Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = fetal exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2057 KB  
Review
Drugs, Mother, and Child—An Integrative Review of Substance-Related Obstetric Challenges and Long-Term Offspring Effects
by Atziri Alejandra Jiménez-Fernández, Joceline Alejandra Grajeda-Perez, Sofía de la Paz García-Alcázar, Mariana Gabriela Luis-Díaz, Francisco Javier Granada-Chavez, Emiliano Peña-Durán, Jesus Jonathan García-Galindo and Daniel Osmar Suárez-Rico
Drugs Drug Candidates 2025, 4(3), 40; https://doi.org/10.3390/ddc4030040 (registering DOI) - 25 Aug 2025
Abstract
Substance use during pregnancy is an increasingly important yet under-recognized threat to maternal and child health. This narrative review synthesizes the current evidence available on the epidemiology, pathophysiology, clinical management, and policy landscape of prenatal exposure to alcohol, tobacco, opioids, benzodiazepines, cocaine, cannabis, [...] Read more.
Substance use during pregnancy is an increasingly important yet under-recognized threat to maternal and child health. This narrative review synthesizes the current evidence available on the epidemiology, pathophysiology, clinical management, and policy landscape of prenatal exposure to alcohol, tobacco, opioids, benzodiazepines, cocaine, cannabis, methamphetamines, and other synthetic drugs. All major psychoactive substances readily cross the placenta and can remain detectable in breast milk, leading to a shared cascade of obstetric complications (hypertensive disorders, placental abruption, pre-term labor), fetal consequences (growth restriction, structural malformations), and neonatal morbidities such as neonatal abstinence syndrome and sudden infant death. Mechanistically, trans-placental diffusion, oxidative stress, inflammatory signaling, and placental vascular dysfunction converge to disrupt critical neuro- and cardiovascular developmental windows. Early identification hinges on the combined use of validated screening questionnaires (4 P’s Plus, CRAFFT, T-ACE, AUDIT-C, TWEAK) and matrix-specific biomarkers (PEth, EtG, FAEE, CDT), while effective treatment requires integrated obstetric, addiction, and mental health services. Medication for opioid use disorders, particularly buprenorphine, alone or with naloxone, confers superior neonatal outcomes compared to methadone and underscores the value of harm-reducing non-punitive care models. Public-health strategies, such as Mexico’s “first 1 000 days” framework, wrap-around clinics, and home-visiting programs, demonstrate the potential of multisectoral interventions, but are hampered by structural inequities and punitive legislation that deter care-seeking. Research gaps persist in polysubstance exposure, culturally tailored therapies, and long-term neurodevelopmental trajectories. Multigenerational, omics-enabled cohorts, and digital longitudinal-care platforms represent promising avenues for closing these gaps and informing truly preventive perinatal health policies. Full article
(This article belongs to the Section Clinical Research)
Show Figures

