Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = fetal nutrition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4701 KiB  
Review
Maternal Lifestyle During Pregnancy and Its Influence on Offspring’s Telomere Length
by Elena Vakonaki, Maria Theodora Vitiadou, Eleftherios Panteris, Manolis Tzatzarakis, Aristides Tsatsakis and Eleftheria Hatzidaki
Life 2025, 15(8), 1250; https://doi.org/10.3390/life15081250 - 6 Aug 2025
Abstract
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such [...] Read more.
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such as vitamins C and D, folate, and magnesium. Additionally, adherence to a Mediterranean diet and regular physical activity during pregnancy are correlated with increased placental TL, supporting fetal genomic integrity. Conversely, maternal dietary patterns high in carbohydrates, fats, or alcohol, as well as exposure to triclosan and sleep-disordered breathing, negatively correlate with offspring’s TL. Maternal infections may also shorten TL through heightened inflammation and oxidative stress. However, evidence regarding the impact of other lifestyle factors—including maternal stress, smoking, caffeine intake, polyunsaturated fatty acid consumption, obesity, and sleep quality—remains inconsistent. Given that shorter telomere length has been associated with cardiovascular, pulmonary, and neurodegenerative diseases, as well as certain types of cancer, these findings highlight the vital importance of maternal health during pregnancy in order to prevent potential adverse effects on the fetus. Further studies are required to elucidate the precise timing, intensity, and interplay of these influences, enabling targeted prenatal interventions to enhance offspring health outcomes. Full article
Show Figures

Figure 1

19 pages, 3149 KiB  
Article
Promoter H3K4me3 and Gene Expression Involved in Systemic Metabolism Are Altered in Fetal Calf Liver of Nutrient-Restricted Dams
by Susumu Muroya, Koichi Ojima, Saki Shimamoto, Takehito Sugasawa and Takafumi Gotoh
Int. J. Mol. Sci. 2025, 26(15), 7540; https://doi.org/10.3390/ijms26157540 - 4 Aug 2025
Viewed by 180
Abstract
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin [...] Read more.
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin immunoprecipitation sequencing results show that genes with an altered trimethylation of histone 3 lysine 4 (H3K4me3) are associated with cortisol synthesis and secretion, the PPAR signaling pathway, and aldosterone synthesis and secretion. Genes with the H3K27me3 alteration were associated with glutamatergic synapse and gastric acid secretion. Compared to HN fetuses, promoter H3K4me3 levels in LN fetuses were higher in GDF15, IRF2BP2, PPP1R3B, and QRFPR but lower in ANGPTL4 and APOA5. Intriguingly, genes with the greatest expression changes (>1.5-fold) exhibited the anticipated up-/downregulation from elevated or reduced H3K4me3 levels; however, a significant relationship was not observed between promoter CpG methylation or H3K27me3 and the gene set with the greatest expression changes. Furthermore, the stress response genes EIF2A, ATF4, DDIT3, and TRIB3 were upregulated in the MUN fetal liver, suggesting involvement of the response in GDF15 activation. Thus, H3K4me3 likely plays a crucial role in MUN-induced physiological adaptation, altering the hepatic gene expression responsible for the integrated stress response and systemic energy metabolism, especially circulating lipoprotein lipase regulation. Full article
(This article belongs to the Special Issue Ruminant Physiology: Digestion, Metabolism, and Endocrine System)
Show Figures

