Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Size
2.3. Participants
2.4. Study Procedure
2.5. Methods and Measurements
2.5.1. Blood Sample Collection and Biochemical Analysis
2.5.2. Tasting Tests
2.5.3. Linoleic Acid Sensitivity Analysis
2.5.4. Sweet Taste Sensitivity Analysis
2.5.5. Nutritional Analyses
3. Statistical Analysis
4. Results
4.1. Characteristics of the Population
4.2. Fat Taste
4.3. Sweet Taste
5. Discussion
5.1. Fat Taste Perception
5.2. Sweet Taste Perception
5.3. Association of Lipid and Sugar Detection Thresholds with Biochemical Parameters in Diabetic Pregnant Women
6. Limitation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tam, W.H.; Ma, R.C.W.; Ozaki, R.; Li, A.M.; Chan, M.H.M.; Yuen, L.Y.; Lao, T.T.H.; Yang, X.; Ho, C.S.; Tutino, G.E.; et al. In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring. Diabetes Care 2017, 40, 679–686. [Google Scholar] [CrossRef]
- Chadli-Chaieb, M.; Maaroufi, A.; Slim, I.; Kacem, M.; Ach, K.; Chaieb, L. P50 Le diabète gestationnel: Profil clinique, modalités de dépistage et de prise en charge. Diabetes Metab. 2014, 40, A41–A42. [Google Scholar] [CrossRef]
- Tepper, B.J.; Seldner, A.C. Sweet taste and intake of sweet foods in normal pregnancy and pregnancy complicated by gestational diabetes mellitus. Am. J. Clin. Nutr. 1999, 70, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Thanopoulou, A.C.; Karamanos, B.G.; Angelico, F.V.; Assaad-Khalil, S.H.; Barbato, A.F.; Del Ben, M.P.; Djordjevic, P.B.; Dimitrijevic-Sreckovic, V.S.; Gallotti, C.A.; Katsilambros, N.L.; et al. Dietary fat intake as risk factor for the development of diabetes: Multinational, multicenter study of the Mediterranean Group for the Study of Diabetes (MGSD). Diabetes Care 2003, 26, 302–307. [Google Scholar] [CrossRef]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R.; Folsom, A.R. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 2001, 24, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
- Choo, E.; Koh, A.; Goodman, J.; Bushnell, J.; Mielke-Maday, H.; Merte, B.; Dando, R. Decrease in sweet taste response and T1R3 sweet taste receptor expression in pregnant mice highlights a potential mechanism for increased caloric consumption in pregnancy. Physiol. Behav. 2021, 228, 113191. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Duffy, V.B.; Hayes, J.E.; Moskowitz, H.R.; Snyder, D.J. Psychophysics of sweet and fat perception in obesity: Problems, solutions and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Bartáková, V.; Kuricová, K.; Zlámal, F.; Bělobrádková, J.; Kaňková, K. Differences in food intake and genetic variability in taste receptors between Czech pregnant women with and without gestational diabetes mellitus. Eur. J. Nutr. 2018, 57, 513–521. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42 (Suppl. S1), S13–S28. [Google Scholar] [CrossRef]
- Karmous, I.; Plesník, J.; Khan, A.S.; Šerý, O.; Abid, A.; Mankai, A.; Aouidet, A.; Khan, N.A. Orosensory detection of bitter in fat-taster healthy and obese participants: Genetic polymorphism of CD36 and TAS2R38. Clin. Nutr. 2018, 37, 313–320. [Google Scholar] [CrossRef]