Figure 1

19 pages, 1793 KB  
Review
Letrozole at the Crossroads of Efficacy and Fetal Safety in Ovulation Induction: A Narrative Review
by Aris Kaltsas, Anna Efthimiou, Christos Roidos, Vasileios Tzikoulis, Ioannis Georgiou, Alexandros Sotiriadis, Athanasios Zachariou, Michael Chrisofos, Nikolaos Sofikitis and Fotios Dimitriadis
Biomedicines 2025, 13(9), 2051; https://doi.org/10.3390/biomedicines13092051 - 22 Aug 2025
Viewed by 95
Abstract
Letrozole, a third-generation aromatase inhibitor initially developed for breast cancer, has become the preferred first-line agent for ovulation induction (OI), particularly in women with polycystic ovary syndrome (PCOS). This narrative review critically evaluates the efficacy, safety, and clinical applications of letrozole across diverse [...] Read more.
Letrozole, a third-generation aromatase inhibitor initially developed for breast cancer, has become the preferred first-line agent for ovulation induction (OI), particularly in women with polycystic ovary syndrome (PCOS). This narrative review critically evaluates the efficacy, safety, and clinical applications of letrozole across diverse infertility contexts. Compared to clomiphene citrate, letrozole is associated with higher ovulation and live birth rates, a lower risk of multiple gestation, and a more favorable endometrial environment. Its pharmacokinetics—marked by transient estrogen suppression and a short half-life—limit embryonic exposure, supporting its favorable safety profile. Emerging data from large, randomized trials and meta-analyses demonstrate no increase in congenital anomalies, miscarriage, or adverse perinatal outcomes in letrozole-conceived pregnancies. Moreover, maternal side effects are generally mild, and the risk of ovarian hyperstimulation syndrome is low. Letrozole has also shown utility in mild stimulation protocols, fertility preservation for estrogen-sensitive malignancies, and clomiphene-resistant PCOS. Key clinical strategies—such as early-cycle initiation, lowest effective dosing, and individualized monitoring—optimize therapeutic outcomes while minimizing potential risks. While long-term offspring data remain limited and mechanistic concerns persist, current evidence robustly supports letrozole as a safe and effective option for OI, balancing reproductive success with maternal–fetal safety across a range of infertility indications. Full article
(This article belongs to the Special Issue Maternal-Fetal and Neonatal Medicine)
Show Figures

Figure 1

15 pages, 764 KB  
Article
Essential Elements (Fe, Cu, Mn, Zn) in Meconium, and Newborn Length and Weight, in Relation to Maternal Lifestyle and Diet
by Bianka Mimica, Ajka Pribisalic, Zlatka Knezovic and Davorka Sutlovic
Nutrients 2025, 17(16), 2700; https://doi.org/10.3390/nu17162700 - 20 Aug 2025
Viewed by 248
Abstract
Background/Objectives: Fetal exposure to essential metals, such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn), is influenced by maternal nutrition and lifestyle during pregnancy, potentially impacting newborn health. This study aimed to quantify concentrations of these metals in meconium and evaluate [...] Read more.
Background/Objectives: Fetal exposure to essential metals, such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn), is influenced by maternal nutrition and lifestyle during pregnancy, potentially impacting newborn health. This study aimed to quantify concentrations of these metals in meconium and evaluate their associations, together with newborn length and weight, in relation to maternal dietary and lifestyle factors. Methods: This cross-sectional study included 152 mother–infant pairs recruited from various regions of Split-Dalmatia County, Croatia. Meconium samples were collected within 24 h after birth and analyzed for Fe, Zn, Cu, and Mn concentrations. Maternal characteristics, dietary intake, supplement use, and lifestyle factors were collected via structured questionnaires and supplemented by hospital records. Associations among maternal factors, meconium metal concentrations, and newborn birth weight and length were assessed using non-parametric statistical methods. Results: Meconium concentrations of Fe, Zn, Cu, and Mn showed substantial interindividual variability, with a strong positive correlation between Fe and Cu. Higher maternal pre-pregnancy BMI was linked to lower meconium Fe, while BMI at delivery was associated with Zn. Dietary patterns influenced metal levels: higher fruit intake was linked to increased Cu, greater vegetable intake with lower Fe, and moderate tea consumption with higher Zn. No significant associations were found with maternal smoking, residence, or supplement use. Maternal meat consumption and higher pre-pregnancy BMI were both associated with higher newborn birth weight and length. Conclusions: Maternal BMI and specific dietary patterns during pregnancy significantly influence essential metal concentrations in newborn meconium and are associated with newborn size, highlighting the importance of balanced maternal nutrition and healthy metabolic status during pregnancy. Full article
(This article belongs to the Special Issue Diet, Maternal Nutrition and Reproductive Health)
Show Figures

