organic polymer to an amorphous inorganic ceramic phase, yielding silicon oxycarbide ceramics with a high ceramic yield of 81.3%. Elemental analysis indicated that the resulting ceramic mainly comprised silicon and oxygen, with a low carbon content. Furthermore, the material demonstrated a stable dielectric constant (~2.5) and low dielectric loss (<0.01), which are beneficial for enhanced thermal stability and dielectric performance. These findings offer a promising precursor system and process reference for the low-cost production of high-performance, multifunctional ceramic matrix composites with strong potential for engineering applications.  Full article
(This article belongs to the Special Issue Processing and Microstructure Design of Advanced Ceramics)
18 pages, 2085 KiB  
Article
Static Analysis of Composite Plates with Periodic Curvatures in Material Using Navier Method
by Ozlem Vardar, Zafer Kutug and Ayse Erdolen
Appl. Sci. 2025, 15(15), 8634; https://doi.org/10.3390/app15158634 (registering DOI) - 4 Aug 2025
Abstract
Fiber-reinforced and laminated composite materials, widely used in engineering applications, may develop periodic curvature during manufacturing due to technological requirements. Given such curvatures in widely used composites, static and dynamic analyses of plates and shells under loads, along with related stability issues, have [...] Read more.
Fiber-reinforced and laminated composite materials, widely used in engineering applications, may develop periodic curvature during manufacturing due to technological requirements. Given such curvatures in widely used composites, static and dynamic analyses of plates and shells under loads, along with related stability issues, have been extensively investigated. However, studies focusing specifically on the static analysis of such materials remain limited. Composite materials with structural curvature exhibit complex mechanical behavior, making their analysis particularly challenging. Predicting their mechanical response is crucial in engineering. In response to this need, the present study conducts a static analysis of plates made of periodically curved composite materials using the Navier method. The plate equations were derived based on the Kirchhoff–Love plate theory within the framework of the Continuum Theory proposed by Akbarov and Guz’. Using the Navier method, deflection, stress, and moment distributions were obtained at every point of the plate. Numerical results were computed using MATLAB. After verifying the convergence and accuracy of the developed MATLAB code by comparing it with existing solutions for rectangular homogeneous isotropic and laminated composite plates, results were obtained for periodically curved plates. This study offers valuable insights that may guide future research, as it employs the Navier method to provide an analytical solution framework. This study contributes to the limited literature with a novel evaluation of the static analysis of composite plates with periodic curvature. Full article
Show Figures

Figure 1

20 pages, 3145 KiB  
Article
Determination of Dynamic Elastic Properties of 3D-Printed Nylon 12CF Using Impulse Excitation of Vibration
by Pedro F. Garcia, Armando Ramalho, Joel C. Vasco, Rui B. Ruben and Carlos Capela
Polymers 2025, 17(15), 2135; https://doi.org/10.3390/polym17152135 - 4 Aug 2025
Abstract
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic [...] Read more.
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic behavior often rely on expensive equipment and time-consuming procedures. The aim of this study is to evaluate the applicability of the impulse excitation of vibration (IEV) in characterizing the dynamic mechanical properties of a 3D-printed composite material. Tensile tests were also performed to compare quasi-static properties with the dynamic ones obtained through IEV. The tested material, Nylon 12CF, contains 35% short carbon fibers by weight and is commercially available from Stratasys. It is used in the fused deposition modeling (FDM) process, a Material Extrusion technology, and exhibits anisotropic mechanical properties. This is further reinforced by the filament deposition process, which affects the mechanical response of printed parts. Young’s modulus obtained in the direction perpendicular to the deposition plane (E33), obtained via IEV, was 14.77% higher than the value in the technical datasheet. Comparing methods, the Young’s modulus obtained in the deposition plane, in an inclined direction of 45 degrees in relation to the deposition direction (E45), showed a 22.95% difference between IEV and tensile tests, while Poisson’s ratio in the deposition plane (v12) differed by 6.78%. This data is critical for designing parts subject to demanding service conditions, and the results obtained (orthotropic elastic properties) can be used in finite element simulation software. Ultimately, this work reinforces the potential of the IEV method as an accessible and consistent alternative for characterizing the anisotropic properties of components produced through additive manufacturing (AM). Full article
(This article belongs to the Special Issue Mechanical Characterization of Polymer Composites)
Show Figures