Figure 1

14 pages, 635 KiB  
Article
Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study
by Inchirah Karmous, Rym Ben Othman, Ismail Dergaa, Halil İbrahim Ceylan, Cyrine Bey, Wissem Dhahbi, Amira Sayed Khan, Henda Jamoussi, Raul Ioan Muntean and Naim Akhtar Khan
Nutrients 2025, 17(15), 2515; https://doi.org/10.3390/nu17152515 - 31 Jul 2025
Viewed by 267
Abstract
Background: Taste changes are common during pregnancy and can have a significant impact on dietary habits. Objective: This study aimed to investigate the influence of the perception of sweet and fat taste on diet in pregnant diabetic women. Methods: This [...] Read more.
Background: Taste changes are common during pregnancy and can have a significant impact on dietary habits. Objective: This study aimed to investigate the influence of the perception of sweet and fat taste on diet in pregnant diabetic women. Methods: This cross-sectional observational study included 66 pregnant women, 33 with gestational diabetes and 33 with pre-gestational type 2 diabetes. Taste perception tests were conducted to evaluate thresholds for detecting sweet and fatty tastes. Dietary surveys were used to assess daily nutrient intake, and various biochemical parameters, such as glycemia, HbA1c, and cholesterol, were analyzed. Results: The low-fat taster group (threshold > 0.75 mmol/L) included more patients with diabetes compared to those with gestational diabetes. All diabetic patients had low sucrose perception. Although pregnant women with gestational diabetes detected sweetness at high concentrations, pregnant women with diabetes detected it at lower concentrations (0.012 ± 0.023 mmol/L vs. 0.006 ± 0.005 mmol/L; p = 0.3). High-fat tasters exhibited elevated glycemia compared to low-fat tasters (6.04 ± 1.88 mmol/L vs. 7.47 ± 3.4 mmol/L; p = 0.03). They also had higher cholesterol (p = 0.04) and lower HDL-C levels (4.96 ± 1.04 mmol/L vs. 1.36 ± 0.29 mmol/L; p = 0.03). High-fat tasters showed more frequent daily consumption of oil, butter, cheese, and chocolate. The highly sweet tasters had higher cholesterol levels and lower LDL levels. Individuals who reported being highly sensitive to sweet taste consumed more daily oil, sweetened yogurt, or cream desserts, as well as white sugar. Conclusions: These findings indicate that altered sensitivity to fat and sweet tastes is associated with different dietary habits and metabolic profiles in pregnant women with diabetes. Specifically, reduced sensitivity to the taste of fat is associated with higher consumption of high-fat foods and poorer lipid profiles. In contrast, sensitivity to sweet taste correlates with an increased intake of sugary and fatty foods. Understanding these taste-related behaviors can help develop personalized nutritional strategies to improve metabolic control and maternal–fetal outcomes in this high-risk group. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

41 pages, 1640 KiB  
Review
Early Roots of Childhood Obesity: Risk Factors, Mechanisms, and Prevention Strategies
by Giuseppina Rosaria Umano, Simonetta Bellone, Raffaele Buganza, Valeria Calcaterra, Domenico Corica, Luisa De Sanctis, Anna Di Sessa, Maria Felicia Faienza, Nicola Improda, Maria Rosaria Licenziati, Melania Manco, Carla Ungaro, Flavia Urbano, Giuliana Valerio, Malgorzata Wasniewska and Maria Elisabeth Street
Int. J. Mol. Sci. 2025, 26(15), 7388; https://doi.org/10.3390/ijms26157388 - 30 Jul 2025
Viewed by 710
Abstract
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to [...] Read more.
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to long-term metabolic and cardiovascular diseases. The “Developmental Origins of Health and Disease” (DOHaD) paradigm provides a framework for understanding how early life environmental exposures, particularly during the periconceptional, fetal, and neonatal periods, can program future health outcomes through epigenetic mechanisms. Epigenetic modifications alter gene expression without changing the DNA sequence and are increasingly recognized as key mediators in the development of obesity. This narrative review summarizes current findings on the early determinants of childhood obesity, emphasizing the molecular and epigenetic pathways involved. A comprehensive literature search was conducted across multiple databases and international sources, focusing on recent studies from the past decade. Both human and animal research were included to provide a broad perspective. This review aims to consolidate recent insights into early life influences on obesity, underscoring the need for preventive strategies starting as early as the preconception period. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
Show Figures

Figure 1

27 pages, 2012 KiB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 284
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