Figure 1

21 pages, 12120 KB  
Article
Integrated Pharmacoepigenomic Analysis Uncovers the Impact of Antiseizure Medications on Developmental Pathways and the Protective Effect of Folic Acid
by Neethu Mohan and Moinak Banerjee
Int. J. Mol. Sci. 2025, 26(16), 7981; https://doi.org/10.3390/ijms26167981 - 19 Aug 2025
Viewed by 422
Abstract
Fetal exposure to antiseizure medications (ASMs) can impact organogenesis, resulting in elevated risk of congenital malformations. Despite longstanding clinical awareness of the teratogenic potential of ASMs, the molecular mechanisms remain largely unexplored. To address this multisystem impact of ASMs, an OMIC-based approach was [...] Read more.
Fetal exposure to antiseizure medications (ASMs) can impact organogenesis, resulting in elevated risk of congenital malformations. Despite longstanding clinical awareness of the teratogenic potential of ASMs, the molecular mechanisms remain largely unexplored. To address this multisystem impact of ASMs, an OMIC-based approach was considered to understand the impact of ASMs on methylome and subsequently on proteome and how folic acid (FA) supplementation can counter the teratogenic impact. The study employed an established in vitro embryonic cell line model system, treated with varying concentrations of first-generation ASMs, alone and in combination with FA. Integrated analyses included quantification of global DNA methylation, expression analysis of key epigenetic regulators (DNMTs and TETs), genome-wide methylation profiling using the 935K EPIC array, and LC-MS/MS-based proteomics analysis. The study identified that ASMs can induce global DNA hypomethylation, which was likely to be impacted by dysregulation of DNMT and TET expression. Interestingly, FA co-treatment partially restored DNA methylation as evidenced by global DNA methylation and epigenetic gene expression, and also by compensatory effect via one-carbon metabolism. Genome-wide DNA methylation revealed site-specific hypermethylation at key developmental genes, several of which were reversed with FA. Proteomics analysis identified downregulation of developmentally critical proteins, including those linked to key metabolic processes, while FA co-treatment reversed expression of several such proteins. Integrative methylome–proteome analysis revealed the coordinated regulation of target genes that are linked to congenital abnormalities. Together, these findings offer mechanistic insight into ASM-induced teratogenesis and support FA’s potential to mitigate epigenetic and proteomic disruptions. This integrated OMICs based approach identifies key biomarkers which can be used for therapeutic monitoring and help in optimizing maternal epilepsy management. Full article
(This article belongs to the Special Issue Genomics and Epigenomics in Molecular Neurobiology)
Show Figures

Graphical abstract

20 pages, 402 KB  
Review
The Effects of Maternal Endocrinopathies and Exposure to Endocrine Disruptors During Pregnancy on the Fetus and Newborn
by Ruth Fox, Su’ad Akinboro, Andrzej Kędzia and Elżbieta Niechciał
Biomedicines 2025, 13(8), 1965; https://doi.org/10.3390/biomedicines13081965 - 13 Aug 2025
Viewed by 460
Abstract
Maternal health has a profound impact on fetal development, influencing the risk of pediatric endocrine disorders both directly and indirectly through various biological and environmental mechanisms. Throughout pregnancy, several endocrine disorders can arise or be exacerbated due to the physiological changes that occur. [...] Read more.
Maternal health has a profound impact on fetal development, influencing the risk of pediatric endocrine disorders both directly and indirectly through various biological and environmental mechanisms. Throughout pregnancy, several endocrine disorders can arise or be exacerbated due to the physiological changes that occur. An in-depth review of articles with evidence-based research discussing the significant effects of maternal endocrinopathies and endocrine disruptors on fetal development and infant health was conducted in this review paper. The most common endocrine disorder during pregnancy is gestational diabetes mellitus, which has an incidence rate of 2–16%, depending on ethnic origin. Maternal diabetes, apart from macrosomia and hypoglycemia, increases the risk for several pregnancy and neonatal complications such as stillbirth, perinatal mortality, and congenital malformations. Other endocrine issues occurring in pregnancy include alterations in thyroid hormone levels, obesity-related insulin resistance, Cushing syndrome, or polycystic ovarian syndrome, which all may negatively influence the fetus, as well as offspring development. Additionally, environmental exposure to harmful substances during pregnancy can disrupt endocrine function. Bisphenol A is the most common endocrine disruptor, which is particularly detrimental during gestation. Bisphenol A exposure is related to low birth weight, preterm birth, or developmental delays. Also, its exposition could be associated with an increased risk of obesity, metabolic disorders, and certain cancers later in life. Endocrinopathies and exposure to endocrine disruptors during pregnancy represent a challenging problem, being widespread and demanding appropriate management to reduce fetal and newborn complications. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