Figure 1

21 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 (registering DOI) - 3 Aug 2025
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

33 pages, 3561 KiB  
Article
A Robust Analytical Network Process for Biocomposites Supply Chain Design: Integrating Sustainability Dimensions into Feedstock Pre-Processing Decisions
by Niloofar Akbarian-Saravi, Taraneh Sowlati and Abbas S. Milani
Sustainability 2025, 17(15), 7004; https://doi.org/10.3390/su17157004 (registering DOI) - 1 Aug 2025
Viewed by 174
Abstract
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria [...] Read more.
Natural fiber-based biocomposites are rapidly gaining traction in sustainable manufacturing. However, their supply chain (SC) designs at the feedstock pre-processing stage often lack robust multicriteria decision-making evaluations, which can impact downstream processes and final product quality. This case study proposes a sustainability-driven multicriteria decision-making framework for selecting pre-processing equipment configurations within a hemp-based biocomposite SC. Using a cradle-to-gate system boundary, four alternative configurations combining balers (square vs. round) and hammer mills (full-screen vs. half-screen) are evaluated. The analytical network process (ANP) model is used to evaluate alternative SC configurations while capturing the interdependencies among environmental, economic, social, and technical sustainability criteria. These criteria are further refined with the inclusion of sub-criteria, resulting in a list of 11 key performance indicators (KPIs). To evaluate ranking robustness, a non-linear programming (NLP)-based sensitivity model is developed, which minimizes the weight perturbations required to trigger rank reversals, using an IPOPT solver. The results indicated that the Half-Round setup provides the most balanced sustainability performance, while Full-Square performs best in economic and environmental terms but ranks lower socially and technically. Also, the ranking was most sensitive to the weight of the system reliability and product quality criteria, with up to a 100% shift being required to change the top choice under the ANP model, indicating strong robustness. Overall, the proposed framework enables decision-makers to incorporate uncertainty, interdependencies, and sustainability-related KPIs into the early-stage SC design of bio-based composite materials. Full article
(This article belongs to the Special Issue Sustainable Enterprise Operation and Supply Chain Management)
Show Figures

Figure 1

28 pages, 6702 KiB  
Article
Mechanistic Insights into the Fracture Toughness Enhancement of Nano-TiO2 and Basalt Fiber Bar Reinforced Magnesium Phosphate Cement
by Wei-Kang Li, Sheng-Ai Cui, Yu-Peng Li, Ya-Lei Zeng, Guang Zeng and Wei Xia
Nanomaterials 2025, 15(15), 1183; https://doi.org/10.3390/nano15151183 - 1 Aug 2025
Viewed by 207
Abstract
Magnesium phosphate cement (MPC) exhibits brittleness when utilized as a repair material for bridge decks. To address this issue, this study employs nano-TiO2 (NT) and a novel material (basalt fiber bar) as modifiers. A double-K fracture model is developed for the modified [...] Read more.
Magnesium phosphate cement (MPC) exhibits brittleness when utilized as a repair material for bridge decks. To address this issue, this study employs nano-TiO2 (NT) and a novel material (basalt fiber bar) as modifiers. A double-K fracture model is developed for the modified MPC to quantitatively evaluate the enhancement of fracture toughness induced by NT and basalt fiber bars. The cracking behavior and toughening mechanisms of the NT and basalt fiber bar reinforced MPC are investigated using extended finite element theory and composite material theory. Additionally, a formula is proposed to calculate the incremental fracture toughness of NT and basalt fiber bar reinforced MPC. The results indicated that NT and basalt fiber bar can effectively enhance the ultimate bending capacity of MPC. The improvement increases with the fiber volume fraction, and noticeable bending hardening occurs when the fiber content exceeds 2%. With the same fiber volume fraction, the peak load can be increased by up to 11.7% with the addition of NT. The crack initiation toughness of the NT group without basalt fiber bars is 58% higher than that of the CC group. The content and diameter of basalt fiber bar are critical parameters affecting the toughness of the NT and basalt fiber bar reinforced MPC. Full article
(This article belongs to the Special Issue Nanomodification of Civil Engineering Materials)
Show Figures