17 pages, 530 KiB  
Article
Associations Between Maternal Meal Frequency Patterns During Pregnancy and Neonatal Anthropometric Outcomes: A Quantitative Cross-Sectional Study
by Oana Liliana Atomei, Petronela Vicoveanu, Camelia Oana Iațcu, Florina Ioana Gliga, Calin Coriolan Craciun and Monica Tarcea
Nutrients 2025, 17(15), 2437; https://doi.org/10.3390/nu17152437 - 25 Jul 2025
Viewed by 318
Abstract
Background/Objectives: Maternal dietary behaviors, including meal frequency patterns, may influence fetal growth. This study examined the associations between maternal meal frequency patterns during pregnancy—categorized as structured, moderately irregular, or highly irregular—and neonatal anthropometric outcomes, including weight, length, head, chest, and abdominal circumferences, [...] Read more.
Background/Objectives: Maternal dietary behaviors, including meal frequency patterns, may influence fetal growth. This study examined the associations between maternal meal frequency patterns during pregnancy—categorized as structured, moderately irregular, or highly irregular—and neonatal anthropometric outcomes, including weight, length, head, chest, and abdominal circumferences, and Apgar score. A secondary objective was to assess whether maternal education and household income modify these associations. Methods: This cross-sectional study included 1025 mother–newborn pairs from a socioeconomically diverse Romanian cohort. Maternal meal frequency patterns were classified based on self-reported weekly consumption. Neonatal anthropometric outcomes were obtained from medical records. Multivariable linear regression models, adjusted for maternal and neonatal characteristics, assessed the associations between meal frequency patterns and birth outcomes. Interaction terms evaluated effect modification by maternal education and income. Results: Structured maternal meal frequency patterns were associated with a slight but significant reduction in neonatal length compared to highly irregular patterns (β = −0.36 cm; 95% CI: −0.68 to −0.04; p = 0.02). A borderline inverse association with birth weight was also observed (β = −63.82 g; 95% CI: −128.87 to 1.23; p = 0.05). No significant differences were found for other anthropometric indicators or Apgar score. Maternal education modified the association between moderately irregular patterns and chest circumference (β = 0.15 cm; 95% CI: 0.04 to 0.25; p = 0.003), while household income modified the association with abdominal circumference (β = 0.14 cm; 95% CI: 0.02 to 0.26; p = 0.02). Conclusions: Maternal meal frequency patterns were modestly associated with neonatal length, while socioeconomic factors modified specific anthropometric outcomes. These findings highlight the importance of considering social context in prenatal nutritional recommendations. Full article
(This article belongs to the Special Issue Maternal Nutritional Status and Infant Development)
Show Figures

Figure 1

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 - 24 Jul 2025
Viewed by 343
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

28 pages, 829 KiB  
Systematic Review
Toxic Metal Content in Deciduous Teeth: A Systematic Review
by Ireneusz Zawiślak, Sylwia Kiryk, Jan Kiryk, Agnieszka Kotela, Julia Kensy, Mateusz Michalak, Jacek Matys and Maciej Dobrzyński
Toxics 2025, 13(7), 556; https://doi.org/10.3390/toxics13070556 - 30 Jun 2025
Viewed by 476
Abstract
Deciduous teeth accumulate toxic metals until fully mineralized, making them a stable biological matrix for assessing chronic exposure during fetal and early postnatal life. Their metal content is influenced by environmental factors (e.g., industrial areas, mining sites) and individual factors (e.g., maternal diet, [...] Read more.
Deciduous teeth accumulate toxic metals until fully mineralized, making them a stable biological matrix for assessing chronic exposure during fetal and early postnatal life. Their metal content is influenced by environmental factors (e.g., industrial areas, mining sites) and individual factors (e.g., maternal diet, early nutrition, passive smoking). The aim of this study was to evaluate the toxic metal content in deciduous teeth and to identify factors contributing to its accumulation, as well as possible health implications. A systematic review was conducted in accordance with the PRISMA guidelines and following the PICO framework. Quality assessment was assessed using the Joanna Briggs Institute (JBI) checklist for quasi-experimental studies. The literature search was carried out in the PubMed, Scopus, and Web of Science databases using the following keywords: deciduous, milk, primary, decidua, teeth, dentition, heavy metal, toxic metals. A total of 134 articles were initially identified, with 95 remaining after duplicate removal. After screening, 75 articles were excluded: 71 did not meet the inclusion criteria, 3 were not available in English, and 1 lacked full-text access. Ultimately, 20 studies were included in the review. Toxic metal concentrations were determined using various analytical techniques, mainly inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Higher levels of metals, especially lead, were observed in the teeth of children residing in industrial areas, near mines, or in regions affected by armed conflict. Although two out of five studies indicated a possible link between fathers’ smoking habits and elevated lead concentrations, no definitive relationship was established between secondhand smoke exposure and the levels of lead and cadmium found in dental tissue. Similarly, no definitive relationship was identified between mercury and lead content and the prevalence of autism. However, lower manganese levels were associated with the presence of autistic traits, weaker verbal performance, and reduced memory capacity. In conclusion, deciduous teeth represent a valuable biological material for assessing chronic prenatal and early postnatal exposure to toxic metals, which may serve as a starting point for further research into diseases of unknown etiology, such as autism, and in the future may have clinical significance in their prevention and treatment. And it is also important for monitoring environmental pollution levels. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