21 pages, 4701 KB  
Review
Maternal Lifestyle During Pregnancy and Its Influence on Offspring’s Telomere Length
by Elena Vakonaki, Maria Theodora Vitiadou, Eleftherios Panteris, Manolis Tzatzarakis, Aristides Tsatsakis and Eleftheria Hatzidaki
Life 2025, 15(8), 1250; https://doi.org/10.3390/life15081250 - 6 Aug 2025
Viewed by 668
Abstract
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such [...] Read more.
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such as vitamins C and D, folate, and magnesium. Additionally, adherence to a Mediterranean diet and regular physical activity during pregnancy are correlated with increased placental TL, supporting fetal genomic integrity. Conversely, maternal dietary patterns high in carbohydrates, fats, or alcohol, as well as exposure to triclosan and sleep-disordered breathing, negatively correlate with offspring’s TL. Maternal infections may also shorten TL through heightened inflammation and oxidative stress. However, evidence regarding the impact of other lifestyle factors—including maternal stress, smoking, caffeine intake, polyunsaturated fatty acid consumption, obesity, and sleep quality—remains inconsistent. Given that shorter telomere length has been associated with cardiovascular, pulmonary, and neurodegenerative diseases, as well as certain types of cancer, these findings highlight the vital importance of maternal health during pregnancy in order to prevent potential adverse effects on the fetus. Further studies are required to elucidate the precise timing, intensity, and interplay of these influences, enabling targeted prenatal interventions to enhance offspring health outcomes. Full article
Show Figures

Figure 1

24 pages, 624 KB  
Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 504
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

41 pages, 1640 KB  
Review
Early Roots of Childhood Obesity: Risk Factors, Mechanisms, and Prevention Strategies
by Giuseppina Rosaria Umano, Simonetta Bellone, Raffaele Buganza, Valeria Calcaterra, Domenico Corica, Luisa De Sanctis, Anna Di Sessa, Maria Felicia Faienza, Nicola Improda, Maria Rosaria Licenziati, Melania Manco, Carla Ungaro, Flavia Urbano, Giuliana Valerio, Malgorzata Wasniewska and Maria Elisabeth Street
Int. J. Mol. Sci. 2025, 26(15), 7388; https://doi.org/10.3390/ijms26157388 - 30 Jul 2025
Viewed by 1279
Abstract
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to [...] Read more.
Childhood obesity is a growing global health concern, with established links to physical activity, nutrition, and, increasingly, to prenatal and perinatal factors. Emerging evidence highlights the significant role of maternal conditions such as obesity, comorbidities, nutrition, and environmental exposures in predisposing offspring to long-term metabolic and cardiovascular diseases. The “Developmental Origins of Health and Disease” (DOHaD) paradigm provides a framework for understanding how early life environmental exposures, particularly during the periconceptional, fetal, and neonatal periods, can program future health outcomes through epigenetic mechanisms. Epigenetic modifications alter gene expression without changing the DNA sequence and are increasingly recognized as key mediators in the development of obesity. This narrative review summarizes current findings on the early determinants of childhood obesity, emphasizing the molecular and epigenetic pathways involved. A comprehensive literature search was conducted across multiple databases and international sources, focusing on recent studies from the past decade. Both human and animal research were included to provide a broad perspective. This review aims to consolidate recent insights into early life influences on obesity, underscoring the need for preventive strategies starting as early as the preconception period. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
Show Figures

Figure 1

27 pages, 2012 KB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 408
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