Figure 1

16 pages, 7560 KiB  
Article
High-Performance Sodium Alginate Fiber-Reinforced Polyvinyl Alcohol Hydrogel for Artificial Cartilage
by Lingling Cui, Yifan Lu, Jun Wang, Haiqin Ding, Guodong Jia, Zhiwei Li, Guang Ji and Dangsheng Xiong
Coatings 2025, 15(8), 893; https://doi.org/10.3390/coatings15080893 (registering DOI) - 1 Aug 2025
Viewed by 207
Abstract
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were [...] Read more.
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were introduced into polyvinyl alcohol hydrogel network through physical blending and freezing/thawing methods. The prepared composite hydrogels exhibited a three-dimensional porous network structure similar to that of human articular cartilage. The mechanical and tribological properties of hydrogels have been significantly improved, due to the multiple hydrogen bonding interaction between sodium alginate fibers and polyvinyl alcohol. Most importantly, under a load of 2 N, the friction coefficient of the PVA/0.4SA hydrogel can remain stable at 0.02 when lubricated in PBS buffer for 1 h. This work provides a novel design strategy for the development of high-performance polyvinyl alcohol hydrogels. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

24 pages, 4254 KiB  
Article
Strength and Micro-Mechanism of Guar Gum–Palm Fiber Composite for Improvement of Expansive Soil
by Junhua Chen, Yuejian Huang, Aijun Chen, Xinping Ji, Xiao Liao, Shouqian Li and Ying Xiao
Fibers 2025, 13(8), 104; https://doi.org/10.3390/fib13080104 - 31 Jul 2025
Viewed by 131
Abstract
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The [...] Read more.
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The results show that the guar gum–palm fiber composite significantly improves the compressive and shear strength of expansive soil. The optimal ratio is 2% guar gum, 0.4% palm fiber, and 6 mm palm fiber length. Increasing fiber length initially boosts and then reduces unconfined compressive strength. Guar gum increases unconfined compressive strength by 187.18%, further improved by 20.9% with palm fibers. When fiber length is fixed, increasing palm fiber content increases and then stabilizes peak stress and shear strength (cohesion and internal friction angle), improving by 27.30%, 52.1%, and 12.4%, respectively, compared to soil improved with only guar gum. Micro-analysis reveals that guar gum enhances bonding between soil particles via a gel matrix, improving water stability and mechanical properties, while palm fibers reinforce the soil and inhibit crack propagation. The synergistic effect significantly enhances composite-improved soil performance, offering economic and environmental benefits, and provides insights for expansive soil engineering management. Full article
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 (registering DOI) - 31 Jul 2025
Viewed by 161
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

16 pages, 2829 KiB  
Article
Axial Compression Behavior of Bamboo Scrimber-Filled Steel Tubular (BSFST) Column Under Different Loading Modes
by Ze Xing, Yang Wei, Kang Zhao, Jinwei Lu, Baoxing Wei and Yu Lin
Materials 2025, 18(15), 3607; https://doi.org/10.3390/ma18153607 (registering DOI) - 31 Jul 2025
Viewed by 116
Abstract
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo [...] Read more.
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo scrimber, forming a novel bamboo scrimber-filled steel tubular column. This configuration enables the steel tube to provide effective lateral restraint to the bamboo material. Axial compression tests were conducted on 18 specimens, including bamboo scrimber columns and bamboo scrimber-filled steel tubular columns, to investigate the effects of steel ratio and loading mode (full-section and core loading) on the axial compression performance. The test results indicate that the external steel tubes significantly enhance the structural load-bearing capacity and deformation capacity. Primary failure modes of the composite columns include shear failure and buckling. The ultimate stress and strain of the structure are positively correlated with the steel ratio; as the steel ratio increases, the ultimate stress of the specimens can increase by up to 19.2%, while the ultimate strain can increase by up to 37.7%. The core-loading specimens exhibited superior load-bearing capacity and deformation ability compared to the full-section-loading specimens. Considering the differences in the curves for full-section and core loading, the steel tube confinement coefficient was introduced, and the predictive models for the ultimate stress and ultimate strain of the bamboo scrimber-filled steel tubular column were developed with accurate prediction. Full article
Show Figures