12 pages, 288 KiB  
Article
The Role of Maternal Gut Firmicutes/Bacteroidetes Ratio in Shaping Fetal Development and Neonatal Microbial Communities
by Arianna Omaña-Covarrubias, Luis Guillermo González-Olivares, Lydia López Póntigo, Ana Teresa Nez-Castro, Rogelio Cruz-Martínez and Marcela Hernández-Ortega
Life 2025, 15(7), 990; https://doi.org/10.3390/life15070990 - 20 Jun 2025
Viewed by 615
Abstract
According to research, intrauterine exposure to non-pathogenic maternal microorganisms during pregnancy is influenced by the mother’s nutritional, metabolic, and immunological status. This study investigates the association between maternal gut microbiota composition, fetal development, and neonatal microbiota, with the aim of exploring their interconnected [...] Read more.
According to research, intrauterine exposure to non-pathogenic maternal microorganisms during pregnancy is influenced by the mother’s nutritional, metabolic, and immunological status. This study investigates the association between maternal gut microbiota composition, fetal development, and neonatal microbiota, with the aim of exploring their interconnected health dynamics. A cohort-based correlational study was conducted involving 114 women (≥18 years old, ≤12 weeks of gestation) attending prenatal consultations at the ISSSTE General Hospital in Pachuca de Soto, Hidalgo, México. Data were collected at four stages: before 11 weeks, at 11–14 weeks, at 20–24 weeks, and at 31 weeks of pregnancy. Assessments included anthropometric measurements, biochemical markers, and intestinal microbiota analysis. The Firmicutes/Bacteroidetes (F/B) ratio positively correlated with venous duct flow and expected weight for gestational week (r = 0.02272, p = 0.0323; r = 0.2344, p = 0.0271). Bacteroidetes showed a positive correlation with birth weight (r = 0.2876, p = 0.0063), birth height (r = 0.5889, p < 0.001), and head circumference (r = 0.2163, p = 0.0418). Correlation analysis revealed significant relationships between maternal and neonatal microbiota, particularly for Bacteroidetes and Firmicutes. The findings suggest that maternal gut microbiota significantly influences fetal growth and neonatal microbiota composition. These insights underscore the importance of maternal health during pregnancy. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