12 pages, 1307 KB  
Article
Protection Against Transplacental Transmission of a Highly Virulent Classical Swine Fever Virus Two Weeks After Single-Dose FlagT4G Vaccination in Pregnant Sows
by Liani Coronado, Àlex Cobos, Adriana Muñoz-Aguilera, Sara Puente-Marin, Gemma Guevara, Cristina Riquelme, Saray Heredia, Manuel V. Borca and Llilianne Ganges
Vaccines 2025, 13(8), 803; https://doi.org/10.3390/vaccines13080803 - 28 Jul 2025
Viewed by 472
Abstract
Background/Objectives: Classical swine fever (CSF) continues to challenge global eradication efforts, particularly in endemic regions, where pregnant sows face heightened risks of vertical transmission following exposure to CSFV. Methods: This study evaluates the early protective efficacy of FlagT4G, a novel live attenuated DIVA-compatible [...] Read more.
Background/Objectives: Classical swine fever (CSF) continues to challenge global eradication efforts, particularly in endemic regions, where pregnant sows face heightened risks of vertical transmission following exposure to CSFV. Methods: This study evaluates the early protective efficacy of FlagT4G, a novel live attenuated DIVA-compatible vaccine. Pregnant sows were vaccinated at mid-gestation and challenged 14 days later with a highly virulent CSFV strain. Results: FlagT4G conferred complete clinical protection, preventing both maternal viremia and transplacental transmission. No CSFV RNA, specific antibodies, or IFN-α were detected in fetal samples from vaccinated animals. In contrast, unvaccinated sows exhibited clinical signs, high viral loads, and widespread fetal infection. Interestingly, early protection was observed even in the absence of strong humoral responses in some vaccinated sows, suggesting a potential role for innate or T-cell-mediated immunity in conferring rapid protection. Conclusions: The demonstrated efficacy of FlagT4G within two weeks of vaccination underscores its feasibility for integration into emergency vaccination programs. Its DIVA compatibility and ability to induce early fetal protection against highly virulent CSFV strains position it as a promising tool for CSF control and eradication strategies. Full article
(This article belongs to the Special Issue Vaccines for Porcine Viruses)
Show Figures

Figure 1

16 pages, 4271 KB  
Article
Considering Litter Effects in Preclinical Research: Evidence from E17.5 Acid-Sensing Ion Channel 2a Knockout Mice Exposed to Acute Seizures
by Junie P. Warrington, Tyranny Pryor, Maria Jones-Muhammad and Qingmei Shao
Brain Sci. 2025, 15(8), 802; https://doi.org/10.3390/brainsci15080802 - 28 Jul 2025
Viewed by 250
Abstract
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; [...] Read more.
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; however, litter information is rarely presented. Some studies utilize entire litters with each animal treated as an independent sample, while others equally assign animals from each litter to different groups/treatments, and others use averaged data. These methods can yield different results. Methods: This study used different analysis methods to evaluate embryo and placenta weights from E17.5 acid-sensing ion channel 2a (ASIC2a) mice with or without seizure exposure. Results: When each embryo was treated as an individual sample, fetal and placental weight significantly differed following seizures in the ASIC2a heterozygous (+/−) and homozygous (−/−) groups. Differences in fetal weight were driven by females in the ASIC2a+/− group and both sexes in the ASIC2a−/− group. These differences were lost when an average per sex/genotype/litter was used. There was no difference in placental weight when treated individually; however, female ASIC2a−/− placentas weighed less following seizures. This difference was lost with averaged data. ASIC2a−/− fetuses from −/− dams had reduced weights post-seizure exposure. Position on the uterine horn influenced embryo and placental weight. Conclusions: Our results indicate that using full litters analyzed as individual data points should be avoided, as it can lead to Type I errors. Furthermore, studies should account for litter effects and be transparent in their methods and results. Full article
Show Figures