- Dergaa, I.; Romdhani, M.; Fessi, M.S.; Ben Saad, H.; Varma, A.; Ben Salem, A.; Gadhavi, B.; Chaabane, M.; Souissi, N.; Hammouda, O. Does lunar cycle affect biological parameters in young healthy men? Chronobiol. Int. 2021, 38, 933–940. [Google Scholar] [CrossRef]
- Giguère, J.F.; de Moura Piovesana, P.; Proulx-Belhumeur, A.; Doré, M.; de Lemos Sampaio, K.; Gallani, M.C. Reliability of a simple method for determining salt taste detection and recognition thresholds. Chem. Senses 2016, 41, 205–210. [Google Scholar] [CrossRef]
- Nergiz-Unal, R.; Rademakers, T.; Cosemans, J.M.; Heemskerk, J.W. CD36 as a multiple-ligand signaling receptor in atherothrombosis. Cardiovasc. Hematol. Agents Med. Chem. 2011, 9, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Lynes, M.D.; Widmaier, E.P. Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet. Life Sci. 2011, 88, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Henderson, S.A.; Shore, A.B.; Barratt-Fornell, A. Nontasters, tasters, and supertasters of 6-n-propylthiouracil (PROP) and hedonic response to sweet. Physiol. Behav. 1997, 62, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.E.; Keast, R.S.J. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int. J. Obes. 2012, 36, 834–842. [Google Scholar] [CrossRef]
- Kuijpers, M.J.; de Witt, S.; Nergiz-Unal, R.; van Kruchten, R.; Korporaal, S.J.; Verhamme, P.; Febbraio, M.; Tjwa, M.; Voshol, P.J.; Hoylaerts, M.F.; et al. Supporting Roles of Platelet Thrombospondin-1 and CD36 in Thrombus Formation on Collagen. Arteroscler. Thromb. Vasc. Biol. 2014, 34, 1187–1192. [Google Scholar] [CrossRef]
- Febbraio, M.; Silverstein, R.L. CD36: Implications in cardiovascular disease. Int. J. Biochem. Cell Biol. 2007, 39, 2012–2030. [Google Scholar] [CrossRef]
- Ekici, M.; Kisa, U.; Durmaz, S.A.; Ugur, E.; Nergiz-Unal, R. Fatty acid transport receptor soluble CD36 and dietary fatty acid pattern in type 2 diabetic patients: A comparative study. Br. J. Nutr. 2018, 119, 153–162. [Google Scholar] [CrossRef]
- Catamo, E.; Tornese, G.; Concas, M.P.; Gasparini, P.; Robino, A. Differences in taste and smell perception between type 2 diabetes mellitus patients and healthy controls. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 193–200. [Google Scholar] [CrossRef]
- Wasalathanthri, S.; Hettiarachchi, P.; Prathapan, S. Sweet taste sensitivity in pre-diabetics, diabetics and normoglycemic controls: A comparative cross sectional study. BMC Endocr. Disord. 2014, 14, 67. [Google Scholar] [CrossRef]
- Belzer, L.M.; Smulian, J.C.; Lu, S.-E.; Tepper, B.J. Changes in sweet taste across pregnancy in mild gestational diabetes mellitus: Relationship to endocrine factors. Chem. Senses 2009, 34, 595–605. [Google Scholar] [CrossRef]
- Miller, I.J.; Reedy, F.E. Variations in human taste bud density and taste intensity perception. Physiol. Behav. 1990, 47, 1213–1219. [Google Scholar] [CrossRef]