23 pages, 915 KiB  
Review
Potential Epigenetic Impacts of Phytochemicals on Ruminant Health and Production: Connecting Lines of Evidence
by Sebastian P. Schreiber, Juan Villalba and Mirella L. Meyer-Ficca
Animals 2025, 15(12), 1787; https://doi.org/10.3390/ani15121787 - 17 Jun 2025
Viewed by 1343
Abstract
The once mysterious “dark matter of nutrition”, comprising countless plant-derived secondary compounds, also known as phytochemicals, is now understood to have significant and wide-ranging effects on consumers, including myriad health benefits in humans and livestock. The selective consumption of phytochemically rich and diverse [...] Read more.
The once mysterious “dark matter of nutrition”, comprising countless plant-derived secondary compounds, also known as phytochemicals, is now understood to have significant and wide-ranging effects on consumers, including myriad health benefits in humans and livestock. The selective consumption of phytochemically rich and diverse plants, in appropriate doses, by ruminants represents an adaptive means of therapeutic and prophylactic self-medication. Due to their chemical structure, phytochemicals have long been recognized as antioxidants. However, the mechanisms that underlie numerous additional phytochemical-based health benefits are generally less understood. These effects (i.e., anti-inflammatory, immunomodulatory, and anticarcinogenic effects) are likely related to epigenetic processes. Evidence in humans and rodent models, as well as emerging ruminant data, has shown that phytochemicals can modulate gene expression by inhibiting or enhancing the activity of chromatin modifiers. The implication of adaptations with epigenetic mechanisms is significant as they are potentially heritable. We argue that heritable epigenetic changes, including “fetal programming”, are commonplace in ruminants under nutritional interventions. We also argue that these phenomena are significant for an industry that relies upon the efficient breeding and growth of offspring. We highlight emerging yet limited evidence and offer direction for future research. We explore interactions between the fields of plant secondary chemistry, ruminant nutrition, and molecular (epi)genetics and aim to familiarize researchers with the scope and foundational concepts of these emerging interactions. Full article
Show Figures

Figure 1

33 pages, 1914 KiB  
Review
Maternal Overnutrition in Beef Cattle: Effects on Fetal Programming, Metabolic Health, and Postnatal Outcomes
by Borhan Shokrollahi, Myungsun Park, Gi-Suk Jang, Shil Jin, Sung-Jin Moon, Kyung-Hwan Um, Sun-Sik Jang and Youl-Chang Baek
Biology 2025, 14(6), 645; https://doi.org/10.3390/biology14060645 - 2 Jun 2025
Cited by 1 | Viewed by 1050
Abstract
Maternal overnutrition and targeted supplements during pregnancy strongly affect fetal development in beef cattle, influencing gene expression, tissue development, and productivity after birth. As modern feeding practices often result in cows receiving energy and protein above requirements, understanding the balance between adequate nutrition [...] Read more.
Maternal overnutrition and targeted supplements during pregnancy strongly affect fetal development in beef cattle, influencing gene expression, tissue development, and productivity after birth. As modern feeding practices often result in cows receiving energy and protein above requirements, understanding the balance between adequate nutrition and overconditioning is critical for sustainable beef production. This review synthesizes findings from recent studies on maternal overnutrition and supplementation, focusing on macronutrients (energy, protein, methionine) and key micronutrients (e.g., selenium, zinc). It evaluates the timing and impact of supplementation during different gestational stages, with emphasis on fetal muscle and adipose tissue development, immune function, and metabolic programming. The role of epigenetic mechanisms, such as DNA methylation and non-coding RNAs, is also discussed in relation to maternal dietary inputs. Mid-gestation supplementation promotes muscle growth by activating muscle-specific genes, whereas late-gestation diets enhance marbling and carcass traits. However, maternal overnutrition may impair mitochondrial efficiency, encourage fat deposition over muscle, and promote collagen synthesis, reducing meat tenderness. Recent evidence highlights sex-specific fetal programming differences, the significant impact of maternal diets on offspring gut microbiomes, and breed-specific nutritional responses, and multi-OMICs integration reveals metabolic reprogramming mechanisms. Targeted trace mineral and methionine supplementation enhance antioxidant capacity, immune function, and reproductive performance. Precision feeding strategies aligned with gestational requirements improve feed efficiency and minimize overfeeding risks. Early interventions, including protein and vitamin supplementation, optimize placental function and fetal development, supporting stronger postnatal growth, immunity, and fertility. Balancing nutritional adequacy without excessive feeding supports animal welfare, profitability, and sustainability in beef cattle systems. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