Graphical abstract

13 pages, 725 KB  
Systematic Review
Impact of Perioperative Antibiotic Prophylaxis in Caesarean Section on the Maternal Gut Microbiome: A Systematic Review
by Elisabeth AL Feles, Claudio Neidhöfer, Christina Wessels, Rosalie Gruber and Frauke Mattner
J. Clin. Med. 2025, 14(14), 5104; https://doi.org/10.3390/jcm14145104 - 18 Jul 2025
Viewed by 448
Abstract
Background/Objectives: Caesarean section (CS) accounts for over 20% of global births and routinely involves perioperative antibiotic prophylaxis (PAP) to reduce surgical site infections. While the impact of such prophylaxis on neonatal microbiome development is well described, effects on the maternal gut microbiome remain [...] Read more.
Background/Objectives: Caesarean section (CS) accounts for over 20% of global births and routinely involves perioperative antibiotic prophylaxis (PAP) to reduce surgical site infections. While the impact of such prophylaxis on neonatal microbiome development is well described, effects on the maternal gut microbiome remain underexplored. This systematic review synthesizes current evidence on how antibiotic prophylaxis during CS affects maternal gut microbiome composition and diversity—an underrepresented, but clinically relevant aspect of maternal–fetal medicine. Methods: A systematic literature search was conducted in Medline (PubMed), the Cochrane Library, and the WHO International Clinical Trials Registry Platform (ICTRP) through November 2024. Inclusion criteria were defined according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eligible studies used molecular techniques to report maternal gut microbiome outcomes (alpha- and beta-diversity). The search concentrated on beta-lactam antibiotics. Reference lists were screened, but no additional grey literature was searched. Synthesis followed the Synthesis Without meta-analysis (SWiM) approach. No review protocol was registered. The review received no external funding. Results: Out of 1011 records, three studies (total 286 mothers) met the inclusion criteria. All reported maternal microbiome outcomes secondarily to infant-focused research. Only one study provided pre- and post-birth stool samples. Applied antibiotic regimens, sequencing methods, and reported microbiome metrics for alpha- and beta-diversity varied considerably, thus limiting comparability of results. Due to high heterogeneity, no formal risk of bias was assessed. While taxonomic diversity changes were inconsistent, significant shifts in functional diversity metrics were observed postpartum. Conclusions: Evidence on maternal microbiome disruption following perioperative antibiotic prophylaxis in CS is methodologically fragmented and limited by small sample sizes and inconsistent antibiotic protocols. Nonetheless, functional diversity appears sensitive to antibiotic exposure. To improve clinical understanding and safety, maternal-focused studies using standardized protocols are urgently needed. The maternal microbiome may play a key role in both recovery and shaping the newborn’s early microbial environment. Full article
Show Figures

Figure 1

21 pages, 1473 KB  
Review
The Sex Difference in the Pathophysiology of Preterm Birth
by Gain Lee, Gisela Martinez Andrade, Young Ju Kim and Dilly O. C. Anumba
Cells 2025, 14(14), 1084; https://doi.org/10.3390/cells14141084 - 16 Jul 2025
Viewed by 908
Abstract
Preterm birth (PTB) refers to a labor before 37 gestational weeks. This is a major global contributor to neonatal morbidity and mortality. Although fetal sex is frequently treated as a confounding variable in PTB research, relatively few studies have conducted sex-stratified analyses to [...] Read more.
Preterm birth (PTB) refers to a labor before 37 gestational weeks. This is a major global contributor to neonatal morbidity and mortality. Although fetal sex is frequently treated as a confounding variable in PTB research, relatively few studies have conducted sex-stratified analyses to investigate how male and female fetuses may respond differently to various intrauterine exposures. This represents an underexplored area with important implications for understanding fetal sexual dimorphism-specific vulnerability to adverse pregnancy outcomes. Understanding the role of fetal sex differences in the pathophysiology of preterm birth (PTB) regarding processes such as inflammation, placental dysfunction, and oxidative stress is crucial. These delicate processes are tightly interrelated, but also independently contribute to pregnancy complications. Recognizing fetal sex as a biological variable for such processes is essential for improving mechanistic insight, providing refined predictive models. Full article
(This article belongs to the Special Issue Molecular Insight into the Pathogenesis of Spontaneous Preterm Birth)
Show Figures