- Stein, N.; Laing, D.; Hutchinson, I. Topographical differences in sweetness sensitivity in the peripheral gustatory system of adults and children. Dev. Brain Res. 1994, 82, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Eny, K.M.; Wolever, T.M.; Corey, P.N.; El-Sohemy, A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am. J. Clin. Nutr. 2010, 92, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Habberstad, C.; Drake, I.; Sonestedt, E. Variation in the sweet taste receptor gene and dietary intake in a Swedish middle-aged population. Front. Endocrinol. 2017, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Laffitte, A.; Neiers, F.; Briand, L. Functional roles of the sweet taste receptor in oral and extraoral tissues. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 379–385. [Google Scholar] [CrossRef]
- Garcia-Bailo, B.; Toguri, C.; Eny, K.M.; El-Sohemy, A. Genetic variation in taste and its influence on food selection. OMICS J. Integr. Biol. 2009, 13, 69–80. [Google Scholar] [CrossRef]
- Mezei, G.C.; Ural, S.H.; Hajnal, A. Differential Effects of Maternal High Fat Diet During Pregnancy and Lactation on Taste Preferences in Rats. Nutrients 2020, 12, 3553. [Google Scholar] [CrossRef]
- Stewart, J.E.; Feinle-Bisset, C.; Golding, M.; Delahunty, C.; Clifton, P.M.; Keast, R.S.J. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br. J. Nutr. 2010, 104, 145–152. [Google Scholar] [CrossRef]
- Newman, L.P.; Torres, S.J.; Bolhuis, D.P.; Keast, R.S. The influence of a high-fat meal on fat taste thresholds. Appetite 2016, 101, 199–204. [Google Scholar] [CrossRef]
- Drewnowski, A.; Mennella, J.A.; Johnson, S.L.; Bellisle, F. Sweetness and food preference. J. Nutr. 2012, 142, 1142S–1148S. [Google Scholar] [CrossRef]
- Yu, J.H.; Shin, M.-S.; Lee, J.R.; Choi, J.H.; Koh, E.H.; Lee, W.J.; Park, J.-Y.; Kim, M.-S. Decreased sucrose preference in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2014, 104, 214–219. [Google Scholar] [CrossRef]
- Wilk, K.; Korytek, W.; Pelczyńska, M.; Moszak, M.; Bogdański, P. The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients 2022, 14, 1261. [Google Scholar] [CrossRef]
- Grüneis, V.; Schweiger, K.; Galassi, C.; Karl, C.M.; Treml, J.; Ley, J.P.; König, J.; Krammer, G.E.; Somoza, V.; Lieder, B. Sweetness Perception is not Involved in the Regulation of Blood Glucose after Oral Application of Sucrose and Glucose Solutions in Healthy Male Subjects. Mol. Nutr. Food Res. 2021, 65, e2000472. [Google Scholar] [CrossRef]
Low-Fat Tasters n = 32 | High-Fat Tasters n = 34 | p | p Adjusted | ||
---|---|---|---|---|---|
Diabetes before pregnancy (n) | 27 (84.4) | 6 (17.6) | <0.001 | <0.001 | |
Gestational diabetes (n) | 5 (15.6) | 28 (82.4) | |||
BMI (Kg/m2) | 30.1 ± 6.36 | 30.9 ± 5.08 | 0.567 | ||
Taste thresholds for linoleic acid (Mmol/L) ¥¥ | 0.75 (0.18–0.75) | 3.00 (1.50–6.00) | <0.001 | <0.001 | |
Gestational age (month) | 6.68 ± 1.85 | 5.72 ± 2.11 | 0.054 | ||
Laboratory tests | Glycemia ¥ (mmol/L) | 7.47 ± 3.40 | 6.05 ± 1.88 | 0.042 | 0.452 |
HbA1c ¥ (%) | 7.05 ± 1.67 | 6.28 ± 1.51 | 0.054 | 0.012 | |
Cholesterol ¥ (mmol/L) | 4.92 ± 0.99 | 5.54 ± 1.22 | 0.027 | <0.001 | |
HDL-C ¥ (mmol/L) | 1.35 ± 0.24 | 1.53 ± 0.30 | 0.009 | 0.258 | |
LDL-C ¥ (mmol/L) | 3.11 ± 0.81 | 3.29 ± 0.94 | 0.398 | 0.756 | |
Triglycerides ¥ (mmol/L) | 1.32 (1.05–1.71) | 1.55 (1.04–1.99) | 0.261 | 0.019 | |
Dietary survey | Calories ¥¥ (Kcal/d) | 2527 ± 719 | 2712 ± 1059 | 0.411 | 0.096 |
Carbohydrates ¥¥ (g/d) | 331 ± 105 | 357 ± 144 | 0.407 | 0.194 | |
Proteins ¥¥ (g/d) | 96.9 ± 27.1 | 94.4 ± 34.3 | 0.738 | 0.676 | |