11 pages, 387 KiB  
Article
Suboptimal Urinary Iodine Level in Pregnant Women from Perimarine Area of Romania
by Olesea Scrinic, Eduard Circo, Delia Corina and Seila Musledin
J. Clin. Med. 2025, 14(11), 3666; https://doi.org/10.3390/jcm14113666 - 23 May 2025
Viewed by 445
Abstract
Objective: Maintaining adequate iodine intake during pregnancy contributes to achieving a viable fetus with proper neuropsychological development. Because of the lack of national data regarding the assessment of iodine status in pregnant women—conducted through urinary iodine determination in perimarine regions, geographical areas [...] Read more.
Objective: Maintaining adequate iodine intake during pregnancy contributes to achieving a viable fetus with proper neuropsychological development. Because of the lack of national data regarding the assessment of iodine status in pregnant women—conducted through urinary iodine determination in perimarine regions, geographical areas characterized by sufficient iodine intake—this study was undertaken. Materials and Methods: The study evaluated iodine status in a cohort of pregnant women from southeastern region of Romania, perimarine area, assessing iodine intake indicators and the severity of iodine deficiency levels. Results: Iodine nutritional status, based on urinary iodine concentration values adjusted to urinary creatinine, was insufficient in 47.3% of pregnancies. Moderate iodine deficiency was found in 43.2%, while severe iodine deficiency was identified in only 4.1%. Conclusions: Although this is a non-endemic region for iodine deficiency disorders, the perimarine area of Romania presents a moderate iodine deficiency among special population groups such as pregnant women. This situation necessitates iodine intake adaptation and periodic monitoring to prevent maternal-fetal thyroid dysfunctions. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

21 pages, 1578 KiB  
Review
Programming Effects of Maternal Nutrition on Intestinal Development and Microorganisms of Offspring: A Review on Pigs
by Liang Hu, Fali Wu and Lianqiang Che
Microorganisms 2025, 13(5), 1151; https://doi.org/10.3390/microorganisms13051151 - 17 May 2025
Viewed by 611
Abstract
Intestinal development is a critical determinant of growth and overall health in pigs. Accumulating evidence underscores the significant influence of intestinal microbiota on essential physiological functions and systemic health. Dietary nutrients play a pivotal role in regulating both intestinal development and the composition [...] Read more.
Intestinal development is a critical determinant of growth and overall health in pigs. Accumulating evidence underscores the significant influence of intestinal microbiota on essential physiological functions and systemic health. Dietary nutrients play a pivotal role in regulating both intestinal development and the composition of intestinal microbiota. Optimal early-life nutrient provision ensures proper intestinal growth and functional maturation, with maternal nutrition emerging as a key factor shaping intestinal development during fetal and neonatal stages. This review synthesizes recent studies on maternal nutrient intake—encompassing protein, energy, carbohydrates, minerals, vitamins, probiotics, and prebiotics—and their effects on intestinal growth and health of offspring. Emerging multi-omics evidence has revealed that gestational and lactational nutrition dynamically coordinates offspring intestinal development through vertical microbial transmission and epigenetic mechanisms, such as DNA methylation and histone acetylation. These processes further regulate intestinal barrier maturation, mucosal immunity, and enteroendocrine signaling. Collectively, this review emphasizes that enhancing maternal nutrition can promote postnatal growth by enhancing intestinal development and early microbial colonization in piglets. Further research is crucial to determining the optimal nutritional strategies during the perinatal period. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