Figure 1

21 pages, 3526 KB  
Article
Prenatal Bisphenol A Exposure Impairs Fetal Heart Development: Molecular and Structural Alterations with Sex-Specific Differences
by Alessandro Marrone, Anna De Bartolo, Vittoria Rago, Francesco Conforti, Lidia Urlandini, Tommaso Angelone, Rosa Mazza, Maurizio Mandalà and Carmine Rocca
Antioxidants 2025, 14(7), 863; https://doi.org/10.3390/antiox14070863 - 14 Jul 2025
Viewed by 632
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that cause a predisposition to long-term cardiovascular vulnerability. However, the impact of prenatal endocrine disruption on fetal heart development and its sex-specific nature remains incompletely understood. This study investigates the molecular and structural effects of low-dose prenatal BPA exposure on fetal rat hearts. Our results reveal that BPA disrupts estrogen receptor (ER) signaling in a sex-dependent manner, with distinct alterations in ERα, ERβ, and GPER expression. BPA exposure also triggers significant inflammation, oxidative stress, and ferroptosis; this is evidenced by elevated NF-κB, IL-1β, TNF-α, and NLRP3 inflammasome activation, as well as impaired antioxidant defenses (SOD1, SOD2, CAT, and SELENOT), increased lipid peroxidation (MDA) and protein oxidation, decreased GPX4, and increased ACSL4 levels. These alterations are accompanied by increased markers of cardiac distension (ANP, BNP), extracellular matrix remodeling mediators, and pro-fibrotic regulators (Col1A1, Col3A1, TGF-β, and CTGF), with a more pronounced response in males. Histological analyses corroborated these molecular findings, revealing structural alterations as well as glycogen depletion in male fetal hearts, consistent with altered cardiac morphogenesis and metabolic stress. These effects were milder in females, reinforcing the notion of sex-specific vulnerability. Moreover, prenatal BPA exposure affected myocardial fiber architecture and vascular remodeling in a sex-dependent manner, as evidenced by reduced expression of desmin alongside increased levels of CD34 and Ki67. Overall, our findings provide novel insights into the crucial role of prenatal endocrine disruption during fetal heart development and its contribution to the early origins of CVD, underscoring the urgent need for targeted preventive strategies and further research into the functional impact of BPA-induced alterations on postnatal cardiac function and long-term disease susceptibility. Full article
Show Figures

Graphical abstract

15 pages, 2179 KB  
Article
High-Salt Exposure Disrupts Cardiovascular Development in Zebrafish Embryos, Brachyodanio rerio, via Calcium and MAPK Signaling Pathways
by Ebony Thompson, Justin Hensley and Renfang Song Taylor
J 2025, 8(3), 26; https://doi.org/10.3390/j8030026 - 14 Jul 2025
Viewed by 431
Abstract
Cardiovascular disease and hypertension are major global health challenges, and increasing dietary salt intake is a known contributor. Emerging evidence suggests that excessive salt exposure during pregnancy may impact fetal development, yet its effects on early embryogenesis remain poorly understood. In this study, [...] Read more.
Cardiovascular disease and hypertension are major global health challenges, and increasing dietary salt intake is a known contributor. Emerging evidence suggests that excessive salt exposure during pregnancy may impact fetal development, yet its effects on early embryogenesis remain poorly understood. In this study, we used zebrafish (Danio rerio) embryos as a model to investigate the developmental and molecular consequences of high-salt exposure during early vertebrate development. Embryos subjected to elevated salt levels exhibited delayed hatching, reduced heart rates, and significant alterations in gene expression profiles. Transcriptomic analysis revealed over 4000 differentially expressed genes, with key disruptions identified in calcium signaling, MAPK signaling, cardiac muscle development, and vascular smooth muscle contraction pathways. These findings indicate that early salt exposure can perturb crucial developmental processes and signaling networks, offering insights into how prenatal environmental factors may contribute to long-term cardiovascular risk. Full article
Show Figures

Figure 1

Back to TopTop