Figure 1

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 240
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

14 pages, 8280 KiB  
Article
Mechanical Characteristics of Glass-Fiber-Reinforced Polyester Composite Materials
by Ioan Milosan, Tibor Bedo, Camelia Gabor and Mihai Alin Pop
Materials 2025, 18(15), 3595; https://doi.org/10.3390/ma18153595 (registering DOI) - 31 Jul 2025
Viewed by 139
Abstract
Fiber-reinforced composites are gaining more importance across different fields such as aeronautics, automotives, high-performance sporting equipment, etc., where decreasing weight while improving mechanical properties of polymers is fundamental. This article explores the mechanical behavior of fiber-reinforced polyester composite materials, highlighting their advantages and [...] Read more.
Fiber-reinforced composites are gaining more importance across different fields such as aeronautics, automotives, high-performance sporting equipment, etc., where decreasing weight while improving mechanical properties of polymers is fundamental. This article explores the mechanical behavior of fiber-reinforced polyester composite materials, highlighting their advantages and applications in various industrial fields. Usually, composite materials consist of a polyester matrix reinforced with different types of fibers, such as glass, carbon, or Kevlar, which provide superior mechanical characteristics. This study analyzed the tensile strength, bending resistance, and resilience of glass fiber composites, emphasizing the importance of proper fiber selection and manufacturing processes. These materials stand out for their excellent strength-to-weight ratio and are widely used in the fabrication of tanks in various industries. Experimental results demonstrated tensile strength (Rm) around 115 MPa, Shore D hardness values of 88 units, and impact toughness (resilience) of 2.7 J/cm2. Based on the composite materials’ behavior in testing, the article further offers practical recommendations for the effective deployment of these composites in the fabrication of various types of industrial reservoirs. Full article
Show Figures

Figure 1

19 pages, 7574 KiB  
Article
Effect of Natural Fiber Characteristics on Properties of Cementitious Composites: A Comparison of Recycled Pulp from Beverage Cartons, Bamboo, and Eucalyptus Fibers
by Phouthanouthong Xaysombath, Nattakan Soykeabkaew, Darunee Wattanasiriwech and Suthee Wattanasiriwech
Constr. Mater. 2025, 5(3), 50; https://doi.org/10.3390/constrmater5030050 (registering DOI) - 31 Jul 2025
Viewed by 106
Abstract
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF [...] Read more.
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF was rounded in shape and had the highest aspect ratio, while the ribbon-shaped EF exhibited the highest tensile strength index. The RPBC fibers were fibrillated and the shortest, with a ribbon shape. Flexural strength results showed that RPBCC achieved a maximum strength that was 47.6% higher than the control specimen (0% fiber), outperforming both BF- and EF-reinforced counterparts. This superior performance is attributed to the higher fibrillation level of the ribbon-shaped RPBC fibers, which promoted better fiber–matrix bonding. As the fiber content increased, the bulk density of EFC and BFC decreased linearly, while RPBC composites showed only a modest decrease in density. Porosity steadily increased in EFC and BFC, whereas a non-linear trend was observed in RPBCC, likely due to its unique morphology and fibrillation. Conversely, EFC exhibited significantly higher maximum fracture toughness (3600 J/m2 at 10 wt.%) compared to PBFCC (1600 J/m2 at 14 wt.%) and BFC (1400 J/m2 at 14 wt.%). This enhancement is attributed to extensive fiber pullout mechanisms and increased energy absorption during crack propagation. Overall, all composite types demonstrated flexural strength values above 4 MPa, placing them in the Grade I category. Those reinforced with 10–14% RPBC exhibited strengths of 11–12 MPa, categorizing them as Grade II according to ASTM C1186-02. Full article
Show Figures

Figure 1

Back to TopTop