18 pages, 861 KiB  
Review
Nutritional Status Assessment of Newborns: Comparison of the CAN Score (Metcoff Methodology), Growth Curves, Anthropometry, and Plicometry
by Maria L. Felix, Carmen Basantes, Susana Nicola, Susana Hidalgo, Patricia Guevara-Ramírez, Santiago Cadena-Ullauri and Ana Karina Zambrano
Nutrients 2025, 17(10), 1642; https://doi.org/10.3390/nu17101642 - 12 May 2025
Viewed by 1264
Abstract
Fetal malnutrition, characterized by inadequate fat and muscle accretion during intrauterine development, has been linked to adverse outcomes, ranging from neonatal complications to long-term developmental and metabolic disorders. Traditionally, growth curves and birth weight have guided the assessment of newborns’ nutritional status; however, [...] Read more.
Fetal malnutrition, characterized by inadequate fat and muscle accretion during intrauterine development, has been linked to adverse outcomes, ranging from neonatal complications to long-term developmental and metabolic disorders. Traditionally, growth curves and birth weight have guided the assessment of newborns’ nutritional status; however, these measures often do not accurately reflect changes in body composition. This review compares several evaluation methods—CAN score (Metcoff methodology), body mass index (BMI), Ponderal Index (PI), McLaren Index, mid–upper arm circumference (MUAC), and plicometry—to provide suggestions on selecting the most appropriate approach, depending on the healthcare setting and population needs. Findings from multiple international studies indicate that the CAN score and BMI are among the most accurate tools, offering better sensitivity and specificity than traditional anthropometric indicators. The CAN score, based on a clinical observation of fat deposits, skin texture, and muscle tone, has been widely used in Latin America and remains a practical and cost-effective option. Nonetheless, recent research suggests that BMI, mainly when used alongside the PI, may outperform the CAN score in certain contexts. Considering the complexity of fetal nutritional assessments, integrating multiple methods enhances the diagnostic accuracy. Early identification of malnourished newborns is essential for timely intervention and improved long-term outcomes. Standardizing these diagnostic tools globally could advance efforts to reduce neonatal morbidity and mortality by 2030. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

12 pages, 413 KiB  
Article
The Influence of Maternal Nutrition on the Lifetime Performance of Nellore Cattle Offspring
by Gabriela do Vale Pombo, Guilherme Henrique Gebim Polizel, Arícia Christofaro Fernandes, Édison Furlan, Bárbara Carolina Teixeira Prati, Fernando José Schalch Junior, Alanne Tenório Nunes and Miguel Henrique de Almeida Santana
Ruminants 2025, 5(2), 18; https://doi.org/10.3390/ruminants5020018 - 3 May 2025
Viewed by 563
Abstract
Fetal programming suggests that maternal nutrition during gestation influences offspring growth, development, and productivity. This study evaluated the effects of prenatal protein-energy supplementation on the lifetime performance of Nellore cattle. Twenty-eight nulliparous heifers were inseminated and assigned to one of two groups: Non-Programmed; [...] Read more.
Fetal programming suggests that maternal nutrition during gestation influences offspring growth, development, and productivity. This study evaluated the effects of prenatal protein-energy supplementation on the lifetime performance of Nellore cattle. Twenty-eight nulliparous heifers were inseminated and assigned to one of two groups: Non-Programmed; receiving only mineral supplementation; or Fetal Programmed (FP); receiving additional protein-energy supplementation throughout gestation. Cows in the FP group maintained significantly better body condition score during gestation (p < 0.01), and their calves exhibited greater body weight (BW) during the first 56 days (p < 0.05) and a tendency to grow to a greater BW up to 250 days (p < 0.10) in addition to improved morphological traits, such as increased rump width and length at 45 days of age (p ≤ 0.02). However, these advantages were not sustained in later growth stages, as no significant differences were observed in final body weight, ultrasound carcass traits, or overall feedlot performance. These findings suggest that while prenatal nutrition can influence early developmental traits, its long-term impact on offspring performance may be limited under consistent postnatal management. Nonetheless, the limited sample size, combined with the absence of molecular data and individual feed intake and efficiency measurements, constrains a more comprehensive interpretation of the programming effects on offspring performance. Further research is needed to explore the molecular mechanisms of fetal programming, particularly its epigenetic effects and interactions with postnatal nutrition, to optimize strategies for improving the efficiency and sustainability of beef cattle. Full article
Show Figures

Figure 1

Back to TopTop