Lipids ¥¥ (g/d) | 91.8 ± 34.5 | 100 ± 47.9 | 0.422 | 0.054 | |
Saturated FA ¥¥ (%) | 25.7 ± 5.19 | 25.6 ± 4.59 | 0.927 | 0.108 | |
Monounsaturated FA ¥¥ (%) | 46.3 ± 10.5 | 47.4 ± 9.64 | 0.683 | 0.478 | |
Polyunsaturated FA (%) | 28.0 ± 13.7 | 27.1 ± 8.82 | 0.749 | 0.189 | |
Cholesterol ¥¥ (mg/d) | 297 (146–384) | 331 (97.5–473) | 0.980 | 0.314 | |
Fibres ¥¥ (g/d) | 24.6 ± 8.48 | 21.3 ± 8.01 | 0.109 | 0.844 | |
Magnesium (mg/d) | 224 ± 86.2 | 176 ± 83.4 | 0.024 | 0.102 |
Low-Sweet Tasters n = 54 | High-Sweet Tasters n = 12 | p | p | ||
---|---|---|---|---|---|
Gestational diabetes (n) | 5 (15.6) | 28 (82.4) | |||
Diabetes before pregnancy (n) | 27 (84.4) | 6 (17.6) | <0.001 | ||
Taste thresholds for sucrose (Mmol/L) ¥¥ | 0 | 0.50 (0.25–1.00) | <0.001 | <0.001 | |
BMI (Kg/m2) | 30.2 ± 5.88 | 32.0 ± 4.81 | 0.320 | ||
Weight (kg) | 77.8 ± 15.7 | 80.1 ± 12.7 | 0.637 | ||
Laboratory tests | Fasting Glycemia ¥ (mmol/L) | 6.90 ± 3.01 | 6.00 ± 1.35 | 0.118 | 0.192 |
HbA1c ¥ (%) | 6.84 ± 1.73 | 5.82 ± 0.56 | 0.001 | 0.461 | |
Cholesterol ¥ (mmol/L) | 5.04 ± 1.03 | 6.15 ± 1.28 | 0.002 | 0.093 | |
HDL (mmol/L) | 1.41 ± 0.25 | 1.55 ± 0.42 | 0.131 | 0.769 | |
Triglycerides ¥ (mmol/L) | 1.31 (1.02–1.69) | 1.75 (1.57–2.32) | 0.016 | 0.336 | |
Dietary survey | Calories ¥¥ (Kcal/d) | 2579 ± 889 | 2817 ± 1011 | 0.416 | 0.166 |
Carbohydrates ¥¥ (g/d) | 336 ± 131 | 382 ± 103 | 0.257 | 0.157 | |
Proteins ¥¥ (g/d) | 95.4 ± 31.1 | 96.4 ± 30.4 | 0.922 | 0.366 | |
Lipids ¥¥ (g/d) | 95.2 ± 37.4 | 100 ± 59.7 | 0.783 | 0.277 | |
Satured fatty acid ¥¥ (%) | 25.6 ± 4.63 | 26.1 ± 5.99 | 0.726 | 0.442 | |
Monounsattured FA ¥¥ (%) | 46.3 ± 10.3 | 49.3 ± 8.42 | 0.353 | 0.709 | |
Polyunsaturated FA (%) | 28.2 ± 11.8 | 24.6 ± 9.29 | 0.328 | 0.985 | |
Dietary cholesterol (mg/d) | 311 (144–396) | 191 (76.0–579) | 0.777 | 0.851 | |
Fibers (g/d) | 22.3 ± 8.34 | 25.6 ± 8.13 | 0.211 | 0.004 | |
Magnesium (mg/d) | 199 ± 89.0 | 203 ± 84.6 | 0.882 | 0.300 | |
Vitamin C (mg/d) | 91.0 (47.0–144) | 141 (61.0–230) | 0.100 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmous, I.; Ben Othman, R.; Dergaa, I.; Ceylan, H.İ.; Bey, C.; Dhahbi, W.; Khan, A.S.; Jamoussi, H.; Muntean, R.I.; Khan, N.A. Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study. Nutrients 2025, 17, 2515. https://doi.org/10.3390/nu17152515
Karmous I, Ben Othman R, Dergaa I, Ceylan Hİ, Bey C, Dhahbi W, Khan AS, Jamoussi H, Muntean RI, Khan NA. Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study. Nutrients. 2025; 17(15):2515. https://doi.org/10.3390/nu17152515
Chicago/Turabian StyleKarmous, Inchirah, Rym Ben Othman, Ismail Dergaa, Halil İbrahim Ceylan, Cyrine Bey, Wissem Dhahbi, Amira Sayed Khan, Henda Jamoussi, Raul Ioan Muntean, and Naim Akhtar Khan. 2025. "Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study" Nutrients 17, no. 15: 2515. https://doi.org/10.3390/nu17152515
APA StyleKarmous, I., Ben Othman, R., Dergaa, I., Ceylan, H. İ., Bey, C., Dhahbi, W., Khan, A. S., Jamoussi, H., Muntean, R. I., & Khan, N. A. (2025). Sweet and Fat Taste Perception: Impact on Dietary Intake in Diabetic Pregnant Women—A Cross-Sectional Observational Study. Nutrients, 17(15), 2515. https://doi.org/10.3390/nu17152515